Physiologically Based Pharmacokinetic Modeling of Bupropion and Its Metabolites in a CYP2B6 Drug-Drug-Gene Interaction Network
Abstract
:1. Introduction
2. Materials and Methods
2.1. Software
2.2. Clinical Data
2.3. PBPK Model Building
2.4. PBPK Model Evaluation
2.5. DGI, DDI and DDGI Modeling
2.6. DGI, DDI and DDGI Model Evaluation
3. Results
3.1. Model Building and Evaluation
3.2. DGI Modeling and Evaluation
3.3. Bupropion DDI Modeling and Evaluation
3.4. Bupropion DDGI Modeling and Evaluation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fava, M.; Rush, A.J.; Thase, M.E.; Clayton, A.; Stahl, S.M.; Pradko, J.F.; Johnston, J.A. 15 Years of Clinical Experience with Bupropion HCl. Prim. Care Companion J. Clin. Psychiatry 2005, 07, 106–113. [Google Scholar] [CrossRef] [PubMed]
- DrugStats, C. Multum Therapeutic Class Comparison, United States, 2018—Total Prescribtions in 2018. Available online: https://clincalc.com/DrugStats/TC/PsychotherapeuticAgents (accessed on 17 December 2020).
- Connarn, J.N.; Flowers, S.; Kelly, M.; Luo, R.; Ward, K.M.; Harrington, G.; Moncion, I.; Kamali, M.; McInnis, M.; Feng, M.R.; et al. Pharmacokinetics and Pharmacogenomics of Bupropion in Three Different Formulations with Different Release Kinetics in Healthy Human Volunteers. AAPS J. 2017, 19, 1513–1522. [Google Scholar] [CrossRef] [PubMed]
- Fokina, V.M.; Xu, M.; Rytting, E.; Abdel-Rahman, S.Z.; West, H.; Oncken, C.; Clark, S.M.; Ahmed, M.S.; Hankins, G.D.V.; Nanovskaya, T.N. Pharmacokinetics of bupropion and its pharmacologically active metabolites in pregnancy. Drug Metab. Dispos. 2016, 44, 1832–1838. [Google Scholar] [CrossRef] [Green Version]
- Slemmer, J.E.; Martin, B.R.; Damaj, M.I. Bupropion is a nicotinic antagonist. J. Pharmacol. Exp. Ther. 2000, 295, 321–327. [Google Scholar] [PubMed]
- Stahl, S.M.; Pradko, J.F.; Haight, B.R.; Modell, J.G.; Rockett, C.B.; Learned-Coughlin, S. A Review of the Neuropharmacology of Bupropion, a Dual Norepinephrine and Dopamine Reuptake Inhibitor. Prim. Care Companion J. Clin. Psychiatry 2004, 06, 159–166. [Google Scholar] [CrossRef] [Green Version]
- Eriksson, O.; Långström, B.; Josephsson, R. Assessment of receptor occupancy-over-time of two dopamine transporter inhibitors by [11C]CIT and target controlled infusion. Ups. J. Med. Sci. 2011, 116, 100–106. [Google Scholar] [CrossRef]
- Sager, J.E.; Price, L.S.L.; Isoherranen, N. Stereoselective Metabolism of Bupropion to OH-bupropion, Threohydrobupropion, Erythrohydrobupropion, and 4′-OH-bupropion in vitro. Drug Metab. Dispos. 2016, 44, 1709–1719. [Google Scholar] [CrossRef]
- Biovial Corporation. Wellbutrin XL ®® (Bupropion Hydrochloride Extended-Release Tablets)—Medicine Guide. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2010/021515s022lbl.pdf (accessed on 22 January 2021).
- Costa, R.; Oliveira, N.G.; Dinis-Oliveira, R.J. Pharmacokinetic and pharmacodynamic of bupropion: Integrative overview of relevant clinical and forensic aspects. Drug Metab. Rev. 2019, 51, 293–313. [Google Scholar] [CrossRef] [PubMed]
- Johnston, J.A.; Fiedler-Kelly, J.; Glover, E.D.; Sachs, D.P.L.; Grasela, T.H.; De Veaugh-Geiss, J. Relationship between drug exposure and the efficacy and safety of bupropion sustained release for smoking cessation. Nicotine Tob. Res. 2001, 3, 131–140. [Google Scholar] [CrossRef]
- Silverstone, P.H.; Williams, R.; McMahon, L.; Fleming, R.; Fogarty, S. Convulsive liability of bupropion hydrochloride metabolites in Swiss albino mice. Ann. Gen. Psychiatry 2008, 7, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davidson, J. Seizures and bupropion: A review. J. Clin. Psychiatry 1989, 50, 256–261. [Google Scholar] [CrossRef]
- Dunner, D.L.; Zisook, S.; Billow, A.A.; Batey, S.R.; Johnston, J.A.; Ascher, J.A. A Prospective Safety Surveillance Study for Bupropion Sustained-Release in the Treatment of Depression. J. Clin. Psychiatry 1998, 59, 366–373. [Google Scholar] [CrossRef]
- Gufford, B.T.; Lu, J.B.L.; Metzger, I.F.; Jones, D.R.; Desta, Z. Stereoselective glucuronidation of bupropion metabolites in vitro and in vivo. Drug Metab. Dispos. 2016, 44, 544–553. [Google Scholar] [CrossRef] [Green Version]
- U.S. Food and Drug Administration. Drug Development and Drug Interactions: Table of Substrates, Inhibitors and Inducers. FDA. Available online: https://www.fda.gov/drugs/drug-interactions-labeling/drug-development-and-drug-interactions-table-substrates-inh (accessed on 31 December 2020).
