What Is the Best Predictor of Phenobarbital Pharmacokinetics to Use for Initial Dosing in Neonates?
Abstract
:1. Introduction
2. Phenobarbital Pharmacokinetics
3. Methods
4. Results
4.1. Covariates of Phenobarbital Pharmacokinetics
4.1.1. Demographics
4.1.2. Laboratory Parameters
4.1.3. Asphyxia
4.1.4. Therapeutic Modalities
4.1.5. Drug Interactions and Genetic Polymorphisms
4.2. Covariate-Based Phenobarbital Dosing
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Evans, D.; Levene, M. Neonatal seizures. Arch. Dis. Child Fetal Neonatal Ed. 1998, 78, F70–F75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Dib, M.; Soul, J.S. The use of phenobarbital and other anti-seizure drugs in newborns. Semin. Fetal Neonatal Med. 2017, 22, 321–327. [Google Scholar] [CrossRef]
- Krishna, S.; Hutton, A.; Aronowitz, E.; Moore, H.; Vannucci, S.J. The effects of adding prophylactic phenobarbital to therapeutic hypothermia in the term-equivalent hypoxic-ischemic rat. Pediatr. Res. 2018, 83, 506–513. [Google Scholar] [CrossRef] [PubMed]
- Papile, L.A.; Baley, J.E.; Benitz, W.; Cummings, J.; Carlo, W.A.; Eichenwald, E.; Kumar, P.; Polin, R.A.; Tan, R.C.; Committee on Fetus and Newborn; et al. Hypothermia and neonatal encephalopathy. Pediatrics 2014, 133, 1146–1150. [Google Scholar] [PubMed] [Green Version]
- Falsaperla, R.; Mauceri, L.; Pavone, P.; Barbagallo, M.; Vitaliti, G.; Ruggieri, M.; Pisani, F.; Corsello, G. Short-Term Neurodevelopmental Outcome in Term Neonates Treated with Phenobarbital versus Levetiracetam: A Single-Center Experience. Behav. Neurol. 2019, 2019, 3683548. [Google Scholar] [CrossRef] [Green Version]
- Spagnoli, C.; Seri, S.; Pavlidis, E.; Mazzotta, S.; Pelosi, A.; Pisani, F. Phenobarbital for Neonatal Seizures: Response Rate and Predictors of Refractoriness. Neuropediatrics 2016, 47, 318–326. [Google Scholar]
- Zeller, B.; Giebe, J. Pharmacologic Management of Neonatal Seizures. Neonatal Netw. 2015, 34, 239–344. [Google Scholar] [CrossRef] [PubMed]
- Reinisch, J.M.; Sanders, S.A.; Mortensen, E.L.; Rubin, D.B. In utero exposure to phenobarbital and intelligence deficits in adult men. JAMA 1995, 274, 1518–1525. [Google Scholar] [CrossRef] [PubMed]
- Farwell, J.R.; Lee, Y.J.; Hirtz, D.G.; Sulzbacher, S.I.; Ellenberg, J.H.; Nelson, K.B. Phenobarbital for febrile seizures-effects on intelligence and on seizure recurrence. N. Engl. J. Med. 1990, 322, 364–369. [Google Scholar] [CrossRef] [PubMed]
- Sulzbacher, S.; Farwell, J.R.; Temkin, N.; Lu, A.S.; Hirtz, D.G. Late cognitive effects of early treatment with phenobarbital. Clin. Pediatr. (Phila) 1999, 38, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Pacifici, G.M. Clinical Pharmacology of Phenobarbital in Neonates: Effects, Metabolism and Pharmacokinetics. Curr. Pediatr. Rev. 2016, 12, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Marsot, A.; Brevaut-Malaty, V.; Vialet, R.; Boulamery, A.; Bruguerolle, B.; Simon, N. Pharmacokinetics and absolute bioavailability of phenobarbital in neonates and young infants, a population pharmacokinetic modelling approach. Fundam. Clin. Pharmacol. 2014, 28, 465–471. [Google Scholar] [CrossRef] [PubMed]
