Magnetoliposomes Based on Shape Anisotropic Calcium/Magnesium Ferrite Nanoparticles as Nanocarriers for Doxorubicin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Cubic Ca0.25Mg0.75Fe2O4 Nanoparticles
2.2. Solid Magnetoliposomes Preparation
2.3. Preparation of Giant Unilamellar Vesicles (GUVs)
2.4. Magnetic Measurements and Structural Characterization
2.5. Magnetic Hyperthermia Measurements
2.6. Spectroscopic Measurements
2.7. Drug Encapsulation Efficiency and Drug-Loading Capacity
2.8. Interaction with Human Serum Albumin
2.9. Drug Release Kinetics and Mathematical Modeling of Release Profile
3. Results and Discussion
3.1. X-ray Diffraction (XRD) Analysis
3.2. Transmission Electron Microscopy
3.3. UV-Visible Absorption
3.4. Magnetic Properties
3.5. Magnetic Hyperthermia
3.6. Photophysical Properties of Doxorubicin in Solution
3.7. Characterization of Magnetoliposomes
3.7.1. Synthesis of Solid Magnetoliposomes
3.7.2. Dynamic Light Scattering and Transmission Electron Microscopy
3.7.3. Doxorubicin Encapsulation in Solid Magnetoliposomes
3.7.4. Interaction with Human Serum Albumin
3.7.5. Drug Release Kinetics and Mathematical Modeling of Release Profile
4. Conclusions
5. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ulrich, A. Biophysical aspects of using liposomes as delivery vehicles. Biosci. Rep. 2002, 22, 129–150. [Google Scholar] [CrossRef] [PubMed]
- Metselaar, J.M.; Storm, G. Liposomes in the treatment of inflammatory disorders. Expert. Opin. Drug Deliv. 2005, 2, 465–476. [Google Scholar] [CrossRef]
- Hua, S.; Wu, S.Y. The use of lipid-based nanocarriers for targeted pain therapies. Front. Pharmacol. 2013, 4, 143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deshpande, P.P.; Biswas, S.; Torchilin, V.P. Current trends in the use of liposomes for tumor targeting. Nanomedicine 2013, 8, 1509–1528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, X.; Scherphof, G.L.; Kamps, J.A. Liposome opsonization. J. Liposome Res. 2005, 15, 109–139. [Google Scholar] [CrossRef]
- Patel, H. Serum opsonins and liposomes: Their interaction and opsonophagocytosis. Crit. Rev. Ther. Drug Carrier Syst. 1992, 9, 39–90. [Google Scholar] [PubMed]
- Wiederschain, G.Y. The Molecular Probes Handbook. A Guide to Fluorescent Probes and Labeling Technologies; Springer Science & Business Media: Moscow, Russia, 2011. [Google Scholar]
- Rau, B.; Wust, P.; Hohenberger, P.; Löffel, J.; Hünerbein, M.; Below, C.; Gellermann, J.; Speidel, A.; Vogl, T.; Riess, H. Preoperative hyperthermia combined with radiochemotherapy in locally advanced rectal cancer: A phase II clinical trial. Ann. Surg. 1998, 227, 380. [Google Scholar] [CrossRef] [PubMed]
- Gieré, R. Magnetite in the human body: Biogenic vs. anthropogenic. Proc. Nat. Acad. Sci. USA 2016, 113, 11986–11987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolen’ko, Y.V.; Bañobre-López, M.; Rodríguez-Abreu, C.; Carbó-Argibay, E.; Sailsman, A.; Piñeiro-Redondo, Y.; Cerqueira, M.F.; Petrovykh, D.Y.; Kovnir, K.; Lebedev, O.I. Large-scale synthesis of colloidal Fe3O4 nanoparticles exhibiting high heating efficiency in magnetic hyperthermia. J. Phys. Chem. C 2014, 118, 8691–8701. [Google Scholar] [CrossRef]
