Filamentous Fungi Producing l-Asparaginase with Low Glutaminase Activity Isolated from Brazilian Savanna Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal Strains and Maintenance
2.2. Culture Media
2.3. Semi-Quantitative l-Asparaginase Screening
2.4. Quantitative l-Asparaginase Screening
2.5. Determination of l-Asparaginase Activity
2.6. Determination of l-Glutaminase Activity
2.7. Identification of the Fungal Species
2.7.1. DNA Extraction and PCR Amplification
2.7.2. DNA Sequencing and Phylogenetic Analysis
2.8. Screening of Nutrient and Culture Conditions by Plackett–Burman Design
2.9. Quantification of Total Protein
2.10. Kinetic Parameters of Cellular Growth and l-Asparaginase Activity
2.11. Fungal Cell Disruption Mechanical Methods for l-Asparaginase Release
2.12. Scanning Electron Microscopy Analysis
3. Results
3.1. Primary Screening Using the Semi-Quantitative Method
3.2. Confirmatory Screening Using Quantitative Method
3.3. Glutaminase Screening Using the Quantitative Method
3.4. Identification of the Most Promising Cultures
3.5. Screening of Variables for l-Asparaginase Production by Plackett–Burman Design
3.6. Kinetic Parameters of Cellular Growth
3.7. Fungal Cell Disruption Mechanical Methods for l-Asparaginase Release
3.8. Scanning Electron Microscopy Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. World Health Organization Model List of Essential Medicines, 21st List, 2019; World Health Organization: Geneva, Switzerland, 2019; Licence: CC BY-NC-SA 3.0 IGO; Available online: https://www.who.int/publications/i/item/WHOMVPEMPIAU2019.06 (accessed on 22 November 2020).
- Bahreini, E.; Aghaiypour, K.; Abbasalipourkabir, R.; Goodarzi, M.T.; Saidijam, M.; Safavieh, S.S. An optimized protocol for overproduction of recombinant protein expression in Escherichia coli. Prep. Biochem. Biotechnol. 2014, 44, 510–528. [Google Scholar] [CrossRef] [PubMed]
- Goodsell, D.S. The molecular perspective: l-asparaginase. Oncologist 2005, 10, 238–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cachumba, J.J.M.; Antunes, F.A.F.; Peres, G.F.D.; Brumano, L.P.; Santos, J.C.D.; Da Silva, S.S. Current applications and different approaches for microbial l-asparaginase production. Braz. J. Microbiol. 2016, 47, 77–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badoei-Dalfard, A. l-asparaginase production in the Pseudomonas pseudoalcaligenes strain JHS-71 isolated from Jooshan Hot-spring. Mol. Biol. Res. Commun. 2016, 5, 1–10. [Google Scholar]
- Broome, J.D. Evidence that the l-asparaginase activity of guinea pig serum is responsible for its antilymphoma effects. Nature 1961, 191, 1114–1115. [Google Scholar] [CrossRef]
- Lopes, A.M.; Oliveira-Nascimento, L.; Ribeiro, A.; Tairum, C.A., Jr.; Breyer, C.A.; Oliveira, M.A.; Monteiro, G.; Souza-Motta, C.M.; Magalhaes, P.O.; Avendano, J.G.; et al. Therapeutic l-asparaginase: Upstream, downstream and beyond. Crit. Rev. Biotechnol. 2015, 37, 82–99. [Google Scholar] [CrossRef] [Green Version]
- Bascomb, S.; Banks, G.T.; Skarstedt, M.T.; Fleming, A.; Bettelheim, K.A. The properties and large-scale production of l-asparaginase from Citrobacter. J. Gen. Microbiol. 1975, 91, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Brumano, L.P.; da Silva, F.V.S.; Costa-Silva, T.A.; Apolinário, A.C.; Santos, J.H.P.M.; Kleingesinds, E.K.; Monteiro, G.; Rangel-Yagui, C.d.O.; Benyahia, B.; Junior, A.P. Development of l-Asparaginase Biobetters: Current Research Status and Review of the Desirable Quality Profiles. Front. Bioeng. Biotechnol. 2019, 6, 212. [Google Scholar] [CrossRef] [Green Version]