- Lutz, I.C.; Allegaert, K.; de Hoon, J.N.; Marynissen, H. Pharmacokinetics during therapeutic hypothermia for neonatal hypoxic ischaemic encephalopathy: A literature review. BMJ. Paediatr. Open 2020, 4. [Google Scholar] [CrossRef]
- Yozawitz, E.; Stacey, A.; Pressler, R.M. Pharmacotherapy for Seizures in Neonates with Hypoxic Ischemic Encephalopathy. Paediatr. Drugs 2017, 19, 553–567. [Google Scholar]
- Taburet, A.M.; Chamouard, C.; Aymard, P.; Chevalier, J.Y.; Costil, J. Phenobarbital protein binding in neonates. Dev. Pharmacol. Ther. 1982, 4, 129–134. [Google Scholar] [CrossRef]
- Ehrnebo, M.; Agurell, S.; Jalling, B.; Boréus, L.O. Age differences in drug binding by plasma proteins: Studies on human foetuses, neonates and adults. Eur. J. Clin. Pharmacol. 1971, 3, 189–193. [Google Scholar] [CrossRef]
- Kwan, P.; Brodie, M.J. Phenobarbital for the treatment of epilepsy in the 21st century: A critical review. Epilepsia 2001, 45, 1141–1149. [Google Scholar] [CrossRef]
- Methaneethorn, J.; Leelakanok, L. Pharmacokinetic variability of phenobarbital: A systematic review of population pharmacokinetic analysis. Eur. J. Clin. Pharmacol. 2020. [Google Scholar] [CrossRef]
- Anderson, B.J.; Holford, N.H. Understanding dosing: Children are small adults, neonates are immature children. Arch Dis Child 2013, 98, 737–744. [Google Scholar] [CrossRef]
- Queensland Governmen. Queensland Clinical Guidelines. Available online: https://www.health.qld.gov.au/__data/assets/pdf_file/0030/143697/g-seizures.pdf (accessed on 28 December 2020).
- Gilman, M.E.; Toback, J.W.; Gal, P.; Erkan, N.V. Individualizing phenobarbital dosing in neonates. Clin. Pharm. 1983, 2, 258–262. [Google Scholar]
- Gherpelli, J.L.; Cruz, A.M.; Tsanaclis, L.M.; Costa, H.P.; Garcia, T.G.; Segre, C.A.; Spina-Franca, A. Phenobarbital in newborns with neonatal seizures. A study of plasma levels after intravenous administration. Brain Dev. 1993, 15, 258–262. [Google Scholar] [CrossRef]
- Nahata, M.C.; Masuoka, T.; Edwards, R.C. Developmental aspects of phenobarbital dosage requirements in newborn infants with seizures. J. Perinatol. 1988, 8, 318–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pauwels, S.; Allegaert, K. Therapeutic drug monitoring in neonates. Arch. Dis. Child. 2016, 101, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Jalling, B. Plasma concentrations of phenobarbital in the treatment of seizures in newborns. Acta. Paediatr. Scand. 1975, 64, 514–524. [Google Scholar] [CrossRef] [PubMed]
- Touw, D.J.; Graafland, O.; Cranendonk, A.; Vermeulen, R.J.; van Weissenbruch, M.M. Clinical pharmacokinetics of phenobarbital in neonates. Eur. J. Pharm. Sci. 2000, 12, 111–116. [Google Scholar] [CrossRef]
- Turhan, A.H.; Atici, A.; Okuyaz, C.; Uysal, S. Single enteral loading dose of phenobarbital for achieving its therapeutic serum levels in neonates. Croat. Med. J. 2010, 51, 215–218. [Google Scholar] [CrossRef] [Green Version]
- Alonso Gonzalez, A.C.; Ortega Valin, L.; Santos Buelga, D.; Garcia Sanchez, M.J.; Santos Borbujo, J.; Monzon Corral, L.; Dominguez-Gil Hurle, A. Dosage programming of phenobarbital in neonatal seizures. J. Clin. Pharm. Ther. 1993, 18, 267–270. [Google Scholar] [CrossRef]