- Kharasch, E.D.; Crafford, A. Common Polymorphisms of CYP2B6 Influence Stereoselective Bupropion Disposition. Clin. Pharmacol. Ther. 2019, 105, 142–152. [Google Scholar] [CrossRef] [Green Version]
- Masters, A.R.; Gufford, B.T.; Lu, J.B.L.; Metzger, I.F.; Jones, D.R.; Desta, Z. Chiral Plasma Pharmacokinetics and Urinary Excretion of Bupropion and Metabolites in Healthy Volunteers. J. Pharmacol. Exp. Ther. 2016, 358, 230–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khrarasch, E.D.; Bedynek, P.S.; Walker, A.; Whittington, D.; Hoffer, C.; and Park, S. Mechanism of ritonavir changes in methadone pharmacokinetics and pharmacodynamics. II. Ritonavir effects on CYP3A and P- glycoprotein activities. Clin. Pharmacol. Ther. 2008, 84, 506–512. [Google Scholar] [CrossRef] [PubMed]
- Hogeland, G.W.; Swindells, S.; McNabb, J.C.; Kashuba, A.D.M.; Yee, G.C.; Lindley, C.M. Lopinavir/ritonavir Reduces Bupropion Plasma Concentrations in Healthy Subjects. Clin. Pharmacol. Ther. 2007, 81, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Turpeinen, M.; Tolonen, A.; Uusitalo, J.; Jalonen, J.; Pelkonen, O.; Laine, K. Effect of clopidogrel and ticlopidine on cytochrome P450 2B6 activity as measured by bupropion hydroxylation. Clin. Pharmacol. Ther. 2005, 77, 553–559. [Google Scholar] [CrossRef]
- Bosilkovska, M.; Samer, C.F.; Déglon, J.; Rebsamen, M.; Staub, C.; Dayer, P.; Walder, B.; Desmeules, J.A.; Daali, Y. Geneva Cocktail for Cytochrome P450 and P-Glycoprotein Activity Assessment Using Dried Blood Spots. Clin. Pharmacol. Ther. 2014, 96, 349–359. [Google Scholar] [CrossRef]
- Reese, M.J.; Wurm, R.M.; Muir, K.T.; Generaux, G.T.; St. John-Williams, L.; Mcconn, D.J. An in Vitro Mechanistic Study to Elucidate the Desipramine/Bupropion Clinical Drug-Drug Interaction. Drug Metab. Dispos. 2008, 36, 1198–1201. [Google Scholar] [CrossRef]
- Desta, Z.; Gammal, R.S.; Gong, L.; Whirl-Carrillo, M.; Gaur, A.H.; Sukasem, C.; Hockings, J.; Myers, A.; Swart, M.; Tyndale, R.F.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2B6 and Efavirenz-Containing Antiretroviral Therapy. Clin. Pharmacol. Ther. 2019, 106, 726–733. [Google Scholar] [CrossRef] [Green Version]
- Wojtyniak, J.; Selzer, D.; Schwab, M.; Lehr, T. Physiologically Based Precision Dosing Approach for Drug-Drug-Gene Interactions: A Simvastatin Network Analysis. Clin. Pharmacol. Ther. 2020, cpt.2111. [Google Scholar] [CrossRef]
- Lippert, J.; Burghaus, R.; Edginton, A.; Frechen, S.; Karlsson, M.; Kovar, A.; Lehr, T.; Milligan, P.; Nock, V.; Ramusovic, S.; et al. Open Systems Pharmacology Community—An Open Access, Open Source, Open Science Approach to Modeling and Simulation in Pharmaceutical Sciences. CPT Pharmacomet. Syst. Pharmacol. 2019, 8, 878–882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wojtyniak, J.; Britz, H.; Selzer, D.; Schwab, M.; Lehr, T. Data Digitizing: Accurate and Precise Data Extraction for Quantitative Systems Pharmacology and Physiologically-Based Pharmacokinetic Modeling. CPT Pharmacomet. Syst. Pharmacol. 2020, 9, 322–331. [Google Scholar] [CrossRef] [PubMed]
- Hesse, L.M.; Greenblatt, D.J.; von Moltke, L.L.; Court, M.H. Ritonavir Has Minimal Impact on the Pharmacokinetic Disposition of a Single Dose of Bupropion Administered to Human Volunteers. J. Clin. Pharmacol. 2006, 46, 567–576. [Google Scholar] [CrossRef]