- Pieters, R.; Hunger, S.P.; Boos, J.; Rizzari, C.; Silverman, L.; Baruchel, A.; Goekbuget, N.; Schrappe, M.; Pui, C.H. l-asparaginase treatment in acute lymphoblastic leukemia: A focus on Erwinia asparaginase. Cancer 2011, 117, 238–249. [Google Scholar] [CrossRef] [Green Version]
- Keating, M.J.; Holmes, R.; Lerner, S.; Ho, D.H. l-asparaginase and PEG asparaginase—Past, present, and future. Leuk. Lymphoma 1993, 10, 153–157. [Google Scholar] [CrossRef]
- Evans, W.E.; Tsiatis, A.; Rivera, G.; Murphy, S.B.; Dahl, G.V.; Denison, M.; Crom, W.R.; Barker, L.F.; Mauer, A.M. Anaphylactoid reactions to Escherichia coli and Erwinia asparaginase in children with leukemia and lymphoma. Cancer 1982, 49, 1378–1383. [Google Scholar] [CrossRef] [Green Version]
- Caruso, V.; Iacoviello, L.; Di Castelnuovo, A.; Storti, S.; Donati, M.B. Venous thrombotic complications in adults undergoing induction treatment for acute lymphoblastic leukemia: Results from a meta-analysis. J. Thromb. Haemost. 2007, 5, 621–623. [Google Scholar] [CrossRef]
- Albertsen, B.K.; Schroder, H.; Jakobsen, P.; Avramis, V.I.; Muller, H.J.; Schmiegelow, K.; Carlsen, N.T. Antibody formation during intravenous and intramuscular therapy with Erwinia asparaginase. Med. Pediatr. Oncol. 2002, 38, 310–316. [Google Scholar] [CrossRef]
- Heitink-Polle, K.M.; Prinsen, B.H.; de Koning, T.J.; van Hasselt, P.M.; Bierings, M.B. High incidence of symptomatic hyperammonemia in children with acute lymphoblastic leukemia receiving pegylated asparaginase. JIMD Rep. 2013, 7, 103–108. [Google Scholar] [CrossRef] [Green Version]
- Fonseca, M.H.G.; Fiúza, T.d.S.; Morais, S.B.d.; Souza, T.d.A.C.B.d.; Trevizani, R. Circumventing the side effects of l-asparaginase. Biomed. Pharm. 2021, 139, 111616. [Google Scholar] [CrossRef]
- Sarquis, M.I.; Oliveira, E.M.; Santos, A.S.; Costa, G.L. Production of l-asparaginase by filamentous fungi. Mem. Inst. Oswaldo Cruz. 2004, 99, 489–492. [Google Scholar] [CrossRef] [Green Version]
- Doriya, K.; Kumar, D.S. Isolation and screening of l-asparaginase free of glutaminase and urease from fungal sp. 3 Biotech 2016, 6, 239. [Google Scholar] [CrossRef] [Green Version]
- Warrell, R.P., Jr.; Chou, T.C.; Gordon, C.; Tan, C.; Roberts, J.; Sternberg, S.S.; Philips, F.S.; Young, C.W. Phase I evaluation of succinylated Acinetobacter glutaminase-asparaginase in adults. Cancer Res. 1980, 40, 4546–4551. [Google Scholar]
- Greenberg, D.M.; Blumenthal, G.; Ramadan, M.E. Effect of administration of the enzyme glutaminase on the growth of cancer cells. Cancer Res. 1964, 24, 957–963. [Google Scholar]
- Avramis, V.I. Asparaginases: Biochemical pharmacology and modes of drug resistance. Anticancer Res. 2012, 32, 2423–2437. [Google Scholar]
- Hendriksen, H.V.; Kornbrust, B.A.; Ostergaard, P.R.; Stringer, M.A. Evaluating the potential for enzymatic acrylamide mitigation in a range of food products using an asparaginase from Aspergillus oryzae. J. Agric. Food Chem. 2009, 57, 4168–4176. [Google Scholar] [CrossRef]
- Xu, F.; Oruna-Concha, M.J.; Elmore, J.S. The use of asparaginase to reduce acrylamide levels in cooked food. Food Chem. 2016, 210, 163–171. [Google Scholar] [CrossRef]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; da Fonseca, G.A.B.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef]