- Fischer, J.H.; Lockman, L.A.; Zaske, D.; Kriel, R. Phenobarbital maintenance dose requirements in treating neonatal seizures. Neurology 1981, 31, 1042–1044. [Google Scholar] [CrossRef]
- Filippi, L.; la Marca, G.; Cavallaro, G.; Fiorini, P.; Favelli, F.; Malvagia, S.; Donzelli, G.; Guerrini, R. Phenobarbital for neonatal seizures in hypoxic ischemic encephalopathy: A pharmacokinetic study during whole body hypothermia. Epilepsia 2011, 52, 794–801. [Google Scholar] [CrossRef]
- Oztekin, O.; Kalay, S.; Tezel, G.; Akcakus, M.; Oygur, N. Can we safely administer the recommended dose of phenobarbital in very low birth weight infants? Childs Nerv. Syst. 2013, 29, 1353–1357. [Google Scholar] [CrossRef]
- Yukawa, M.; Yukawa, E.; Suematsu, F.; Takiguchi, T.; Ikeda, H.; Aki, H.; Mimemoto, M. Population pharmacokinetics of phenobarbital by mixed effect modelling using routine clinical pharmacokinetic data in Japanese neonates and infants: An update. J. Clin. Pharm. Ther. 2011, 36, 704–710. [Google Scholar] [CrossRef] [PubMed]
- Sima, M.; Pokorna, P.; Hartinger, J.; Slanar, O. Estimation of initial phenobarbital dosing in term neonates with moderate-to-severe hypoxic ischaemic encephalopathy following perinatal asphyxia. J. Clin. Pharm. Ther. 2018, 43, 196–201. [Google Scholar] [CrossRef]
- Shellhaas, R.A.; Ng, C.M.; Dillon, C.H.; Barks, J.D.; Bhatt-Mehta, V. Population pharmacokinetics of phenobarbital in infants with neonatal encephalopathy treated with therapeutic hypothermia. Pediatr. Crit. Care. Med. 2013, 14, 194–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pitlick, W.; Painter, M.; Pippenger, C. Phenobarbital pharmacokinetics in neonates. Clin. Pharmacol. Ther. 1978, 23, 346–350. [Google Scholar] [CrossRef]
- Thibault, C.; Massey, S.L.; Naim, M.Y.; Abend, N.S.; Zuppa, A.F. Population Pharmacokinetics of IV Phenobarbital in Neonates After Congenital Heart Surgery. Pediatr. Crit. Care Med. 2020, 21, e557–e565. [Google Scholar] [CrossRef]
- Grasela, T.H., Jr.; Donn, S.M. Neonatal population pharmacokinetics of phenobarbital derived from routine clinical data. Dev. Pharmacol. Ther. 1985, 8, 374–383. [Google Scholar] [CrossRef]
- Voller, S.; Flint, R.B.; Stolk, L.M.; Degraeuwe, P.L.J.; Simons, S.H.P.; Pokorna, P.; Burger, D.M.; de Groot, R.; Tibboel, D.; DINO study group. Model-based clinical dose optimization for phenobarbital in neonates: An illustration of the importance of data sharing and external validation. Eur. J. Pharm. Sci. 2017, 109S, S90–S97. [Google Scholar] [CrossRef]
- Moffett, B.S.; Weingarten, M.M.; Galati, M.; Placencia, J.L.; Rodman, E.A.; Riviello, J.J.; Kayyal, S.Y. Phenobarbital population pharmacokinetics across the pediatric age spectrum. Epilepsia 2018, 59, 1327–1333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gal, P.; Boer, H.R.; Toback, J.; Erkan, N.V. Phenobarbital dosing in neonates and asphyxia. Neurology 1982, 32, 788–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van den Broek, M.P.; Groenendaal, F.; Toet, M.C.; van Straaten, H.L.; van Hasselt, J.G.; Huitema, A.D.; de Vries, L.S.; Egberts, A.C.; Rademaker, C.M. Pharmacokinetics and clinical efficacy of phenobarbital in asphyxiated newborns treated with hypothermia: A thermopharmacological approach. Clin. Pharmacokinet. 2012, 51, 671–679. [Google Scholar] [CrossRef]