- Yamazaki, T.; Desai, A.; Goldwater, R.; Han, D.; Howieson, C.; Akhtar, S.; Kowalski, D.; Lademacher, C.; Pearlman, H.; Rammelsberg, D.; et al. Pharmacokinetic Effects of Isavuconazole Coadministration With the Cytochrome P450 Enzyme Substrates Bupropion, Repaglinide, Caffeine, Dextromethorphan, and Methadone in Healthy Subjects. Clin. Pharmacol. Drug Dev. 2017, 6, 54–65. [Google Scholar] [CrossRef]
- Posner, J.; Bye, A.; Jeal, S.; Peck, A.W.; Whiteman, P. Alcohol and bupropion pharmacokinetics in healthy male volunteers. Eur. J. Clin. Pharmacol. 1984, 26, 627–630. [Google Scholar] [CrossRef] [PubMed]
- Posner, J.; Bye, A.; Dean, K.; Peck, A.W.; Whiteman, P.D. The disposition of bupropion and its metabolites in healthy male volunteers after single and multiple doses. Eur. J. Clin. Pharmacol. 1985, 29, 97–103. [Google Scholar] [CrossRef]
- Oberegger, W.; Eradiri, O.; Zhou, F.; Maes, P. Modified Release Tablet of Bupropion Hydrochloride. U.S. Patent No. US 2006/0228415 A1, 12 October 2006. [Google Scholar]
- Kharasch, E.D.; Mitchell, D.; Coles, R.; Blanco, R. Rapid Clinical Induction of Hepatic Cytochrome P4502B6 Activity by Ritonavir. Antimicrob. Agents Chemother. 2008, 52, 1663–1669. [Google Scholar] [CrossRef] [Green Version]
- Benowitz, N.L.; Zhu, A.Z.X.; Tyndale, R.F.; Dempsey, D.; Jacob, P. Influence of CYP2B6 genetic variants on plasma and urine concentrations of bupropion and metabolites at steady state. Pharmacogenet. Genom. 2013, 23, 135–141. [Google Scholar] [CrossRef] [Green Version]
- Chung, J.Y.; Cho, J.Y.; Lim, H.S.; Kim, J.R.; Yu, K.S.; Lim, K.S.; Shin, S.G.; Jang, I.J. Effects of pregnane X receptor (NR1I2) and CYP2B6 genetic polymorphisms on the induction of bupropion hydroxylation by rifampin. Drug Metab. Dispos. 2011, 39, 92–97. [Google Scholar] [CrossRef] [Green Version]
- Dennison, J.; Puri, A.; Warrington, S.; Endo, T.; Adeloye, T.; Johnston, A. Amenamevir: Studies of Potential CYP2C8- and CYP2B6-Mediated Pharmacokinetic Interactions with Montelukast and Bupropion in Healthy Volunteers. Clin. Pharmacol. Drug Dev. 2018, 7, 860–870. [Google Scholar] [CrossRef]
- Fan, L.; Wang, J.C.; Jiang, F.; Tan, Z.R.; Chen, Y.; Li, Q.; Zhang, W.; Wang, G.; Lei, H.P.; Hu, D.L.; et al. Induction of cytochrome P450 2B6 activity by the herbal medicine baicalin as measured by bupropion hydroxylation. Eur. J. Clin. Pharmacol. 2009, 65, 403–409. [Google Scholar] [CrossRef] [PubMed]
- Farid, N.A.; Payne, C.D.; Ernest, C.S.; Li, Y.G.; Winters, K.J.; Salazar, D.E.; Small, D.S. Prasugrel, a new thienopyridine antiplatelet drug, weakly inhibits cytochrome P450 2B6 in humans. J. Clin. Pharmacol. 2008, 48, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.C.; Huang, X.; Tan, Z.R.; Fan, L.; Zhou, H.H. The effects of sodium ferulate on the pharmacokinetics of bupropion and its active metabolite in healthy men. Eur. Rev. Med. Pharmacol. Sci. 2012, 16, 1192–1196. [Google Scholar]
- Gao, L.-C.; Liu, F.-Q.; Yang, L.; Cheng, L.; Dai, H.-Y.; Tao, R.; Cao, S.P.; Wang, D.; Tang, J. The P450 oxidoreductase (POR) rs2868177 and cytochrome P450 (CYP) 2B6*6 polymorphisms contribute to the interindividual variability in human CYP2B6 activity. Eur. J. Clin. Pharmacol. 2016, 72, 1205–1213. [Google Scholar] [CrossRef]
- Hsyu, P.-H.; Singh, A.; Giargiari, T.D.; Dunn, J.A.; Ascher, J.A.; Johnston, J.A. Pharmacokinetics of Bupropion and its Metabolites in Cigarette Smokers versus Nonsmokers. J. Clin. Pharmacol. 1997, 37, 737–743. [Google Scholar] [CrossRef]
- Lei, H.; Ji, W.; Lin, J.; Chen, H.; Tan, Z.; Hu, D.; Liu, L.; Zhou, H. Effects of Ginkgo biloba extract on the pharmacokinetics of bupropion in healthy volunteers. Br. J. Clin. Pharmacol. 2009, 68, 201–206. [Google Scholar] [CrossRef] [Green Version]