- Strassburg, B.B.N.; Brooks, T.; Feltran-Barbieri, R.; Iribarrem, A.; Crouzeilles, R.; Loyola, R.; Latawiec, A.E.; Oliveira Filho, F.J.B.; Scaramuzza, C.A.d.M.; Scarano, F.R.; et al. Moment of truth for the Cerrado hotspot. Nat. Ecol. Evol. 2017, 1, 99. [Google Scholar] [CrossRef]
- Eiten, G. The cerrado vegetation of Brazil. Bot. Rev. 1972, 38, 201–341. [Google Scholar] [CrossRef]
- Ashok, A.; Doriya, K.; Rao, J.V.; Qureshi, A.; Tiwari, A.K.; Kumar, D.S. Microbes producing l-asparaginase free of glutaminase and urease isolated from extreme locations of antarctic soil and moss. Sci. Rep. 2019, 9, 1423. [Google Scholar] [CrossRef] [Green Version]
- Silva, L.F.; Freire, K.T.L.S.; Araújo-Magalhães, G.R.; Agamez-Montalvo, G.S.; Sousa, M.A.; Costa-Silva, T.A.; Paiva, L.M.; Pessoa-Junior, A.; Bezerra, J.D.P.; Souza-Motta, C.M. Penicillium and Talaromyces endophytes from Tillandsia catimbauensis, a bromeliad endemic in the Brazilian tropical dry forest, and their potential for l-asparaginase production. World J. Microbiol. Biotechnol. 2018, 34, 162. [Google Scholar] [CrossRef]
- Pádua, A.P.S.L.d.; Freire, K.T.L.d.S.; Oliveira, T.G.L.d.; Silva, L.F.d.; Araújo-Magalhães, G.R.; Agamez-Montalvo, G.S.; Silva, I.R.d.; Bezerra, J.D.P.; Souza-Motta, C.M.d. Fungal endophyte diversity in the leaves of the medicinal plant Myracrodruon urundeuva in a Brazilian dry tropical forest and their capacity to produce l-asparaginase. Acta Bot. Bras. 2019, 33, 39–49. [Google Scholar] [CrossRef]
- Santos, M.G.S.; Bezerra, J.D.P.; Svedese, V.M. Screening of endophytic fungi from cactus of the Brazilian tropical dry forest according to their l-asparaginase activity. Sydowia Horn. 2015, 67, 147–156. [Google Scholar] [CrossRef]
- Souza, P.M.; de Freitas, M.M.; Cardoso, S.L.; Pessoa, A.; Guerra, E.N.S.; Magalhães, P.O. Optimization and purification of l-asparaginase from fungi: A systematic review. Crit. Rev. Oncol. Hematol. 2017, 120, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Werneck, G.; Pereira, C.B.; Almeida, R.; de Freitas, M.M.; Silveira, D.; Fonseca-Bazzo, Y.; Magalhães, P. Screening of proteases production by endophytic fungi isolated of Brazilian Savanna plants. In Proceedings of the Anais do Simpósio Nacional de Bioprocessos e Simpósio de Hidrólise Enzimática de Biomassas, Fortaleza, Ceará, Brazil, 1–4 September 2015; Galoá: Campinas, Brazil, 2015. Abstract Number 33813. [Google Scholar]
- Gulati, R.; Saxena, R.K.; Gupta, R. A rapid plate assay for screening l-asparaginase producing micro-organisms. Lett. Appl. Microbiol. 1997, 24, 23–26. [Google Scholar] [CrossRef]
- Baskar, G.; Renganathan, S. Optimization of L -asparaginase production by Aspergillus terreus MTCC 1782 using response surface methodology and artificial neural network-linked genetic algorithm. Asia-Pac. J. Chem. Eng. 2012, 7, 212–220. [Google Scholar] [CrossRef]
- Drainas, C.; Kinghorn, J.R.; Pateman, J.A. Aspartic hydroxamate resistance and asparaginase regulation in the fungus Aspergillus nidulans. J. Gen. Microbiol. 1977, 98, 493–501. [Google Scholar] [CrossRef] [Green Version]
- Gardes, M.; Bruns, T.D. ITS primers with enhanced specificity for basidiomycetes--application to the identification of mycorrhizae and rusts. Mol. Ecol. 1993, 2, 113–118. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J.W. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: New York, NY, USA, 1990. [Google Scholar]
- Glass, N.L.; Donaldson, G.C. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl. Environ. Microbiol. 1995, 61, 1323–1330. [Google Scholar] [CrossRef] [Green Version]
