The Effects of pH and Excipients on Exenatide Stability in Solution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Exenatide Incubation Conditions
2.3. Reverse Phase Liquid Chromatography
2.4. Impurity Identification by Liquid Chromatography with Mass Spectrometry
2.5. Size Exclusion Chromatography
2.6. Particle Size Distribution by Dynamic Light Scattering
2.7. Intrinsic Fluorescence
2.8. Far-UV Circular Dichroism
3. Results
3.1. Identification of Degradation Impurities by Liquid Chromatography-Mass Spectrometry (QToF)
3.2. Forced Chemical Degradation at 37 °C
3.3. Forced Physical Degradation at 37 °C
3.4. Characterizing Particle Size Distribution by Dynamic Light Scattering
3.5. Structural Analysis by Intrinsic Fluorescence and Circular Dichroism
3.6. The Impact of Excipients on Degradation at pH 7.5
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Syed, Y.Y.; McCormack, P.L. Exenatide Extended-Release: An updated review of its use in Type 2 diabetes mellitus. Drugs 2015, 75, 1141–1152. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Benjamin, M.M.; Srinivasan, S.; Morin, E.E.; Shishatskaya, E.I.; Schwendeman, S.; Schwendeman, A. Battle of GLP-1 delivery technologies. Adv. Drug Deliv. Rev. 2018, 130, 113–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, A.A.; Gedulin, B.R.; Bhavsar, S.; Bodkin, N.; Jodka, C.; Hansen, B.; Denaro, M. Glucose-lowering and insulin-sensitizing actions of exendin-4: Studies in obese diabetic (ob/ob, db/db) mice, diabetic fatty Zucker rats, and diabetic rhesus monkeys (Macaca mulatta). Diabetes 1999, 48, 1026–1034. [Google Scholar] [CrossRef] [PubMed]
- Kolterman, O.G.; Kim, D.D.; Shen, L.; Ruggles, J.A.; Nielsen, L.L.; Fineman, M.S.; Baron, A.D. Pharmacokinetics, pharmacodynamics, and safety of exenatide in patients with type 2 diabetes mellitus. Am. J. Health Pharm. 2005, 62, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Joy, S.V.; Rodgers, P.T.; Scates, A.C. Incretin mimetics as emerging treatments for type 2 diabetes. Ann. Pharmacother. 2005, 39, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Byetta [Package Insert]. Wilmington, DE: Astrazeneca; 06/2021. Available online: https://den8dhaj6zs0e.cloudfront.net/50fd68b9-106b-4550-b5d0-12b045f8b184/ce8afab9-2b45-436d-957c-a73978d09e93/ce8afab9-2b45-436d-957c-a73978d09e93_viewable_rendition__v.pdf (accessed on 24 September 2019).
- Bydureon [Package Insert]. West Chester, OH: Astrazeneca; 07/2021. Available online: https://den8dhaj6zs0e.cloudfront.net/50fd68b9-106b-4550-b5d0-12b045f8b184/6b02db6d-7a95-4a90-88ae-5f5ac7397755/6b02db6d-7a95-4a90-88ae-5f5ac7397755_viewable_rendition__v.pdf (accessed on 24 September 2019).
- AstraZeneca. Annual Report and Form 20-F information 2020. Cambridge, UK. 2021. Available online: https://www.astrazeneca.com/investor-relations/annual-reports.html (accessed on 1 April 2021).
- Teva Settles Patent Litigation with AstraZeneca Allowing Teva to Commercialize Its Generic Version of Byetta (Exenatide Injection) in The United States. Business Wire. 06/2016. Available online: https://www.businesswire.com/news/home/20160623005356/en/Teva-Settles-Patent-Litigation-with-AstraZeneca-Allowing-Teva-to-Commercialize-Its-Generic-Version-of-Byetta%C2%AE-Exenatide-Injection-in-the-United-States (accessed on 24 September 2019).
- Generic Byetta Availability. 07/2021. Available online: https://www.drugs.com/availability/generic-byetta.html (accessed on 24 September 2019).
- Drugs Coming off Patent by 2022. National Pharmacuetical Services: Boys Town, NE. 2020. Available online: https://www.pharmaexcipients.com/wp-content/uploads/attachments/Drugs+Coming+Off+Patent+by+2022.pdf?t=1515163913 (accessed on 24 September 2019).