- Afzalipour, R.; Khoei, S.; Khoee, S.; Shirvalilou, S.; Raoufi, N.J.; Motevalian, M.; Karimi, M.Y. Thermosensitive magnetic nanoparticles exposed to alternating magnetic field and heat-mediated chemotherapy for an effective dual therapy in rat glioma model. Nanomed. Nanotechnol. Biol. Med. 2021, 31, 102319. [Google Scholar] [CrossRef]
- Auffan, M.; Achouak, W.; Rose, J.; Roncato, M.-A.; Chaneac, C.; Waite, D.T.; Masion, A.; Woicik, J.C.; Wiesner, M.R.; Bottero, J.-Y. Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli. Environ. Sci. Tech. 2008, 42, 6730–6735. [Google Scholar] [CrossRef]
- Tatarchuk, T.; Bououdina, M.; Vijaya, J.J.; Kennedy, L.J. Spinel Ferrite Nanoparticles: Synthesis, Crystal Structure, Properties, and Perspective Applications. In International Conference on Nanotechnology and Nanomaterials; Springer: New York, NY, USA, 2016; pp. 305–325. [Google Scholar] [CrossRef]
- Šepelák, V.; Baabe, D.; Mienert, D.; Litterst, F.; Becker, K. Enhanced magnetisation in nanocrystalline high-energy milled MgFe2O4. Scr. Mat. 2003, 48, 961–966. [Google Scholar] [CrossRef]
- Jang, J.-T.; Lee, J.; Seon, J.; Ju, E.; Kim, M.; Kim, Y.I.; Kim, M.G.; Takemura, Y.; Arbab, A.S.; Kang, K.W.; et al. Giant magnetic heat induction of magnesium-doped γ-Fe2O3 superparamagnetic nanoparticles for completely killing tumors. Adv. Mater. 2018, 30, 1704362. [Google Scholar] [CrossRef]
- Bamzai, K.K.; Kour, G.; Kaur, B.; Kulkarni, S.D. Preparation, and structural and magnetic properties of Ca-substituted magnesium ferrite with composition MgCaxFe2−xO4 (x = 0.00, 0.01, 0.03, 0.05, 0.07). J. Mater. 2014, 2014, 184340. [Google Scholar] [CrossRef] [Green Version]
- Saldívar-Ramírez, M.M.G.; Sánchez-Torres, C.G.; Cortés-Hernández, D.A.; Escobedo-Bocardo, J.C.; Almanza-Robles, J.M.; Larson, A.; Acuña-Gutiérrez, I.O. Study on the efficiency of nanosized magnetite and mixed ferrites in magnetic hyperthermia. J. Mater. Sci. Mater. Med. 2014, 25, 2229–2236. [Google Scholar] [CrossRef]
- Khurshid, H.; Alonso, J.; Nemati, Z.; Phan, M.; Mukherjee, P.; Fdez-Gubieda, M.; Barandiarán, J.; Srikanth, H. Anisotropy effects in magnetic hyperthermia: A comparison between spherical and cubic exchange-coupled FeO/Fe3O4 nanoparticles. J. Appl. Phys. 2015, 117, 17A337. [Google Scholar] [CrossRef]
- Cardoso, B.D.; Rodrigues, A.R.O.; Almeida, B.G.; Amorim, C.O.; Amaral, V.S.; Castanheira, E.M.S.; Coutinho, P.J.G. Stealth Magnetoliposomes Based on Calcium-Substituted Magnesium Ferrite Nanoparticles for Curcumin Transport and Release. Int. J. Mol. Sci. 2020, 21, 3641. [Google Scholar] [CrossRef]