- Carbone, I.; Kohn, L.M. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 1999, 91, 553–556. [Google Scholar] [CrossRef]
- Hong, S.B.; Go, S.J.; Shin, H.D.; Frisvad, J.C.; Samson, R.A. Polyphasic taxonomy of Aspergillus fumigatus and related species. Mycologia 2005, 97, 1316–1329. [Google Scholar] [CrossRef]
- Liu, Y.J.; Whelen, S.; Hall, B.D. Phylogenetic relationships among ascomycetes: Evidence from an RNA polymerase II subunit. Mol. Biol. Evol. 2000, 16, 1799–1808. [Google Scholar] [CrossRef]
- Sandoval-Denis, M.; Swart, W.; Crous, P. New Fusarium species from the Kruger National Park, South Africa. MycoKeys 2018, 34, 63–92. [Google Scholar] [CrossRef] [Green Version]
- Nicolli, C.P.; Haidukowski, M.; Susca, A.; Gomes, L.B.; Logrieco, A.; Stea, G.; Del Ponte, E.M.; Moretti, A.; Pfenning, L.H. Fusarium fujikuroi species complex in Brazilian rice: Unveiling increased phylogenetic diversity and toxigenic potential. Int. J. Food Microbiol. 2020, 330, 108667. [Google Scholar] [CrossRef]
- Houbraken, J.; Frisvad, J.C.; Samson, R.A. Taxonomy of Penicillium section Citrina. Stud. Mycol. 2011, 70, 53–138. [Google Scholar] [CrossRef] [Green Version]
- Houbraken, J.; Kocsubé, S.; Visagie, C.M.; Yilmaz, N.; Wang, X.C.; Meijer, M.; Kraak, B.; Hubka, V.; Samson, R.A.; Frisvad, J.C. Classification of Aspergillus, Penicillium, Talaromyces and related genera (Eurotiales): An overview of families, genera, subgenera, sections, series and species. Stud. Mycol. 2020, 95, 5–169. [Google Scholar] [CrossRef]
- Posada, D.; Buckley, T.R. Model selection and model averaging in phylogenetics: Advantages of akaike information criterion and Bayesian approaches over likelihood ratio tests. Syst. Biol. 2004, 53, 793–808. [Google Scholar] [CrossRef]
- Miller, M.A.; Pfeiffer, W.; Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, LA, USA, 14 November 2010; pp. 1–8. [Google Scholar]
- Ronquist, F.; Huelsenbeck, J.P. MrBayes 3.2.5: Bayesian phylogenetic inference under mixed models. Bioinformatics 2014, 19, 1572–1574. [Google Scholar] [CrossRef] [Green Version]
- Rambaut, A. FigTree. Available online: http://tree.bio.ed.ac.uk/software/figtree/ (accessed on 3 July 2020).
- Rannala, B.; Yang, Z. Probability distribution of molecular evolutionary trees: A new method of phylogenetic inference. J. Mol. Evol. 1996, 43, 304–311. [Google Scholar] [CrossRef]
- El-Refai, H.A.; El-Shafei, M.S.; Mostafa, H.; El-Refai, A.M.H.; El-Beih, F.M.; Awad, G.E.A.; Easa, S.M.; Gomaa, S.K. Statistical optimization of anti-leukemic enzyme l-asparaginase production by Penicillium cyclopium. Curr. Trends Biotechnol. Pharm. 2014, 8, 130–142. [Google Scholar]
- Farag, A.M.; Hassan, S.W.; Beltagy, E.A.; El-Shenawy, M.A. Optimization of production of anti-tumor l-asparaginase by free and immobilized marine Aspergillus terreus. Egypt. J. Aquat. Res. 2015, 41, 295–302. [Google Scholar] [CrossRef] [Green Version]
- Costa-Silva, T.A.; Flores-Santos, J.C.; Freire, R.K.B.; Vitolo, M.; Pessoa-Jr, A. Microbial cell disruption methods for efficient release of enzyme l-asparaginase. Prep. Biochem. Biotechnol. 2018, 48, 707–717. [Google Scholar] [CrossRef]
- Das Murtey, M.; Ramasamy, P. Sample Preparations for Scanning Electron Microscopy—Life Sciences. In Modern Electron Microscopy in Physical and Life Sciences; Janecek, M., Kral, R., Eds.; IntechOpen: Rijeka, Croatia, 2016; Available online: https://www.intechopen.com/books/modern-electron-microscopy-in-physical-and-life-sciences/sample-preparations-for-scanning-electron-microscopy-life-sciences (accessed on 26 June 2019).