- Li, T.; Chandrashekar, A.; Beig, A.; Walker, J.; Hong, J.K.Y.; Benet, A.; Kang, J.; Ackermann, R.; Wang, Y.; Qin, B.; et al. Characterization of attributes and in vitro performance of exenatide-loaded PLGA long-acting release microspheres. Eur. J. Pharm. Biopharm. 2021, 158, 401–409. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.M.; Eom, H.N.; Jiang, H.H.; Sohn, M.; Lee, K.C. Evaluation of PEGylated exendin-4 released from poly (lactic-co-glycolic acid) microspheres for antidiabetic therapy. J. Pharm. Sci. 2015, 104, 72–80. [Google Scholar] [CrossRef]
- Wang, P.; Zhuo, X.; Chu, W.; Tang, X. Exenatide-loaded microsphere/thermosensitive hydrogel long-acting delivery system with high drug bioactivity. Int. J. Pharm. 2017, 528, 62–75. [Google Scholar] [CrossRef] [PubMed]
- Deyoung, M.B.; MacConell, L.; Sarin, V.; Trautmann, M.; Herbert, P. Encapsulation of exenatide in poly-(d,l-lactide-co-glycolide) microspheres produced an investigational long-acting once-weekly formulation for type 2 diabetes. Diabetes Technol. Ther. 2011, 13, 1145–1154. [Google Scholar] [CrossRef] [PubMed]
- Liang, R.; Zhang, R.; Li, X.; Wang, A.; Chen, D.; Sun, K.; Liu, W.; Li, Y. Stability of exenatide in poly(D,L-lactide-co-glycolide) solutions: A simplified investigation on the peptide degradation by the polymer. Eur. J. Pharm. Sci. 2013, 50, 502–510. [Google Scholar] [CrossRef] [PubMed]
- Liang, R.; Li, X.; Shi, Y.; Wang, A.; Sun, K.; Liu, W.; Li, Y. Effect of water on exenatide acylation in poly(lactide-co-glycolide) microspheres. Int. J. Pharm. 2013, 454, 344–353. [Google Scholar] [CrossRef] [PubMed]
- ANDAs for Certain Highly Purified Synthetic Peptide Drug Products That Refer to Listed Drugs of rDNA Origin. Center for Drug Evaluation and Research: Silver Spring, MD. 05/2021. Available online: https://www.fda.gov/media/107622/download (accessed on 7 June 2021).
- Hong, J.K.Y.; Shutzman, R.; Olsen, K.; Chandrashekar, A.; Schwendeman, S. Mapping in vivo microclimate pH distribution inside exenatide-encapsulated PLGA microspheres using confocal laser scanning microscopy. In Proceedings of the 2021 Controlled Release Society Virtual Annual Meeting, Online. 25–29 July 2021. [Google Scholar]
- Srivastava, V. Peptide Therapeutics: Strategy and Tactics for Chemistry, Manufacturing and Controls; The Royal Society of Chemistry: London, UK, 2019; ISBN 978-1-78801-433-5. [Google Scholar]
- Topp, E.M.; Zhang, L.; Zhao, H.; Payne, R.W.; Evans, G.J.; Manning, M.C. (Eds.) Chemical instability in peptide and protein pharmaceuticals. In Formulation and Process Development Strategies for Manufacturing Biopharmaceuticals; Wiley: Hoboken, NJ, USA, 2010; pp. 41–67. [Google Scholar]
- Hudson, F.M.; Andersen, N.H. Exenatide: NMR/CD evaluation of the medium dependence of conformation and aggregation state. Pept. Sci. Orig. Res. Biomol. 2004, 76, 298–308. [Google Scholar] [CrossRef] [PubMed]
- Byetta: EPAR-Product Information. EMA: Amsterdam, The Netherlands. 07/2021. Available online: https://www.ema.europa.eu/en/documents/product-information/byetta-epar-product-information_en.pdf (accessed on 24 September 2019).
- Zetasizer Nano: Basic Guide; Malvern Panalytical, Malvern, UK. 2021. Available online: https://www.malvernpanalytical.com/en/support/product-support/zetasizer-range/zetasizer-nano-range/zetasizer-nano-zsp (accessed on 12 March 2020).