- Favie, L.M.A.; de Haan, T.R.; Bijleveld, Y.A.; Rademaker, C.M.A.; Egberts, T.C.G.; Nuytemans, D.; Mathot, R.A.A.; Groenendaal, F.; Huitema, A.D.R. Prediction of Drug Exposure in Critically Ill Encephalopathic Neonates Treated with Therapeutic Hypothermia Based on a Pooled Population Pharmacokinetic Analysis of Seven Drugs and Five Metabolites. Clin. Pharmacol. Ther. 2020, 108, 1098–1106. [Google Scholar] [CrossRef]
- Pokorna, P.; Posch, L.; Sima, M.; Klement, P.; Slanar, O.; van den Anker, J.; Tibboel, D.; Allegaert, K. Severity of asphyxia is a covariate of phenobarbital clearance in newborns undergoing hypothermia. J. Matern. Fetal. Neonatal Med. 2018, 32, 2302–2309. [Google Scholar] [CrossRef] [PubMed]
- Pokorna, P.; Sima, M.; Vobruba, V.; Tibboel, D.; Slanar, O. Phenobarbital pharmacokinetics in neonates and infants during extracorporeal membrane oxygenation. Perfusion 2018, 33, 80–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michalickova, D.; Pokorna, P.; Tibboel, D.; Slanar, O.; Knibbe, C.A.J.; Krekels, E.H.J. Rapid Increase in Clearance of Phenobarbital in Neonates on Extracorporeal Membrane Oxygenation: A Pilot Retrospective Population Pharmacokinetic Analysis. Pediatr. Crit. Care Med. 2020, 21, e707–e715. [Google Scholar] [CrossRef] [PubMed]
- Sima, M.; Pokorna, P.; Hronova, K.; Slanar, O. Effect of co-medication on the pharmacokinetic parameters of phenobarbital in asphyxiated newborns. Physiol. Res. 2015, 64, S513–S519. [Google Scholar] [CrossRef]
- Lee, S.M.; Chung, J.Y.; Lee, Y.M.; Park, M.S.; Namgung, R.; Park, K.I.; Lee, C. Effects of cytochrome P450 (CYP)2C19 polymorphisms on pharmacokinetics of phenobarbital in neonates and infants with seizures. Arch. Dis. Child. 2012, 97, 569–572. [Google Scholar] [CrossRef] [PubMed]
- Pokorna, P.; Michalickova, D.; Voller, S.; Hronova, K.; Tibboel, D.; Slanar, O.; Krekels, E.H. Severity parameters for asphyxia or hypoxic-ischemic encephalopathy do not explain interindividual variability in the pharmacokinetics of phenobarbital in newborns treated with therapeutic hypothermia. Minerva Pediatr. 2020. [Google Scholar] [CrossRef]
- Favie, L.M.A.; Groenendaal, F.; van den Broek, M.P.H.; Rademaker, C.M.A.; de Haan, T.R.; van Straaten, H.L.M.; Dijk, P.H.; van Heijst, A.; Simons, S.H.P.; Dijkman, K.P.; et al. Phenobarbital, Midazolam Pharmacokinetics, Effectiveness, and Drug-Drug Interaction in Asphyxiated Neonates Undergoing Therapeutic Hypothermia. Neonatology 2019, 116, 154–162. [Google Scholar] [CrossRef]
- Thibault, C.; Massey, S.L.; Abend, N.S.; Naim, M.Y.; Zorian, A.; Zuppa, A.F. Population Pharmacokinetics of Phenobarbital in Neonates and Infants on Extracorporeal Membrane Oxygenation and the Influence of Concomitant Renal Replacement Therapy. J. Clin. Pharmacol. 2020, 61, 378–387. [Google Scholar] [CrossRef]
- Back, H.M.; Lee, J.B.; Han, N.; Goo, S.; Jung, E.; Kim, J.; Song, B.; An, S.H.; Kim, J.T.; Rhie, S.J.; et al. Application of Size and Maturation Functions to Population Pharmacokinetic Modeling of Pediatric Patients. Pharmaceutics 2019, 11, 259. [Google Scholar] [CrossRef] [Green Version]