- Ferreira, A.; Cunha-Oliveira, T.; Simões, R.F.; Carvalho, F.S.; Burgeiro, A.; Nordgren, K.; Wallace, K.B.; Oliveira, P.J. Altered mitochondrial epigenetics associated with subchronic doxorubicin cardiotoxicity. Toxicology 2017, 390, 63–73. [Google Scholar] [CrossRef] [Green Version]
- Slingerland, M.; Guchelaar, H.J.; Gelderblom, H. Liposomal drug formulations in cancer therapy: 15 years along the road. Drug Discov. Today 2012, 17, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Babincová, N.; Sourivong, P.; Babinec, P.; Bergemann, C.; Babincová, M.; Durdík, S. Applications of magnetoliposomes with encapsulated doxorubicin for integrated chemotherapy and hyperthermia of rat C6 glioma. Z. Nat. C 2018, 73, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Khaledian, M.; Nourbakhsh, M.S.; Saber, R.; Hashemzadeh, H.; Darvishi, M.H. Preparation and evaluation of doxorubicin-loaded PLA-PEG-FA copolymer containing superparamagnetic iron oxide nanoparticles (SPIONS) for cancer treatment: Combination therapy with hyperthermia and chemotherapy. Int. J. Nanomed. 2020, 15, 6167–6182. [Google Scholar] [CrossRef]
- Cotin, G.; Kiefer, C.L.; Perton, F.; Boero, M.; Özdamar, B.; Bouzid, A.; Ori, G.; Massobrio, C.; Begin, D.; Pichon, B. Evaluating the Critical Roles of Precursor Nature and Water Content When Tailoring Magnetic Nanoparticles for Specific Applications. ACS Appl. Nano Mat. 2018, 1, 4306–4316. [Google Scholar] [CrossRef]
- Cardoso, B.D.; Rio, I.S.R.; Rodrigues, A.R.O.; Fernandes, F.C.T.; Almeida, B.G.; Pires, A.; Pereira, A.M.; Araújo, J.P.; Castanheira, E.M.S.; Coutinho, P.J.G. Magnetoliposomes containing magnesium ferrite nanoparticles as nanocarriers for the model drug curcumin. R. Soc. Open Sci. 2018, 5, 181017. [Google Scholar] [CrossRef] [Green Version]
- Tamba, Y.; Terashima, H.; Yamasaki, M. A membrane filtering method for the purification of giant unilamellar vesicles. Chem. Phys. Lipids 2011, 164, 351–358. [Google Scholar] [CrossRef] [Green Version]
- Kallumadil, M.; Tada, M.; Nakagawa, T.; Abe, M.; Southern, P.; Pankhurst, Q.A. Suitability of commercial colloids for magnetic hyperthermia. J. Magn. Magn. Mater. 2009, 321, 1509–1513. [Google Scholar] [CrossRef]
- Masters, B.R. Book Review: Molecular fluorescence: Principles and applications. J. Biomed. Opt. 2013, 18, 039901. [Google Scholar] [CrossRef]
- Azevedo, A.M.; Ribeiro, D.M.; Pinto, P.C.; Lúcio, M.; Reis, S.; Saraiva, M.L.M. Imidazolium ionic liquids as solvents of pharmaceuticals: Influence on HSA binding and partition coefficient of nimesulide. Int. J. Pharm. 2013, 443, 273–278. [Google Scholar] [CrossRef]
- Döbelin, N.; Kleeberg, R. Profex: A graphical user interface for the Rietveld refinement program BGMN. J. Appl. Crystallog. 2015, 48, 1573–1580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergmann, J.; Friedel, P.; Kleeberg, R. IUCr Commission on Powder Diffraction. Newsletter 1998, 20, 5–8. [Google Scholar]