- Lei, H.-P.; Yu, X.-Y.; Xie, H.-T.; Li, H.-H.; Fan, L.; Dai, L.-L.; Chen, Y.; Zhou, H.-H. Effect of St. John’s wort supplementation on the pharmacokinetics of bupropion in healthy male Chinese volunteers. Xenobiotica 2010, 40, 275–281. [Google Scholar] [CrossRef]
- Loboz, K.; Gross, A.; Williams, K.; Liauw, W.; Day, R.; Blievernicht, J.; Zanger, U.; McLachlan, A. Cytochrome P450 2B6 activity as measured by bupropion hydroxylation: Effect of induction by rifampin and ethnicity. Clin. Pharmacol. Ther. 2006, 80, 75–84. [Google Scholar] [CrossRef]
- Palovaara, S.; Pelkonen, O.; Uusitalo, J.; Laine, K. Inhibition of cytochrome P450 2B6 activity by hormone replacement therapy and oral contraceptive as measured by bupropion hydroxylation. Clin. Pharmacol. Ther. 2003, 74, 326–333. [Google Scholar] [CrossRef]
- Li, B.; Nangia, A.; Ming, C.; Cheng, X.X. Controlled Release Oral Dosage Form. U.S. Patent No. US 8,545,880 B2, 30 September 2013. [Google Scholar]
- Qin, W.; Zhang, W.; Liu, Z.; Chen, X.; Tan, Z.; Hu, D.; Wang, D.; Fan, L.; Zhou, H. Rapid clinical induction of bupropion hydroxylation by metamizole in healthy Chinese men. Br. J. Clin. Pharmacol. 2012, 74, 999–1004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robertson, S.M.; Maldarelli, F.; Natarajan, V.; Formentini, E.; Alfaro, R.M.; Penzak, S.R. Efavirenz induces CYP2B6-mediated hydroxylation of bupropion in healthy subjects. J. Acquir. Immune Defic. Syndr. 2008, 49, 513–519. [Google Scholar] [CrossRef]
- Turpeinen, M.; Koivuviita, N.; Tolonen, A.; Reponen, P.; Lundgren, S.; Miettunen, J.; Metsärinne, K.; Rane, A.; Pelkonen, O.; Laine, K. Effect of renal impairment on the pharmacokinetics of bupropion and its metabolites. Br. J. Clin. Pharmacol. 2007, 64, 165–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turpeinen, M.; Uusitalo, J.; Lehtinen, T.; Kailajärvi, M.; Pelkonen, O.; Vuorinen, J.; Tapanainen, P.; Stjernschantz, C.; Lammintausta, R.; Scheinin, M. Effects of Ospemifene on Drug Metabolism Mediated by Cytochrome P450 Enzymes in Humans in Vitro and in Vivo. Int. J. Mol. Sci. 2013, 14, 14064–14075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kustra, R.; Corrigan, B.; Dunn, J.; Duncan, B.; Hsyu, P.H. Lack of effect of cimetidine on the pharmacokinetics of sustained-release bupropion. J. Clin. Pharmacol. 1999, 39, 1184–1188. [Google Scholar]
- Schmid, Y.; Rickli, A.; Schaffner, A.; Duthaler, U.; Grouzmann, E.; Hysek, C.M.; Liechti, M.E. Interactions between Bupropion and 3,4-Methylenedioxymethamphetamine in Healthy Subjects. J. Pharmacol. Exp. Ther. 2015, 353, 102–111. [Google Scholar] [CrossRef] [PubMed]
- Woodcock, J.; Khan, M.; Yu, L.X. Withdrawal of Generic Budeprion for Nonbioequivalence. N. Engl. J. Med. 2012, 367, 2461–2463. [Google Scholar] [CrossRef] [Green Version]
- Paiement, N.; Noonan, P.K.; González, M.A.; Zerbe, H. Steady State Plasma Levels of Bupropion After Administration of 3×150 Mg Extended Release Reference Tablets and Switching to 1x450 Mg Extended Release 450ER Tablets. Int. J. Clin. Pharmacol. Toxicol. 2012, 1, 26–31. [Google Scholar] [CrossRef]
- Bosilkovska, M.; Samer, C.; Déglon, J.; Thomas, A.; Walder, B.; Desmeules, J.; Daali, Y. Evaluation of Mutual Drug-Drug Interaction within Geneva Cocktail for Cytochrome P450 Phenotyping using Innovative Dried Blood Sampling Method. Basic Clin. Pharmacol. Toxicol. 2016, 119, 284–290. [Google Scholar] [CrossRef] [Green Version]