- Gal, P.; Toback, J.; Erkan, N.V.; Boer, H.R. The influence of asphyxia on phenobarbital dosing requirements in neonates. Dev. Pharmacol. Ther. 1984, 7, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Dillman, N.O.; Messinger, M.M.; Dinh, K.N.; Placencia, J.L.; Moffett, B.S.; Guaman, M.C.; Erklauer, J.C.; Kaiser, J.R.; Wilfong, A.A. Evaluation of the Effects of Extracorporeal Membrane Oxygenation on Antiepileptic Drug Serum Concentrations in Pediatric Patients. J. Pediatr. Pharmacol. Ther. 2017, 22, 352–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sima, M.; Slanar, O. Impact of drug-drug interactions on phenobarbital pharmacokinetics in pediatric patients. Epilepsia 2019, 60, 1266–1267. [Google Scholar] [CrossRef] [PubMed]
- Moffett, B.S. Impact of drug-drug interactions on phenobarbital pharmacokinetics in pediatric patients—Response. Epilepsia 2019, 60, 1268. [Google Scholar] [CrossRef]
- Ouvrier, R.A.; Goldsmith, R. Phenobarbitone dosage in neonatal convulsions. Arch. Dis. Child. 1982, 57, 653–657. [Google Scholar] [CrossRef] [Green Version]
- Smits, A.; Annaert, P.; Van Cruchten, S.; Allegaert, K. A Physiology-Based Pharmacokinetic Framework to Support Drug Development and Dose Precision during Therapeutic Hypothermia in Neonates. Front. Pharmacol. 2020. [Google Scholar] [CrossRef]
- Green, B.; Duffull, S.B. What is the best size descriptor to use for pharmacokinetic studies in the obese? Br. J. Clin. Pharmacol. 2004, 58, 119–133. [Google Scholar] [CrossRef] [Green Version]
- Sima, M.; Hartinger, J.; Cikankova, T.; Slanar, O. Estimation of once-daily amikacin dose in critically ill adults. J. Chemother. 2018, 30, 37–43. [Google Scholar] [CrossRef]
- Al-Sallami, H.S.; Goulding, A.; Grant, A.; Taylor, R.; Holford, N.; Duffull, S.B. Prediction of Fat-Free Mass in Children. Clin. Pharmacokinet. 2015, 54, 1169–1178. [Google Scholar] [CrossRef] [PubMed]
- Pokorna, P.; Sima, M.; Cerna, O.; Allegaert, K.; Tibboel, D.; Slanar, O. Actual body weight-based vancomycin dosing in neonates. J. Chemother. 2019, 31, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Pokorna, P.; Sima, M.; Cerna, O.; Slanar, O. Nomogram based on actual body weight for estimation of vancomycin maintenance dose in infants. Infect. Dis. (Lond.) 2019, 51, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Martinkova, J.; Pokorna, P.; Zahora, J.; Chladek, J.; Vobruba, V.; Selke-Krulichova, I.; Chladkova, J. Tolerability and outcomes of kinetically guided therapy with gentamicin in critically ill neonates during the first week of life: An open-label, prospective study. Clin. Ther. 2010, 32, 2400–2414. [Google Scholar] [CrossRef] [PubMed]
- Calvier, E.A.; Krekels, E.H.J.; Välitalo, P.A.J.; Rostami-Hodjegan, A.; Tibboel, D.; Danhof, M.; Knibbe, C.A.J. Allometric Scaling of Clearance in Paediatric Patients: When Does the Magic of 0.75 Fade? Clin. Pharmacokinet. 2017, 56, 273–285. [Google Scholar] [CrossRef] [Green Version]
- Morselli, P.L. Clincial pharmacokinetics in neonates. Clin. Pharmacokinet. 1976, 1, 81–98. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, J.H.; Parikh, C.R. Biomarkers for Diagnosis and Prognosis of AKI in Children: One Size Does Not Fit All. Clin. J. Am. Soc. Nephrol. 2017, 12, 1551–1557. [Google Scholar] [CrossRef]
