Anti-Fn14 Antibody-Conjugated Nanoparticles Display Membrane TWEAK-Like Agonism †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. AuNPs Synthesis
2.2.2. AuNPs Functionalization
2.2.3. AuNPs Antibody Coupling
2.2.4. AuNP Characterization
2.2.5. Binding of Gaussia princeps Luciferase (GpL)—Fusion Proteins to Antibodies Immobilized on AuNPs
2.2.6. Determination of IL-8 Production
2.2.7. p100 to p52 Processing and Western Blotting Analysis
2.2.8. Cell Death Assay
3. Results
3.1. Optimization of Gold Nanoparticles Synthesis Protocol
3.1.1. Controlling the Size and Concentration of Gold Nanoparticles
3.1.2. Functionalization of the Gold Nanoparticles
3.2. Conjugation of HOOC-PEG-AuNPs with Different Theraputic Antibodies
3.3. Fn14 Agonism of Anti-Fn14 Conjugated AuNPs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bodmer, J.-L.; Schneider, P.; Tschopp, J. The molecular architecture of the TNF superfamily. Trends Biochem. Sci. 2002, 27, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Wajant, H. Principles of antibody-mediated TNF receptor activation. Cell Death Differ. 2015, 22, 1727–1741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelley, S.K.; Harris, L.A.; Xie, D.; Deforge, L.; Totpal, K.; Bussiere, J.; Fox, J.A. Preclinical studies to predict the disposition of Apo2L/tumor necrosis factor-related apoptosis-inducing ligand in humans: Characterization of in vivo efficacy, pharmacokinetics, and safety. J. Pharmacol. Exp. Ther. 2001, 299, 31–38. [Google Scholar] [PubMed]
- Beutler, B.A.; Milsark, I.W.; Cerami, A. Cachectin/tumor necrosis factor: Production, distribution, and metabolic fate in vivo. J. Immunol. 1985, 135, 3972–3977. [Google Scholar] [PubMed]
- Medler, J.; Nelke, J.; Weisenberger, D.; Steinfatt, T.; Rothaug, M.; Berr, S.; Hünig, T.; Beilhack, A.; Wajant, H. TNFRSF receptor-specific antibody fusion proteins with targeting controlled FcγR-independent agonistic activity. Cell Death Dis. 2019, 10. [Google Scholar] [CrossRef]
- De Bruyn, M.; Bremer, E.; Helfrich, W. Antibody-based fusion proteins to target death receptors in cancer. Cancer Lett. 2013, 332, 175–183. [Google Scholar] [CrossRef]
- Fay, F.; McLaughlin, K.M.; Small, D.M.; Fennell, D.A.; Johnston, P.G.; Longley, D.B.; Scott, C.J. Conatumumab (AMG 655) coated nanoparticles for targeted pro-apoptotic drug delivery. Biomaterials 2011, 32, 8645–8653. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X.; Liu, B.; Cheng, X.; Yin, P.; Luo, F.; Zhuang, G.; Cheng, L.; Chen, L.; Hu, R.; et al. Preparation and functional studies of hydroxyethyl chitosan nanoparticles loaded with anti-human death receptor 5 single-chain antibody. OncoTargets Ther. 2014, 7, 779–787. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Chen, P.; Sun, Y.; Xing, Y.; Yang, Y.; Dong, Y.; Xu, L.; Yang, Z.; Liu, D. A new strategy improves assembly efficiency of DNA mono-modified gold nanoparticles. Chem. Commun. 2011, 47, 5774–5776. [Google Scholar] [CrossRef] [Green Version]
- El-Sayed, I.H.; Huang, X.; El-Sayed, M.A. Surface Plasmon Resonance Scattering and Absorption of anti-EGFR Antibody Conjugated Gold Nanoparticles in Cancer Diagnostics: Applications in Oral Cancer. Nano Lett. 2005, 5, 829–834. [Google Scholar] [CrossRef]
- You, C.-C.; Arvizo, R.R.; Rotello, V.M. Regulation of alpha-chymotrypsin activity on the surface of substrate-functionalized gold nanoparticles. Chem. Commun. 2006, 2905–2907. [Google Scholar] [CrossRef] [PubMed]