- Pozas, R.; Ocana, M.; Morales, M.P.; Tartaj, P.; Nuñez, N.O.; Serna, C.J. Synthesis of acicular Fe–Co nanoparticles and the effect of Al addition on their magnetic properties. Nanotechnology 2004, 15, S190. [Google Scholar] [CrossRef] [Green Version]
- Sau, T.K.; Rogach, A.L. Complex-Shaped Metal Nanoparticles: Bottom-Up Syntheses and Applications; Wiley-VCH Verlag: Weinheim, Germany, 2012. [Google Scholar] [CrossRef]
- Köseoğlu, Y.; Baykal, A.; Gözüak, F.; Kavas, H. Structural and magnetic properties of CoxZn1−xFe2O4 nanocrystals synthesized by microwave method. Polyhedron 2009, 28, 2887–2892. [Google Scholar] [CrossRef]
- Noh, S.-H.; Na, W.; Jang, J.-T.; Lee, J.-H.; Lee, E.J.; Moon, S.H.; Lim, Y.; Shin, J.-S.; Cheon, J. Nanoscale magnetism control via surface and exchange anisotropy for optimized ferrimagnetic hysteresis. Nano Lett. 2012, 12, 3716–3721. [Google Scholar] [CrossRef]
- Hergt, R.; Dutz, S. Magnetic particle hyperthermia-biophysical limitations of a visionary tumour therapy. J. Magn. Magn. Mater. 2007, 311, 187–192. [Google Scholar] [CrossRef]
- Fu, R.; Yan, Y.; Roberts, C. The role of dipole interactions in hyperthermia heating colloidal clusters of densely-packed superparamagnetic nanoparticles. Sci. Rep. 2018, 8, 4704. [Google Scholar] [CrossRef] [PubMed]
- Haase, C.; Nowak, U. Role of dipole-dipole interactions for hyperthermia heating of magnetic nanoparticle ensembles. Phys. Rev. B 2012, 85, 045435. [Google Scholar] [CrossRef] [Green Version]
- Karukstis, K.K.; Thompson, E.H.; Whiles, J.A.; Rosenfeld, R.J. Deciphering the fluorescence signature of daunomycin and doxorubicin. Biophys. Chem. 1998, 73, 249–263. [Google Scholar] [CrossRef]
- Fiallo, M.M.; Tayeb, H.; Suarato, A.; Garnier-Suillerot, A. Circular dichroism studies on anthracycline antitumor compounds. Relationship between the molecular structure and the spectroscopic data. J. Pharm. Sci. 1998, 87, 967–975. [Google Scholar] [CrossRef]
- Manfait, M.; Bernard, L.; Theophanides, T. Resonance and pre-resonance Raman spectra of the antitumor drugs adriamycin and daunomycin. J. Raman Spectrosc. 1981, 11, 68–74. [Google Scholar] [CrossRef]
- Changenet-Barret, P.; Gustavsson, T.; Markovitsi, D.; Manet, I.; Monti, S. Unravelling molecular mechanisms in the fluorescence spectra of doxorubicin in aqueous solution by femtosecond fluorescence spectroscopy. Phys. Chem. Chem. Phys. 2013, 15, 2937–2944. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, P.; Barthwal, S.K.; Barthwal, R. Studies on self-aggregation of anthracycline drugs by restrained molecular dynamics approach using nuclear magnetic resonance spectroscopy supported by absorption, fluorescence, diffusion ordered spectroscopy and mass spectrometry. Eur. J. Med. Chem. 2009, 44, 1437–1451. [Google Scholar] [CrossRef]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy; Springer Science & Business Media: Berlin, Germany, 2013. [Google Scholar]