- D’Agata, I.D.; Balistreri, W.F. Evaluation of liver disease in the pediatric patient. Pediatr. Rev. 1999, 20, 376–390. [Google Scholar] [CrossRef] [Green Version]
- Wandel, C.; Böcker, R.; Böhrer, H.; Browne, A.; Rügheimer, E.; Martin, E. Midazolam is metabolized by at least three different cytochrome P450 enzymes. Br. J. Anaesth. 1994, 73, 658–661. [Google Scholar] [CrossRef]
- Meyer, U.A. Interaction of proton pump inhibitors with cytochromes P450: Consequences for drug interactions. Yale J. Biol. Med. 1996, 69, 203–209. [Google Scholar]
- Pokorna, P.; Wildschut, E.D.; Vobruba, V.; van den Anker, J.N.; Tibboel, D. The Impact of Hypothermia on the Pharmacokinetics of Drugs Used in Neonates and Young Infants. Curr. Pharm. Des. 2015, 21, 5705–5724. [Google Scholar] [CrossRef]
- Ahearne, C.E.; Boylan, G.B.; Murray, D.M. Short and long term prognosis in perinatal asphyxia: An update. World. J. Clin. Pediatr. 2016, 5, 67–74. [Google Scholar] [CrossRef]
Population | Location | Considered Covariates | Observed Relationships—Vd | Observed Relationships—CL | Reference |
---|---|---|---|---|---|
Term and preterm neonates (n = 19; 10 preterm, 9 term) | The Netherlands | ABW, length, BSA, GA | Vd increases with increasing ABW, length, BSA, and GA | CL increases with increasing ABW, length, BSA, and GA | Touw et al. [26] |
Neonates and infants (n = 70) | Japan | ABW, GA, PNA, postconceptional age, gender | Vd increases linearly with increasing ABW | CL increases linearly with increasing ABW and PNA; CL decreases nonlinearly with increasing phenobarbital serum concentration >50 mg⁄L | Yukawa et al. [32] |
Term neonates with moderate to severe asphyxia (n = 36) | Czech Republic | ABW, length, BSA, GA, serum creatinine, creatinine CL estimation according Schwartz formula, total bilirubin, ALT, AST, INR, Apgar scores, umbilical cord arterial blood pH, base excess | Vd increases with increasing ABW, length and BSA | CL is not affected | Sima et al. [33] |
Asphyxiated neonates (n = 39; 20 hypothermia, 19 normothermia) | USA | Therapeutic hypothermia use, ABW, GA, PNA, Apgar score, AST, ALT | Vd increases linearly with increasing ABW | CL increases with increasing ABW and PNA | Shellhaas et al. [34] |
Neonates (n = 16) | USA | GA, PNA | None | None | Gilman et al. [21] |
Preterm and term neonates (n = 8) | USA | GA, PNA | None | Half-life decrease (implying increase of CL) with increasing PNA | Pitlick et al. [35] |
Neonates after congenital heart surgery (n = 37) | USA | ABW, PNA, PMA, ECMO, and RRT use, albumin, ALT, BUN, serum creatinine, co-medication (pantoprazole, midazolam, [fos]phenytoin), surgery-related data (primary cardiac anomaly, procedure performed, CPB times) | Vd increases with ECMO for 21%; increases linearly with increasing ABW and decreased with increasing albumin values | CL increases with increasing PNA and ABW | Thibault et al. [36] |
Preterm and term neonates (n = 59) | USA | Asphyxia, GA, gender, duration of therapy | Asphyxia increases Vd by 13% | CL is not affected | Grasela et al. [37] |