- Schneider, E.L.; Hearn, B.R.; Pfaff, S.J.; Reid, R.; Parkes, D.G.; Vrang, N.; Ashley, G.W.; Santi, D.V. A hydrogel-microsphere drug delivery System that supports once-monthly administration of a GLP-1 receptor agonist. ACS Chem. Biol. 2017, 12, 2107–2116. [Google Scholar] [CrossRef] [PubMed]
- Manning, M.C.; Chou, D.K.; Murphy, B.M.; Payne, R.W.; Katayama, D.S. Stability of protein pharmaceuticals: An update. Pharm. Res. 2010, 27, 544–575. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, S.W.; Cooney, C.L. Relationship between protein structure and methionine oxidation in recombinant human α1-antitrypsin. Biochemistry 2002, 41, 6245–6252. [Google Scholar] [CrossRef] [PubMed]
- Ji, J.A.; Zhang, B.; Cheng, W.; Wang, Y.J. Methionine, tryptophan, and histidine oxidation in a model protein, PTH: Mechanisms and stabilization. J. Pharm. Sci. 2009, 98, 4485–4500. [Google Scholar] [CrossRef] [PubMed]
- Zapadka, K.L.; Becher, F.J.; Uddin, S.; Varley, P.G.; Bishop, S.; Gomes Dos Santos, A.L.; Jackson, S.E. A pH-Induced switch in human glucagon-like peptide-1 aggregation kinetics. J. Am. Chem. Soc. 2016, 138, 16259–16265. [Google Scholar] [CrossRef]
- Tyler-Cross, R.; Schirch, V. Effects of amino acid sequence, buffers, and ionic strength on the rate and mechanism of deamidation of asparagine residues in small peptides. J. Biol. Chem. 1991, 266, 22549–22556. [Google Scholar] [CrossRef]
- Patel, K.; Borchardt, R.T. Chemical pathways of peptide degradation. III. Effect of primary sequence on the pathways of deamidation of asparaginyl residues in hexapeptides. Pharm. Res. An. Off. J. Am. Assoc. Pharm. Sci. 1990, 07, 787–793. [Google Scholar]
- Fineman, M.S.; Mace, K.F.; Diamant, M.; Darsow, T.; Cirincione, B.B.; Booker Porter, T.K.; Kinninger, L.A.; Trautmann, M.E. Clinical relevance of anti-exenatide antibodies: Safety, efficacy and cross-reactivity with long-term treatment. Diabetes Obes. Metab. 2012, 14, 546–554. [Google Scholar] [CrossRef] [PubMed]
DLS (by Volume) | 0.3–10 nm | 10–100 nm | 100–500 nm | 500–1000 nm | 1000+ nm | |
---|---|---|---|---|---|---|
4.5 | 0 Weeks | 77.8 | 3.5 | 18.6 | 0.1 | 0 |
1 Week | 100 | 0 | 0 | 0 | 0 | |
2 Weeks | 100 | 0 | 0 | 0 | 0 | |
4 Weeks | 100 | 0 | 0 | 0 | 0 | |
5.5 | 0 Weeks | 100 | 0 | 0 | 0 | 0 |
1 Week | 100 | 0 | 0 | 0 | 0 | |
2 Weeks | 100 | 0 | 0 | 0 | 0 | |
4 Weeks | 77.8 | 0 | 8.8 | 13.3 | 0.1 | |
6.5 | 0 Weeks | 100 | 0 | 0 | 0 | 0 |
1 Week | 55.6 | 11.1 | 28.2 | 5.1 | 0 | |
2 Weeks | 88.9 | 0 | 1.8 | 9.3 | 0 | |
4 Weeks | 33.3 | 32.5 | 20.6 | 13.5 | 0 | |
7.5 | 0 Weeks | 100 | 0 | 0 | 0 | 0 |
1 Week | 88.9 | 0 | 9.4 | 1.8 | 0 | |
2 Weeks | 100 | 0 | 0 | 0 | 0 | |
4 Weeks | 33.4 | 25.2 | 36.1 | 5 | 0.4 | |
8.5 | 0 Weeks | 100 | 0 | 0 | 0 | 0 |
1 Week | 44.4 | 0 | 54.5 | 0.9 | 0.2 | |
2 Weeks | 66.7 | 29.5 | 3.8 | 0 | 0 | |
4 Weeks | 0 | 0 | 27.4 | 70.1 | 2.5 |
DLS (by Volume) | 0.3–10 nm | 10–100 nm | 100–500 nm | 500–1000 nm | 1000+ nm |
---|---|---|---|---|---|
4.5 Mannitol | 100 | 0 | 0 | 0 | 0 |
7.5 No Salt/Sugar | 66.6 | 0 | 19.8 | 13.6 | 0 |
7.5 NaCl | 0 | 41.9 | 37.5 | 20.6 | 0 |
7.5 Mannitol | 100 | 0 | 0 | 0 | 0 |
7.5 Sorbitol | 100 | 0 | 0 | 0 | 0 |
7.5 Sucrose | 100 | 0 | 0 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benet, A.; Halseth, T.; Kang, J.; Kim, A.; Ackermann, R.; Srinivasan, S.; Schwendeman, S.; Schwendeman, A. The Effects of pH and Excipients on Exenatide Stability in Solution. Pharmaceutics 2021, 13, 1263. https://doi.org/10.3390/pharmaceutics13081263
Benet A, Halseth T, Kang J, Kim A, Ackermann R, Srinivasan S, Schwendeman S, Schwendeman A. The Effects of pH and Excipients on Exenatide Stability in Solution. Pharmaceutics. 2021; 13(8):1263. https://doi.org/10.3390/pharmaceutics13081263
Chicago/Turabian StyleBenet, Alexander, Troy Halseth, Jukyung Kang, April Kim, Rose Ackermann, Santhanakrishnan Srinivasan, Steven Schwendeman, and Anna Schwendeman. 2021. "The Effects of pH and Excipients on Exenatide Stability in Solution" Pharmaceutics 13, no. 8: 1263. https://doi.org/10.3390/pharmaceutics13081263
APA StyleBenet, A., Halseth, T., Kang, J., Kim, A., Ackermann, R., Srinivasan, S., Schwendeman, S., & Schwendeman, A. (2021). The Effects of pH and Excipients on Exenatide Stability in Solution. Pharmaceutics, 13(8), 1263. https://doi.org/10.3390/pharmaceutics13081263