- Yeh, Y.-C.; Creran, B.; Rotello, V.M. Gold nanoparticles: Preparation, properties, and applications in bionanotechnology. Nanoscale 2011, 4, 1871–1880. [Google Scholar] [CrossRef] [PubMed]
- Kimling, J.; Maier, M.; Okenve, B.; Kotaidis, V.; Ballot, H.; Plech, A. Turkevich Method for Gold Nanoparticle Synthesis Revisited. J. Phys. Chem. B 2006, 110, 15700–15707. [Google Scholar] [CrossRef]
- Culp, P.A.; Choi, D.; Zhang, Y.; Yin, J.; Seto, P.; Ybarra, S.E.; Su, M.; Sho, M.; Steinle, R.; Wong, M.H.; et al. Antibodies to TWEAK Receptor Inhibit Human Tumor Growth through Dual Mechanisms. Clin. Cancer Res. 2010, 16, 497–508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salzmann, S.; Seher, A.; Trebing, J.; Weisenberger, D.; Rosenthal, A.; Siegmund, D.; Wajant, H. Fibroblast growth factor inducible (Fn14)-specific antibodies concomitantly display signaling path-way-specific agonistic and antagonistic activity. J. Biol. Chem. 2013, 288, 13455–13466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trebing, J.; Lang, I.; Chopra, M.; Salzmann, S.; Moshir, M.; Silence, K.; Riedel, S.S.; Siegmund, D.; Beilhack, A.; Otto, C.; et al. A novel llama antibody targeting Fn14 exhibits anti-metastatic activity in vivo. mAbs 2013, 6, 297–308. [Google Scholar] [CrossRef] [Green Version]
- Lang, I.; Füllsack, S.; Wyzgol, A.; Fick, A.; Trebing, J.; Arana, J.A.C.; Schäfer, V.; Weisenberger, D.; Wajant, H. Binding Studies of TNF Receptor Superfamily (TNFRSF) Receptors on Intact Cells. J. Biol. Chem. 2016, 291, 5022–5037. [Google Scholar] [CrossRef] [Green Version]
- Wyzgol, A.; Müller-Sienerth, N.; Fick, A.; Munkel, S.; Grigoleit, G.U.; Pfizenmaier, K.; Wajant, H. Trimer Stabilization, Oligomerization, and Antibody-Mediated Cell Surface Immobilization Improve the Activity of Soluble Trimers of CD27L, CD40L, 41BBL, and Glucocorticoid-Induced TNF Receptor Ligand. J. Immunol. 2009, 183, 1851–1861. [Google Scholar] [CrossRef]
- Berg, D.; Lehne, M.; Müller, N.; Siegmund, D.; Münkel, S.; Sebald, W.; Pfizenmaier, K.; Wajant, H. Enforced covalent trimerization increases the activity of the TNF ligand family members TRAIL and CD95L. Cell Death Differ. 2007, 14, 2021–2034. [Google Scholar] [CrossRef] [Green Version]
- Frens, G. Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions. Nat. Phys. Sci. 1973, 241, 20–22. [Google Scholar] [CrossRef]
- Haiss, W.; Thanh, N.T.K.; Aveyard, J.; Fernig, D. Determination of Size and Concentration of Gold Nanoparticles from UV−Vis Spectra. Anal. Chem. 2007, 79, 4215–4221. [Google Scholar] [CrossRef]
- Grabarek, Z.; Gergely, J. Zero-length crosslinking procedure with the use of active esters. Anal. Biochem. 1990, 185, 131–135. [Google Scholar] [CrossRef]
- Nakajima, N.; Ikada, Y. Mechanism of Amide Formation by Carbodiimide for Bioconjugation in Aqueous Media. Bioconjug. Chem. 1995, 6, 123–130. [Google Scholar] [CrossRef]
- Staros, J.V.; Wright, R.W.; Swingle, D.M. Enhancement by N-hydroxysulfosuccinimide of water-soluble car-bodiimide-mediated coupling reactions. Anal. Biochem. 1986, 156, 220–222. [Google Scholar] [CrossRef]
- Roos, C.; Wicovsky, A.; Müller, N.; Salzmann, S.; Rosenthal, T.; Kalthoff, H.; Trauzold, A.; Seher, A.; Henkler, F.; Kneitz, C.; et al. Soluble and Transmembrane TNF-Like Weak Inducer of Apoptosis Differentially Activate the Classical and Noncanonical NF-κB Pathway. J. Immunol. 2010, 185, 1593–1605. [Google Scholar] [CrossRef]
- Füllsack, S.; Rosenthal, A.; Wajant, H.; Siegmund, D. Redundant and receptor-specific activities of TRADD, RIPK1 and FADD in death receptor signaling. Cell Death Dis. 2019, 10, 122. [Google Scholar] [CrossRef]