Preterm and term neonates (n = 53); | The Netherlands | Birth weight, ABW, height, PNA, PMA, GA, sex, liver and kidney function, Apgar score | Vd increases linearly with increasing ABW | CL increases linearly with increasing birthweight and PNA | Voller et al. [38] |
Pediatric patients (<19 years) (n = 355; 42.5% neonates, 7.6% were >30 days of age and <2 years of age) | USA | ABW, height, GA, PNA, PMA, core body temperature, serum creatinine, BUN, AST, ALT, urine output over the prior 12 hours, and co-medication | Vd linearly increases with increasing FFM; Vd decreased with increasing PNA | CL increases with increasing FFM and PMA; CL decreased with increasing creatinine, phenytoin and midazolam decreases CL (by 40% and 24%, respectively), pantoprazole increases CL by 25% | Moffett et al. [39] |
Asphyxiated and nonasphyxiated neonates (n = 18; 11 asphyxiated, 7 non-asphyxiated) | USA | Asphyxia | Vd is not affected | Asphyxia reduces phenobarbital CL | Gal et al. [40] |
Asphyxiated term neonates (n = 31) | The Netherlands | Therapeutic hypothermia (body temperature), ABW | Vd increases linearly with increasing ABW | CL increases with increasing ABW | van den Broek et al. [41] |
Neonates (n = 113) | The Netherlands | Therapeutic hypothermia | Vd increases linearly with increasing ABW | CL increases with increasing ABW | Favie et al. [42] |
Asphyxiated term neonates (n = 40; 26 hypothermia, 14 normothermia) | Czech Republic | ABW, GA, co-medication with phenytoin, therapeutic hypothermia, asphyxia and its severity | Vd correlates with ABW | CL correlates with ABW and GA | Pokorná et al. [43] |
Neonates and infants received ECMO (n = 16; 7 neonates, 9 infants) | Czech Republic | ECMO | None | CL increases during ECMO | Pokorná et al. [44] |
Neonates received ECMO (n = 13) | Czech Republic | ABW, PNA, ECMO and ECMO set up characteristics, co-medication (inotropes, diuretics), serum creatinine, serum urea, serum albumin, total and direct bilirubin, CRP, blood pH, AST, ALT, and urine output; concomitant continuous renal replacement therapy | Vd increases linearly with increasing ABW | CL increases linearly with increasing PNA and birthweight; ECMO increases CL in a linear time-dependent way | Michaličková et al. [45] |
Asphyxiated term neonates (n = 37) | Czech Republic | Co-medication: dopamine, dobutamine, norepinephrine, phenytoin, sufentanil midazolam, tramadol, and furosemide | None | None | Sima et al. [46] |
Neonates and infants (age range of 8 days to 6 months) (n = 44) | Korea | CYP2C19 genotype: 991A>G (I331V), 681G>A (P227P), and 636G>A (W212X) | Vd increases with increasing ABW | CL increases with increasing ABW and PNA | Lee et al. [47] |
Neonates, GA 39-40 weeks (n = 50,) | Czech Republic | Age, ABW, sex, concomitant medications, Apgar scores, serum creatinine, lactate, base excess, | Vd increases linearly with increasing ABW | None | Pokorna et al. [48] |
Asphyxiated neonates (n = 19) treated with TH | Italy | Apgar scores, serum creatinine, lactate, base excess, BBW, pH | None | None | Filippi et al. [30] |
Asphyxiated neonates (n = 113) treated with TH | The Netherlands | GA, TH (body temperature), PNA, ABW | Vd increases linearly with increasing ABW | CL increases with ABW | Favie et al. [49] |