- Findlay, J.W.A.; Van Wyck Fleet, J.; Smith, P.G.; Butz, R.F.; Hinton, M.L.; Blum, M.R.; Schroeder, D.H. Pharmacokinetics of bupropion, a novel antidepressant agent, following oral administration to healthy subjects. Eur. J. Clin. Pharmacol. 1981, 21, 127–135. [Google Scholar] [CrossRef]
- Zahner, C.; Kruttschnitt, E.; Uricher, J.; Lissy, M.; Hirsch, M.; Nicolussi, S.; Krähenbühl, S.; Drewe, J. No Clinically Relevant Interactions of St. John’s Wort Extract Ze 117 Low in Hyperforin with Cytochrome P450 Enzymes and P-glycoprotein. Clin. Pharmacol. Ther. 2019, 106, 432–440. [Google Scholar] [CrossRef] [Green Version]
- Open Systems Pharmacology Suite Community. PK-Sim®® Ontogeny Database Documentation, Version 7.3. Available online: https://github.com/Open-Systems-Pharmacology/OSPSuite.Documentation/blob/master/PK-Sim%20Ontogeny%20Database%20Version%207.3.pdf (accessed on 31 December 2020).
- Li, X.; Frechen, S.; Moj, D.; Lehr, T.; Taubert, M.; Hsin, C.-H.; Mikus, G.; Neuvonen, P.J.; Olkkola, K.T.; Saari, T.I.; et al. A Physiologically Based Pharmacokinetic Model of Voriconazole Integrating Time-Dependent Inhibition of CYP3A4, Genetic Polymorphisms of CYP2C19 and Predictions of Drug–Drug Interactions. Clin. Pharmacokinet. 2020, 59, 781–808. [Google Scholar] [CrossRef]
- Hanke, N.; Frechen, S.; Moj, D.; Britz, H.; Eissing, T.; Wendl, T.; Lehr, T. PBPK Models for CYP3A4 and P-gp DDI prediction: A modeling network of rifampicin, itraconazole, clarithromycin, midazolam, alfentanil, and digoxin. CPT Pharmacometrics Syst. Pharmacol. 2018, 7, 647–659. [Google Scholar] [CrossRef] [Green Version]
- Britz, H.; Hanke, N.; Volz, A.; Spigset, O.; Schwab, M.; Eissing, T.; Wendl, T.; Frechen, S.; Lehr, T. Physiologically-based pharmacokinetic models for CYP1A2 drug–drug interaction prediction: A modeling network of fluvoxamine, theophylline, caffeine, rifampicin, and midazolam. CPT Pharmacomet. Syst. Pharmacol. 2019, 8, 296–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langenbucher, F. Linearization of dissolution rate curves by the Weibull distribution. J. Pharm. Pharmacol. 1972, 24, 979–981. [Google Scholar] [CrossRef]
- Ramamoorthy, A.; Liu, Y.; Philips, S.; Desta, Z.; Lin, H.; Goswami, C.; Gaedigk, A.; Li, L.; Flockhart, D.A.; Skaar, T.C. Regulation of microRNA expression by rifampin in human hepatocytes. Drug Metab. Dispos. 2013, 41, 1763–1768. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.G.; Patel, R.; Clark, R.J.; Ho, T.; Trisdale, S.K.; Fang, Y.; Stresser, D.M. Effect of Fifteen CYP3A4 in vitro Inducers on the Induction of Hepatocytes: A Trend Analysis. Poster Presented at 20th North American ISSX Meeting, Orlando FL, USA, 18–22 October 2015. [Google Scholar]
- Jeong, S.; Nguyen, P.D.; Desta, Z. Comprehensive in vitro analysis of voriconazole inhibition of eight cytochrome P450 (CYP) enzymes: Major effect on CYPs 2B6, 2C9, 2C19, and 3A. Antimicrob. Agents Chemother. 2009, 53, 541–551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foti, R.S.; Wahlstrom, J.L. CYP2C19 Inhibition: The Impact of Substrate Probe Selection on in Vitro Inhibition Profiles. Drug Metab. Dispos. 2008, 36, 523–528. [Google Scholar] [CrossRef] [Green Version]
- Soars, M.G.; Petullo, D.M.; Eckstein, J.A.; Kasper, S.C.; Wrighton, S.A. An assessment of UDP-glucuronosyltransferase induction using primary human hepatocytes. Drug Metab. Dispos. 2004, 32, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Les Laboratoires Servier. Servier Medical At. Available online: https://smart.servier.com/ (accessed on 27 November 2020).