- Jeong, R.D.; Shin, E.J.; Chu, E.H.; Park, H.J. Effects of ionizing radiation on postharvest fungal pathogens. Plant. Pathol. J. 2015, 31, 176–180. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, A.B.; Maia, A.C.F.; Rueda, J.A.; Vanzela, A.P.d.F.C. Fungal production of the anti-leukemic enzyme l-asparaginase: From screening to medium development. Acta Sci. 2016, 38, 387–394. [Google Scholar] [CrossRef] [Green Version]
- Drainas, C.; Pateman, J.A. l-Asparaginase activity in the fungus Aspergillus nidulans. Biochem. Soc. Trans. 1977, 5, 259–261. [Google Scholar] [CrossRef] [PubMed]
- de Freitas, M.M.; Souza, P.M.; Cruvinel, K.; Barros, T.; Santos, S.N.; Long, P.F.; Pessoa, A.; Magalhaes, P.O. Interferences that impact measuring optimal l-asparaginase activity and consequent errors interpreting these data. Appl. Microbiol. Biotechnol. 2019, 103, 5161–5166. [Google Scholar] [CrossRef] [PubMed]
- Imandi, S.B.; Bandaru, V.V.R.; Somalanka, S.R.; Bandaru, S.R.; Garapati, H.R. Application of statistical experimental designs for the optimization of medium constituents for the production of citric acid from pineapple waste. Bioresour. Technol. 2008, 99, 4445–4450. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Hallett, S.G.; Sheppard, J.; Watson, A.K. Application of the Plackett-Burman experimental design to evaluate nutritional requirements for the production of Colletotrichum coccodes spores. Appl. Microbiol. Biotechnol. 1997, 47, 301–305. [Google Scholar] [CrossRef]
- Unkles, S.E.; Wang, R.; Wang, Y.; Glass, A.D.; Crawford, N.M.; Kinghorn, J.R. Nitrate reductase activity is required for nitrate uptake into fungal but not plant cells. J. Biol. Chem. 2004, 279, 28182–28186. [Google Scholar] [CrossRef] [Green Version]
- Lincoln, L.; Niyonzima, F.N.; More, S.S. Purification and properties of a fungal l-asparaginase from Trichoderma viride Pers: SF Grey. J. Microbiol. Biotechnol. Food Sci. 2015, 4, 310–316. [Google Scholar]
- Amena, S.; Vishalakshi, N.; Prabhakar, M.; Dayanand, A.; Lingappa, K. Production, purification and characterization of l-asparaginase from Streptomyces gulbargensis. Braz. J. Microbiol. 2010, 41, 173–178. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, J.; Majumdar, S.; Scheper, T. Studies on nutritional and oxygen requirements for production of l-asparaginase by Enterobacter aerogenes. Appl. Microbiol. Biotechnol. 2000, 53, 180–184. [Google Scholar] [CrossRef]