- Bakhshiev, N. Universal Intermolecular Interactions and Their Effect on the Position of the Electronic Spectra of Molecules in Two-Component Solutions. VIII. Some Remarks on the Application of the Method of Universal Interaction Functions. Opt. Spect. 1965, 19, 196. [Google Scholar]
- Baur, M.E.; Nicol, M. Solvent Stark effect and spectral shifts. J. Chem. Phys. 1966, 44, 3337–3343. [Google Scholar] [CrossRef]
- Curtis, H.; Barnes, N.S. Invitation to Biology; Macmillan: New York, NY, USA, 1994. [Google Scholar]
- Gabizon, A.; Catane, R.; Uziely, B.; Kaufman, B.; Safra, T.; Cohen, R.; Martin, F.; Huang, A.; Barenholz, Y. Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res. 1994, 54, 987–992. [Google Scholar]
- Maeda, H.; Nakamura, H.; Fang, J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv. Drug Deliv. Rev. 2013, 65, 71–79. [Google Scholar] [CrossRef]
- Sriwongsitanont, S.; Ueno, M. Effect of a PEG lipid (DSPE-PEG2000) and freeze-thawing process on phospholipid vesicle size and lamellarity. Colloids Polym. Sci. 2004, 282, 753–760. [Google Scholar] [CrossRef]
- Rodrigues, A.R.O.; Almeida, B.; Rodrigues, J.M.; Queiroz, M.J.R.P.; Calhelha, R.C.; Ferreira, I.C.F.R.; Pires, A.; Pereira, A.M.; Araújo, J.P.; Coutinho, P.J.G.; et al. Magnetoliposomes as carriers for promising antitumor thieno[3,2-b]pyridin-7-arylamines: Photophysical and biological studies. RSC Adv. 2017, 7, 15352–15361. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, A.R.O.; Ramos, J.M.; Gomes, I.T.; Almeida, B.G.; Araújo, J.P.; Queiroz, M.J.R.P.; Coutinho, P.J.G.; Castanheira, E.M.S. Magnetoliposomes based on manganese ferrite nanoparticles as nanocarriers for antitumor drugs. RSC Adv. 2016, 6, 17302–17313. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, A.R.O.; Mendes, P.M.F.; Silva, P.M.L.; Machado, V.A.; Almeida, B.G.; Araújo, J.P.; Queiroz, M.J.R.P.; Castanheira, E.M.S.; Coutinho, P.J.G. Solid and aqueous magnetoliposomes as nanocarriers for a new potential drug active against breast cancer. Colloids Surf. B 2017, 158, 460–468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, D.S.; Cardoso, B.D.; Rodrigues, A.R.O.; Amorim, C.O.; Amaral, V.S.; Almeida, B.G.; Queiroz, M.J.R.P.; Martinho, O.; Baltazar, F.; Calhelha, F.R.C.; et al. Magnetoliposomes containing calcium ferrite nanoparticles for applications in breast cancer therapy. Pharmaceutics 2019, 11, 477. [Google Scholar] [CrossRef] [Green Version]
- Tilley, L.; Thulborn, K.R.; Sawyer, W. An assessment of the fluidity gradient of the lipid bilayer as determined by a set of n-(9-anthroyloxy) fatty acids (n = 2, 6, 9, 12, 16). J. Biol. Chem. 1979, 254, 2592–2594. [Google Scholar] [CrossRef]
- Bahri, M.A.; Heyne, B.J.; Hans, P.A.E.; Seret, A.E.; Mouithys-Mickalad, A.A.; Hoebeke, M.D. Quantification of lipid bilayer effective microviscosity and fluidity effect induced by propofol. Biophys. Chem. 2005, 114, 53–61. [Google Scholar] [CrossRef] [Green Version]