- ChemAxon Bupropion. Available online: https://chemicalize.com/app/calculation/bupropion (accessed on 27 November 2020).
- Takayanagi, T.; Itoh, D.; Mizugushi, H. Analysis of Acid Dissociation Equilibrium of Bupropion by Capillary Zone Electrophoresis after the Heat-Degradation. Chromatography 2016, 37, 105–109. [Google Scholar] [CrossRef] [Green Version]
- Muralidhar, P.; Bhargav, E.; Srinath, B. Formulation and optimization of bupropion HCl in microspongesby 23 factorial design. Int. J. Pharm. Sci. Res. 2017, 8, 1134–1144. [Google Scholar] [CrossRef]
- Berezhkovskiy, L.M. Volume of distribution at steady state for a linear pharmacokinetic system with peripheral elimination. J. Pharm. Sci. 2004, 93, 1628–1640. [Google Scholar] [CrossRef]
- Open Systems Pharmacology Suite Community. Open Systems Pharmacology Suite Manual, Version 7.0.0. 2017. Available online: http://www.open-systems-pharmacology.org/ (accessed on 31 December 2020).
- Xu, C.; Ogburn, E.T.; Guo, Y.; Desta, Z. Effects of the CYP2B6*6 allele on catalytic properties and inhibition of CYP2B6 in vitro: Implication for the mechanism of reduced efavirenz metabolism and other CYP2B6 substrates in vivo. Drug Metab. Dispos. 2012, 40, 717–725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, P.F.; Neiner, A.; Kharasch, E.D. Stereoselective Bupropion Hydroxylation by Cytochrome P450 CYP2B6 and Cytochrome P450 Oxidoreductase Genetic Variants. Drug Metab. Dispos. 2020, 48, 438–445. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Abdelrahman, D.R.; Zharikova, O.L.; Patrikeeva, S.L.; Hankins, G.D.V.; Ahmed, M.S.; Nanovskaya, T.N. Bupropion metabolism by human placenta. Biochem. Pharmacol. 2010, 79, 1684–1690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Liu, H.F.; Liu, L.; Nguyen, K.; Jones, E.B.; Fretland, A.J. The in vitro metabolism of bupropion revisited: Concentration dependent involvement of cytochrome P450 2C19. Xenobiotica 2010, 40, 536–546. [Google Scholar] [CrossRef] [PubMed]
- Arias, H.R.; Gumilar, F.; Rosenberg, A.; Targowska-Duda, K.M.; Feuerbach, D.; Jozwiak, K.; Moaddel, R.; Wainer, I.W.; Bouzat, C. Interaction of Bupropion with Muscle-Type Nicotinic Acetylcholine Receptors in Different Conformational States. Biochemistry 2009, 48, 4506–4518. [Google Scholar] [CrossRef] [Green Version]
- Simonsen, U.; Comerma-Steffensen, S.; Andersson, K.E. Modulation of Dopaminergic Pathways to Treat Erectile Dysfunction. Basic Clin. Pharmacol. Toxicol. 2016, 119, 63–74. [Google Scholar] [CrossRef] [Green Version]
- Carroll, F.I.; Blough, B.E.; Abraham, P.; Mills, A.C.; Holleman, J.A.; Wolckenhauer, S.A.; Decker, A.M.; Landavazo, A.; McElroy, K.T.; Navarro, H.A.; et al. Synthesis and biological evaluation of bupropion analogues as potential pharmacotherapies for cocaine addiction. J. Med. Chem. 2009, 52, 6768–6781. [Google Scholar] [CrossRef]
- ChemAxon Hydroxybupropion. Available online: https://chemicalize.com/app/calculation/Hydroxybupropion (accessed on 27 November 2020).
- ChemAxon Erythro- and Threohydrobupropion. Available online: https://chemicalize.com/app/calculation/CC(NC(C)(C)C)C(O)C1%3DCC%3DCC(Cl)%3DC1%20|lp%3A2%3A1%2C8%3A2%2C14%3A3| (accessed on 27 November 2020).
- PubChem Hydroxybupropion. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/446 (accessed on 27 November 2020).