- Barnes, W.R.; Dorn, G.L.; Vela, G.R. Effect of culture conditions on synthesis of l-asparaginase by Escherichia coli A-1. Appl. Environ. Microbiol. 1977, 33, 257–261. [Google Scholar] [CrossRef] [Green Version]
- Warangkar, S.C.; Khobragade, C.N. Screening, enrichment and media optimization for l-asparaginase production. J. Cell Tissue Res. 2009, 9, 1963–1968. [Google Scholar]
Variables | Units | −1 | 0 | +1 |
---|---|---|---|---|
l-proline (X1) | % (w/v) | 1 | 2 | 3 |
l-asparagine (X2) | % (w/v) | 1 | 2 | 3 |
Urea (X3) | % (w/v) | 0 | 0.5 | 1 |
Sodium nitrate (X4) | % (w/v) | 0 | 1.5 | 3 |
Ammonium sulfate (X5) | % (w/v) | 0 | 1.5 | 3 |
Peptone (X6) | % (w/v) | 0 | 1.5 | 3 |
Yeast extract (X7) | % (w/v) | 0 | 1.5 | 3 |
Glucose (X8) | % (w/v) | 0 | 0.5 | 1 |
Sucrose (X9) | % (w/v) | 0 | 0.5 | 1 |
Malt extract (X10) | % (w/v) | 0 | 1.5 | 3 |
Temperature (X11) | °C | 28 | 30 | 32 |
Inoculum size (X12) | Units * | 1 | 3 | 5 |
Run | X1 (%) | X2 (%) | X3 (%) | X4 (%) | X5 (%) | X6 (%) | X7 (%) | X8 (%) | X9 (%) | X10 (%) | X11 (°C) | X12 (units) | C:N | P. sizovae | F. proliferatum | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Y1 (U mL−1) | Y2 (U mg−1) | Y1 (U mL−1) | Y2 (U mg−1) | ||||||||||||||
1 | 3 | 1 | 0 | 0 | 3 | 0 | 0 | 1 | 1 | 0 | 32 | 1 | 2.27 | 0.28 ± 0.03 | 0.09 | 0.08 ± 0.01 | 0.03 |
2 | 3 | 3 | 0 | 0 | 0 | 3 | 0 | 0 | 1 | 3 | 28 | 5 | 3.91 | 0.66 ± 0.02 | 0.21 | 0.22 ± 0.01 | 0.09 |
3 | 3 | 3 | 1 | 0 | 0 | 0 | 3 | 0 | 0 | 3 | 32 | 1 | 2.82 | 2.46 ± 0.10 | 1.03 | 0.46 ± 0.04 | 0.13 |
4 | 3 | 3 | 1 | 3 | 0 | 0 | 0 | 1 | 0 | 0 | 32 | 5 | 1.66 | 0.48 ± 0.05 | 0.20 | 0.19 ± 0.01 | 0.07 |
5 | 1 | 3 | 1 | 3 | 3 | 0 | 0 | 0 | 1 | 0 | 28 | 5 | 0.95 | ND | ND | 0.04 ± 0.01 | 0.01 |
6 | 3 | 1 | 1 | 3 | 3 | 3 | 0 | 0 | 0 | 3 | 28 | 1 | 1.76 | 2.96 ± 0.08 | 0.81 | 0.23 ± 0.00 | 0.06 |
7 | 1 | 3 | 0 | 3 | 3 | 3 | 3 | 0 | 0 | 0 | 32 | 1 | 1.53 | 3.68 ± 0.14 | 0.87 | 0.14 ± 0.01 | 0.03 |
8 | 3 | 1 | 1 | 0 | 3 | 3 | 3 | 1 | 0 | 0 | 28 | 5 | 2.05 | 2.06 ± 0.03 | 0.65 | 0.22 ± 0.00 | 0.05 |
9 | 3 | 3 | 0 | 3 | 0 | 3 | 3 | 1 | 1 | 0 | 28 | 1 | 2.65 | 1.91 ± 0.13 | 0.29 | 0.39 ± 0.03 | 0.10 |
10 | 1 | 3 | 1 | 0 | 3 | 0 | 3 | 1 | 1 | 3 | 28 | 1 | 2.23 | 1.08 ± 0.01 | 0.31 | 0.45 ± 0.01 | 0.11 |
11 | 1 | 1 | 1 | 3 | 0 | 3 | 0 | 1 | 1 | 3 | 32 | 1 | 2.54 | 1.24 ± 0.04 | 0.31 | 0.77 ± 0.01 | 0.19 |
12 | 3 | 1 | 0 | 3 | 3 | 0 | 3 | 0 | 1 | 3 | 32 | 5 | 2.26 | 0.90 ± 0.04 | 0.26 | 0.47 ± 0.01 | 0.14 |
13 | 1 | 3 | 0 | 0 | 3 | 3 | 0 | 1 | 0 | 3 | 32 | 5 | 2.46 | 0.71 ± 0.01 | 0.22 | 1.86 ± 0.12 | 0.44 |