- Kępczyński, M.; Nawalany, K.; Kumorek, M.; Kobierska, A.; Jachimska, B.; Nowakowska, M. Which physical and structural factors of liposome carriers control their drug-loading efficiency? Chem. Phys. Lipids 2008, 155, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.; Chandra, A.; Kaur, A.; Sabnis, N.; Lacko, A.; Gryczynski, Z.; Fudala, R.; Gryczynski, I. Fluorescence properties of doxorubicin in PBS buffer and PVA films. J. Photochem. Photobiol. B 2017, 170, 65–69. [Google Scholar] [CrossRef] [Green Version]
- Thakur, R.; Das, A.; Chakraborty, A. Interaction of human serum albumin with liposomes of saturated and unsaturated lipids with different phase transition temperatures: A spectroscopic investigation by membrane probe PRODAN. RSC Adv. 2014, 4, 14335–14347. [Google Scholar] [CrossRef]
- Cardinale, D.; Sandri, M.T.; Martinoni, A.; Tricca, A.; Civelli, M.; Lamantia, G.; Cinieri, S.; Martinelli, G.; Cipolla, C.M.; Fiorentini, C. Left ventricular dysfunction predicted by early troponin I release after high-dose chemotherapy. J. Am. Coll. Cardiol. 2000, 36, 517–522. [Google Scholar] [CrossRef]
- Willis, M.S.; Parry, T.L.; Brown, D.I.; Mota, R.I.; Huang, W.; Beak, J.Y.; Sola, M.; Zhou, C.; Hicks, S.T.; Caughey, M.C. Doxorubicin exposure causes subacute cardiac atrophy dependent on the striated muscle-specific ubiquitin ligase MuRF1. Circ. Heart Fail. 2019, 12, 005234. [Google Scholar] [CrossRef] [PubMed]
- Šimůnek, T.; Štěrba, M.; Popelová, O.; Adamcová, M.; Hrdina, R.; Geršl, V. Anthracycline-induced cardiotoxicity: Overview of studies examining the roles of oxidative stress and free cellular iron. Pharmacol. Rep. 2009, 61, 154–171. [Google Scholar] [CrossRef]
- Swiech, O.; Majdecki, M.; Opuchlik, L.J.; Bilewicz, R. Impact of pH and cell medium on the interaction of doxorubicin with lipoic acid cyclodextrin conjugate as the drug carrier. J. Incl. Phenom. Macrocycl. Chem. 2020, 97, 129–136. [Google Scholar] [CrossRef]
- Chai, F.; Sun, L.; He, X.; Li, J.; Liu, Y.; Xiong, F.; Ge, L.; Webster, T.J.; Zheng, C. Doxorubicin-loaded poly (lactic-co-glycolic acid) nanoparticles coated with chitosan/alginate by layer by layer technology for antitumor applications. Int. J. Nanomed. 2017, 12, 1791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papadopoulou, V.; Kosmidis, K.; Vlachou, M.; Macheras, P. On the use of the Weibull function for the discernment of drug release mechanisms. Int. J. Pharm. 2006, 309, 44–50. [Google Scholar] [CrossRef]
- Singh, M.; Kaskhedikar, S.; Singhvi, G.; Soni, L. HPLC Estimation of Perindopril Erbumine in Tablet Dosage Form. Asian J. Chem. 2011, 23, 3909–3911. [Google Scholar]
- Supramaniam, J.; Adnan, R.; Kaus, N.H.M.; Bushra, R. Magnetic nanocellulose alginate hydrogel beads as potential drug delivery system. Int. J. Biol. Macromol. 2018, 118, 640–648. [Google Scholar] [CrossRef] [PubMed]
T (K) | HC (Oe) | Ms (emu/g) | Mr (emu/g) | Mr/Ms | |
---|---|---|---|---|---|
M (H) | 300 | 19.93 | 50.07 | 1.41 | 0.03 |
5 | 128.64 | 53.65 | 15.66 | 0.29 |