- Kawai, R.; Lemaire, M.; Steimer, J.L.; Bruelisauer, A.; Niederberger, W.; Rowland, M. Physiologically based pharmacokinetic study on a cyclosporin derivative, SDZ IMM 125. J. Pharmacokinet. Biopharm. 1994, 22, 327–365. [Google Scholar] [CrossRef] [PubMed]
- Guest, E.J.; Aarons, L.; Houston, J.B.; Rostami-Hodjegan, A.; Galetin, A. Critique of the Two-Fold Measure of Prediction Success for Ratios: Application for the Assessment of Drug-Drug Interactions. Drug Metab. Dispos. 2011, 39, 170–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimokawa, Y.; Yoda, N.; Kondo, S.; Yamamura, Y.; Takiguchi, Y.; Umehara, K. Inhibitory Potential of Twenty Five Anti-tuberculosis Drugs on CYP Activities in Human Liver Microsomes. Biol. Pharm. Bull. 2015, 38, 1425–1429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajaonarison, J.F.; Placidi, M.; Lacarelle, B. Screening in Human Liver Interactions for Inhibitors. Drug Metab. Dispos. 1994, 20. [Google Scholar]
- Xue, C.; Zhang, X.; Cai, W. Prediction of drug-drug interactions with bupropion and its metabolites as CYP2D6 inhibitors using a physiologically-based pharmacokinetic model. Pharmaceutics 2018, 10, 1. [Google Scholar] [CrossRef] [Green Version]
- Connarn, J.N.; Zhang, X.; Babiskin, A.; Sun, D. Metabolism of Bupropion by Carbonyl Reductases in Liver and Intestine. Drug Metab. Dispos. 2015, 43, 1019–1027. [Google Scholar] [CrossRef] [Green Version]
- Giri, P.; Naidu, S.; Patel, N.; Patel, H.; Srinivas, N.R. Evaluation of In Vitro Cytochrome P450 Inhibition and In Vitro Fate of Structurally Diverse N-Oxide Metabolites: Case Studies with Clozapine, Levofloxacin, Roflumilast, Voriconazole and Zopiclone. Eur. J. Drug Metab. Pharmacokinet. 2017, 42, 677–688. [Google Scholar] [CrossRef] [PubMed]
- Sager, J.E.; Tripathy, S.; Price, L.S.L.; Nath, A.; Chang, J.; Stephenson-Famy, A.; Isoherranen, N. In vitro to in vivo extrapolation of the complex drug-drug interaction of bupropion and its metabolites with CYP2D6; simultaneous reversible inhibition and CYP2D6 downregulation. Biochem. Pharmacol. 2017, 123, 85–96. [Google Scholar] [CrossRef] [Green Version]
Parameter | Value | Unit | Source | Literature | Reference | Description |
---|---|---|---|---|---|---|
MW | 239.74 | g/mol | lit. | 239.74 | [69] | Molecular Weight |
pKa | 8.75 | - | lit. | 8.75 | [70] | Acid dissociation constant |
Solubility (pH = 7.40) | 365.56 | mg/mL | lit. | 365.56 | [71] | Solubility |
log P | 2.57 | - | fit. | 3.27 | [69] | Lipophilicity |
fu | 16.00 | % | lit. | 16.00 | [23] | Fraction unbound |
Intestinal perm. | 2.76 × 10−5 | cm/min | fit. | - | - | Transcellular intestinal permeability |
Partition coefficients | Diverse | - | calc. | Berez. | [72] | Cell to plasma partitioning |
Cellular Perm. | - | - | fit. | PK-Sim | [73] | Permeability into the cellular space |
GFR fraction | 1.00 | - | asm. | - | Filtered drug in urine | |
EHC cont. fraction | 1.00 | - | asm. | - | Bile fraction continuously released | |
KM CYP2B6*1 → HBup | ‡ 25.80 | µmol/L | lit. | ‡ 25.80 | [74] | Michaelis-Menten constant |
kcat CYP2B6*1 → HBup | * 10.87 | 1/min | fit. | - | - | Catalytic rate constant |
KM CYP2B6*6 → HBup | ‡ 61.26 | µmol/L | lit. | ‡ 61.26 | [74] | Michaelis-Menten constant |
kcat CYP2B6*6 → HBup | * 9.52 | 1/min | fit. | - | - | Catalytic rate constant |
KM CYP2B6*4 → HBup | 12.70 | µmol/L | lit. | 12.70 | [75] | Michaelis-Menten constant |
kcat CYP2B6*4 → HBup | a 18.13 | 1/min | lit. | * 18.13 | [75] | Catalytic rate constant |
KM 11β-HSD → EBup | 39.10 | µmol/L | lit. | 39.10 | [76] | Michaelis-Menten constant |
kcat 11β-HSD → EBup | 2.15 | 1/min | fit. | - | - | Catalytic rate constant |