Neonates and infants undergoing ECMO and RRT (n = 35) | USA | ECMO—set up characteristics, concomitant RRT (CVVHDF, CVVH, SCUF), levels of BUN, ALT, creatinine, and albumin; co-medication (pantoprazole, midazolam, and [fos]phenytoin); | Vd increases linearly with increasing ABW | CL increases linearly with increasing PNA and ABW; increases 6 times in CVVHDF | Tribault et al. [50] |
Population | Location | Dosing Covariate | Suggested Dosing | Reference |
---|---|---|---|---|
Term and preterm neonates (n = 19; 10 preterm, 9 term) | The Netherlands | ABW | Loading dose: 15.3 mg/kg + 12 mg Maintenance dose: 2.66 mg/kg + 0.72 mg per day | Touw et al. [26] |
Height | Loading dose: 2.64 mg/cm—72 mg Maintenance dose: 0.4 mg/cm—10.8 mg per day | |||
BSA | Loading dose: 330 mg/m2—7.5 mg Maintenance dose: 54.7 mg/m2 + 2.2 mg per day | |||
GA | Loading dose: 3 mg/week—57 mg Maintenance dose: 0.55 mg/week—11.5 mg per day | |||
Term neonates with moderate to severe asphyxia (n = 36) | Czech Republic | ABW | Loading dose: 15 mg/kg Maintenance dose: 3 mg/kg/day | Pokorna et al. [33] |
Asphyxiated and non-asphyxiated neonates (n = 18; 11 asphyxiated, 7 non-asphyxiated) | USA | ABW | Maintenance dose asphyxiated: 1.8 mg/kg/day Maintenance dose non-asphyxiated: 4 mg/kg/day | Gal et al. [40] |
Neonates and infants treated with ECMO (n = 16; 7 neonates, 9 infants) | Czech Republic | ABW | Loading dose: 15 mg/kg Maintenance dose: 4 mg/kg/day | Pokorna et al. [44] |
Neonates (n = 37; 12 treated with ECMO) | USA | ABW, ECMO, albumin | Loading dose: 30 mg/kg in neonates on ECMO; 30 mg/kg in neonates with serum albumin ≤3 mg/dL; 20 mg/kg in neonates with serum albumin ≤3.5 mg/dL Maintenance dose: 4–5 mg/kg/day | Thibault et al. [36] |
Neonates treated with ECMO (n = 13) | Czech Republic | PNA, ABW, ECMO | Loading dose: 20 mg/kg Maintenance dose: 4 mg/kg/day with an increase of 0.25 mg/kg every 12 h during ECMO treatment | Michaličková et al. [45] |
Neonates and infants undergoing ECMO and CRRT (n = 35) | USA | ABW | Loading dose: 30 mg/kg Maintenance dose: 6–7 mg/kg divided in 2 doses given every 12 h | Thibault et al. [50] |
ABW, CVVHDF | Loading dose: 30 mg/kg Maintenance dose: 40 mg/kg/day administered in divided doses every 6 hours |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šíma, M.; Michaličková, D.; Slanař, O. What Is the Best Predictor of Phenobarbital Pharmacokinetics to Use for Initial Dosing in Neonates? Pharmaceutics 2021, 13, 301. https://doi.org/10.3390/pharmaceutics13030301
Šíma M, Michaličková D, Slanař O. What Is the Best Predictor of Phenobarbital Pharmacokinetics to Use for Initial Dosing in Neonates? Pharmaceutics. 2021; 13(3):301. https://doi.org/10.3390/pharmaceutics13030301
Chicago/Turabian StyleŠíma, Martin, Danica Michaličková, and Ondřej Slanař. 2021. "What Is the Best Predictor of Phenobarbital Pharmacokinetics to Use for Initial Dosing in Neonates?" Pharmaceutics 13, no. 3: 301. https://doi.org/10.3390/pharmaceutics13030301
APA StyleŠíma, M., Michaličková, D., & Slanař, O. (2021). What Is the Best Predictor of Phenobarbital Pharmacokinetics to Use for Initial Dosing in Neonates? Pharmaceutics, 13(3), 301. https://doi.org/10.3390/pharmaceutics13030301