Solvent | λabs/nm (ε/104 M−1 cm−1) | λem/nm | ΦF a |
---|---|---|---|
Water | 487 (0.50) | 591 | 0.20 ± 0.02 |
Methanol | 488 (0.49) | 586 | 0.04 ± 0.01 |
Acetonitrile | 480 (0.38) | 588 | 0.04 ± 0.01 |
Ethanol | 489 (0.49) | 587 | 0.06 ± 0.01 |
Ethyl acetate | 484 (0.21) | 587 | 0.05 ± 0.01 |
Chloroform | 488 (0.28) | 592 | 0.04 ± 0.01 |
SMLs Lipid Formulation | DH (nm) | PDI |
---|---|---|
DPPC | 117.5 ± 0.5 | 0.17 ± 0.01 |
DPPC/DSPE-PEG | 153.8 ± 0.8 | 0.27 ± 0.01 |
DPPC/Ch | 151.4 ± 0.6 | 0.20 ± 0.01 |
Nanosystem | Lipid Formulation | Temperature ( °C) | r |
---|---|---|---|
SMLs | DPPC | 25 | 0.137 |
DPPC:DSPE-PEG (95:5) | 0.206 | ||
DPPC:Ch (7:3) | 0.075 | ||
DPPC | 55 | 0.100 | |
DPPC:DSPE-PEG (95:5) | 0.133 | ||
DPPC:Ch (7:3) | 0.043 | ||
GUVs | Soybean lecithin | 25 | 0.116 |
55 | 0.058 | ||
SMLs + GUVs | DPPC | 25 | 0.166 |
DPPC:DSPE-PEG (95:5) | 0.187 | ||
DPPC:Ch (7:3) | 0.139 | ||
DPPC | 55 | 0.081 | |
DPPC:DSPE-PEG (95:5) | 0.121 | ||
DPPC:Ch (7:3) | 0.098 |
Initial DOX Concentration | ||
---|---|---|
Lipid Formulation | 1 × 10−4 M | 2 × 10−4 M |
DPPC | 72% ± 3% (7.23 × 10−5 M) | 65% ± 8% (1.31 × 10−4 M) |
DPPC:DSPE-PEG (95:5) | 70% ± 22% (7.04 × 10−5 M) | 52% ± 19% (1.05 × 10−4 M) |
DPPC:Ch (7:3) | 50% ± 2% (5.05 × 10−5 M) | 48% ± 8% (9.75 × 10−5 M) |
kd (M) | kb (M−1) | n | R2 | |
---|---|---|---|---|
Free DOX | 3.69 × 10−9 | 27.1 × 107 | 1.20 | 0.993 |
DPPC | 2.54 × 10−6 | 3.93 × 105 | 2.27 | 0.977 |
DPPC:DSPE-PEG | 14.47 × 10−7 | 1.18 × 106 | 1.78 | 0.978 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardoso, B.D.; Rodrigues, A.R.O.; Bañobre-López, M.; Almeida, B.G.; Amorim, C.O.; Amaral, V.S.; Coutinho, P.J.G.; Castanheira, E.M.S. Magnetoliposomes Based on Shape Anisotropic Calcium/Magnesium Ferrite Nanoparticles as Nanocarriers for Doxorubicin. Pharmaceutics 2021, 13, 1248. https://doi.org/10.3390/pharmaceutics13081248
Cardoso BD, Rodrigues ARO, Bañobre-López M, Almeida BG, Amorim CO, Amaral VS, Coutinho PJG, Castanheira EMS. Magnetoliposomes Based on Shape Anisotropic Calcium/Magnesium Ferrite Nanoparticles as Nanocarriers for Doxorubicin. Pharmaceutics. 2021; 13(8):1248. https://doi.org/10.3390/pharmaceutics13081248
Chicago/Turabian StyleCardoso, Beatriz D., Ana Rita O. Rodrigues, Manuel Bañobre-López, Bernardo G. Almeida, Carlos O. Amorim, Vítor S. Amaral, Paulo J. G. Coutinho, and Elisabete M. S. Castanheira. 2021. "Magnetoliposomes Based on Shape Anisotropic Calcium/Magnesium Ferrite Nanoparticles as Nanocarriers for Doxorubicin" Pharmaceutics 13, no. 8: 1248. https://doi.org/10.3390/pharmaceutics13081248
APA StyleCardoso, B. D., Rodrigues, A. R. O., Bañobre-López, M., Almeida, B. G., Amorim, C. O., Amaral, V. S., Coutinho, P. J. G., & Castanheira, E. M. S. (2021). Magnetoliposomes Based on Shape Anisotropic Calcium/Magnesium Ferrite Nanoparticles as Nanocarriers for Doxorubicin. Pharmaceutics, 13(8), 1248. https://doi.org/10.3390/pharmaceutics13081248