KM 11β-HSD → TBup | 39.10 | µmol/L | lit. | 39.10 | [76] | Michaelis-Menten constant |
kcat 11β-HSD → TBup | 8.18 | 1/min | fit. | - | - | Catalytic rate constant |
KM CYP2C19 | 8.30 | µmol/L | lit. | 8.30 | [77] | Michaelis-Menten constant |
kcat CYP2C19 | 2.59 | 1/min | fit. | - | - | Catalytic rate constant |
KD Binding partner | 0.44 | µmol/L | fit. | b 0.35–0.60 | [78,79,80] | Dissociation constant for binding |
koff Binding partner | 0.05 | 1/min | fit. | - | - | Dissociation rate constant for binding |
Parameter | Value | Unit | Source | Literature | Reference | Value | Unit | Source | Literature | Reference | Description |
---|---|---|---|---|---|---|---|---|---|---|---|
Hydroxybupropion | Erythro-and Threohydrobupropion | ||||||||||
MW | 255.74 | g/mol | lit. | 255.74 | [81] | 241.76 | g/mol | lit. | 241.76 | [82] | Molecular Weight |
pKa | 7.65 | - | lit. | 7.65 | [81] | 9.71 | - | lit. | 9.71 | [82] | Acid dissociation constant |
Solubility (pH = 7.40) | 0.91 | mg/mL | lit. | 0.91 | [81] | 82.98 | mg/mL | lit. | 82.98 | [82] | Solubility |
log P | 1.90 | - | fit. | 2.20 | [83] | 1.89 | - | fit. | 2.98 | [82] | Lipophilicity |
fu | 23.00 | % | lit. | 23.00 | [23] | 58.00 | % | lit. | 58.00 | [23] | Fraction unbound |
Partition coefficients | Diverse | - | calc. | Berez. | [72] | Diverse | - | calc. | Berez. | [72] | Cell to plasma partitioning |
Cellular Perm. | - | - | fit. | Ch.d.S. | [84] | - | - | fit. | Ch.d.S. | [84] | Permeability into the cellular space |
GFR fraction | 1.00 | - | asm. | - | - | 1.00 | - | asm. | - | - | Filtered drug in urine |
EHC cont. fraction | 1.00 | - | asm. | - | - | 1.00 | - | asm. | - | - | Bile fraction continuously released |
KM UGT2B7 | ‡ 14.64 | µmol/L | lit. | 14.64 | [15] | (E) ‡ 9.33 (T) ‡ 6.22 | µmol/L | lit. | (E) ‡ 9.33 (T) ‡ 6.22 | [15] | Michaelis-Menten constant |
kcat UGT2B7 | 1.09 | 1/min | fit. | - | - | (E) 0.63(T) 0.10 | 1/min | fit. | - | - | Catalytic rate constant |
Mean MRD | Mean GMFEAUC | Mean GMFECmax | ||||
---|---|---|---|---|---|---|
training | test | training | test | training | test | |
Bupropion | 1.62 | 1.90 | 1.20 | 1.42 | 1.20 | 1.41 |
Hydroxybupropion | 1.16 | 1.30 | 1.14 | 1.34 | 1.10 | 1.32 |
Erythrohydrobupropion | 1.48 | 1.38 | 1.25 | 1.46 | 1.26 | 1.38 |
Threohydrobupropion | 1.36 | 1.21 | 1.36 | 1.23 | 1.17 | 1.30 |
Overall | 1.51 | 1.31 | 1.29 | |||
Profiles with measure ≤ 2 | 103/124 | 119/124 | 121/124 | |||
Range | 1.01–6.21 | 0.43–3.06 | 0.55–2.87 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marok, F.Z.; Fuhr, L.M.; Hanke, N.; Selzer, D.; Lehr, T. Physiologically Based Pharmacokinetic Modeling of Bupropion and Its Metabolites in a CYP2B6 Drug-Drug-Gene Interaction Network. Pharmaceutics 2021, 13, 331. https://doi.org/10.3390/pharmaceutics13030331
Marok FZ, Fuhr LM, Hanke N, Selzer D, Lehr T. Physiologically Based Pharmacokinetic Modeling of Bupropion and Its Metabolites in a CYP2B6 Drug-Drug-Gene Interaction Network. Pharmaceutics. 2021; 13(3):331. https://doi.org/10.3390/pharmaceutics13030331
Chicago/Turabian StyleMarok, Fatima Zahra, Laura Maria Fuhr, Nina Hanke, Dominik Selzer, and Thorsten Lehr. 2021. "Physiologically Based Pharmacokinetic Modeling of Bupropion and Its Metabolites in a CYP2B6 Drug-Drug-Gene Interaction Network" Pharmaceutics 13, no. 3: 331. https://doi.org/10.3390/pharmaceutics13030331
APA StyleMarok, F. Z., Fuhr, L. M., Hanke, N., Selzer, D., & Lehr, T. (2021). Physiologically Based Pharmacokinetic Modeling of Bupropion and Its Metabolites in a CYP2B6 Drug-Drug-Gene Interaction Network. Pharmaceutics, 13(3), 331. https://doi.org/10.3390/pharmaceutics13030331