- Feoktistova, M.; Geserick, P.; Leverkus, M. Crystal Violet Assay for Determining Viability of Cultured Cells. Cold Spring Harb. Protoc. 2016, 2016, 087379. [Google Scholar] [CrossRef]
- Amendola, V.; Pilot, R.; Frasconi, M.; Marago, O.M.; Iatì, M.A. Surface plasmon resonance in gold nanoparticles: A review. J. Phys. Condens. Matter 2017, 29, 203002. [Google Scholar] [CrossRef]
- Oliveira, J.; Prado, A.R.; Keijok, W.J.; Ribeiro, M.R.N.; Pontes, M.; Nogueira, B.; Guimarães, M.C. A helpful method for controlled synthesis of monodisperse gold nanoparticles through response surface modeling. Arab. J. Chem. 2020, 13, 216–226. [Google Scholar] [CrossRef]
- Khlebtsov, B.N.; Khlebtsov, N.G. On the measurement of gold nanoparticle sizes by the dynamic light scattering method. Colloid J. 2011, 73, 118–127. [Google Scholar] [CrossRef]
- Wajant, H. The TWEAK-Fn14 system as a potential drug target. Br. J. Pharmacol. 2013, 170, 748–764. [Google Scholar] [CrossRef] [Green Version]
- Kums, J.; Nelke, J.; Rüth, B.; Schäfer, V.; Siegmund, D.; Wajant, H. Quantitative analysis of cell surface antigen-antibody interaction using Gaussia princeps Luciferase antibody fusion proteins. mAbs 2017, 9, 506–520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grabinger, T.; Bode, K.J.; Demgenski, J.; Seitz, C.; Delgado, M.E.; Kostadinova, F.; Reinhold, C.; Etemadi, N.; Wilhelm, S.; Schweinlin, M.; et al. Inhibitor of Apoptosis Protein-1 Regulates Tumor Necrosis Factor–Mediated Destruction of Intestinal Epithelial Cells. Gastroenterology 2017, 152, 867–879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wicovsky, A.; Salzmann, S.; Roos, C.; Ehrenschwender, M.; Rosenthal, T.; Siegmund, D.; Henkler, F.; Gohlke, F.; Kneitz, C.; Wajant, H. TNF-like weak inducer of apoptosis inhibits proinflammatory TNF receptor-1 signaling. Cell Death Differ. 2009, 16, 1445–1459. [Google Scholar] [CrossRef] [Green Version]
- Jazayeri, M.H.; Amani, H.; Pourfatollah, A.A.; Pazoki-Toroudi, H.; Sedighimoghaddam, B. Various methods of gold nanoparticles (GNPs) conjugation to antibodies. Sens. Bio Sens. Res. 2016, 9, 17–22. [Google Scholar] [CrossRef] [Green Version]
- Bartczak, D.; Kanaras, A.G. Preparation of Peptide-Functionalized Gold Nanoparticles Using One Pot EDC/Sulfo-NHS Coupling. Langmuir 2011, 27, 10119–10123. [Google Scholar] [CrossRef]
Sample Structure | Particles Size | ζ Potential |
---|---|---|
Trisodium citrate-AuNPs | 60 ± 0.2 nm | −14 mV |
mPEG-AuNPs | 80 ± 2 nm | −7 mV |
HOOC-PEG-AuNPs | 86 ± 3 nm | −20 mV |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aido, A.; Zaitseva, O.; Wajant, H.; Buzgo, M.; Simaite, A. Anti-Fn14 Antibody-Conjugated Nanoparticles Display Membrane TWEAK-Like Agonism. Pharmaceutics 2021, 13, 1072. https://doi.org/10.3390/pharmaceutics13071072
Aido A, Zaitseva O, Wajant H, Buzgo M, Simaite A. Anti-Fn14 Antibody-Conjugated Nanoparticles Display Membrane TWEAK-Like Agonism. Pharmaceutics. 2021; 13(7):1072. https://doi.org/10.3390/pharmaceutics13071072
Chicago/Turabian StyleAido, Ahmed, Olena Zaitseva, Harald Wajant, Matej Buzgo, and Aiva Simaite. 2021. "Anti-Fn14 Antibody-Conjugated Nanoparticles Display Membrane TWEAK-Like Agonism" Pharmaceutics 13, no. 7: 1072. https://doi.org/10.3390/pharmaceutics13071072
APA StyleAido, A., Zaitseva, O., Wajant, H., Buzgo, M., & Simaite, A. (2021). Anti-Fn14 Antibody-Conjugated Nanoparticles Display Membrane TWEAK-Like Agonism. Pharmaceutics, 13(7), 1072. https://doi.org/10.3390/pharmaceutics13071072