14 | 1 | 1 | 1 | 0 | 0 | 3 | 3 | 0 | 1 | 0 | 32 | 5 | 2.56 | 1.74 ± 0.09 | 0.46 | 0.83 ± 0.01 | 0.20 |
15 | 1 | 1 | 0 | 3 | 0 | 0 | 3 | 1 | 0 | 3 | 28 | 5 | 3.02 | 0.33 ± 0.00 | 0.08 | 0.62 ± 0.02 | 0.16 |
16 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 28 | 1 | 2.65 | 0.27 | 0.07 | 0.17 ± 0.00 | 0.05 |
17 | 2 | 2 | 0.5 | 1.5 | 1.5 | 1.5 | 1.5 | 0.5 | 0.5 | 1.5 | 30 | 3 | 2.21 | 1.82 ± 0.09 | 0.55 | 0.15 ± 0.00 | 0.06 |
18 | 2 | 2 | 0.5 | 1.5 | 1.5 | 1.5 | 1.5 | 0.5 | 0.5 | 1.5 | 30 | 3 | 2.21 | 1.33 ± 0.05 | 0.44 | 0.12 ± 0.00 | 0.03 |
19 | 2 | 2 | 0.5 | 1.5 | 1.5 | 1.5 | 1.5 | 0.5 | 0.5 | 1.5 | 30 | 3 | 2.21 | 1.18 ± 0.01 | 0.39 | 0.18 ± 0.00 | 0.05 |
Species | Isolate | Sample Nature | Zone Index |
---|---|---|---|
Aspergillus sp. | DCFS1 | Soil | 4.55 |
Penicillium sp. | DCFS6 | Soil | 4.00 |
Penicillium sp. | RCFS24 | Soil | 3.85 |
Aspergillus terreus | 2DCSS6 | Soil | 3.64 |
Penicillium sp. | 2DSST1 | Soil | 3.64 |
Penicillium sp. | 2DMGSE2 | Soil | 3.64 |
Penicillium sp. | RCFS6 | Soil | 3.13 |
Penicillium sp. | 2DSST10 | Soil | 3.00 |
NI | CAG2 | Plant (Eugenia dysenterica) | 2.81 |
Penicillium sp. | RCFT14 | Soil | 2.67 |
Fusarium sp. | DCFS10 | Soil | 2.50 |
Penicillium sp. | DCFF2 | Soil | 2.50 |
NI | EP03 | Plant (Eriotheca pubescens) | 2.22 |
NI | EP01 | Plant (Eriotheca pubescens) | 2.20 |
NI | PEQ02 | Plant (Caryocar brasiliense) | 1.96 |
Penicillium sp. | 2DSSSE1 | Soil | 1.86 |
Penicillium sp. | DCFF4 | Soil | 1.79 |
NI | IPE03 | Plant (Tabebuia ochracea) | 1.74 |
NI | EP04 | Plant (Eriotheca pubescens) | 1.60 |
Penicillium sp. | 2RCSS1 | Soil | 1.00 |
Penicillium sp. | DCFT5 | Soil | 1.00 |
NI | IPE05 | Plant (Tabebuia ochracea) | 1.00 |
NI | PT02 | Plant (Pouteria torta) | 1.00 |
Aspergillus niger | RCFS17 | Soil | 1.00 |
Penicillium sp. | DCFT2 | Soil | 0.87 |
Penicillium sp. | RCFS7 | Soil | 0.83 |
Trichoderma sp. | RCFS21 | Soil | 0.38 |
NI | BR | Plant (Sapindus saponaria) | - |
NI | CAG | Plant (Eugenia dysenterica) | - |
NI | CAG1 | Plant (Eugenia dysenterica) | - |
NI | CAG3 | Plant (Eugenia dysenterica) | - |
NI | CAM01 | Plant (Calophyllum brasiliense) | - |
NI | CB02 | Plant (Calophyllum brasiliense) | - |
Aspergillus sp. | DCFS9 | Soil | - |
NI | GOI03 | Plant (Psidium guajava L.) | - |
NI | IPE02 | Plant (Tabebuia ochracea) | - |
NI | OH01 | Plant (Ouratea hexasperma) | - |
NI | OH03 | Plant (Ouratea hexasperma) | - |
Fusarium sp. | RCFS3 | Soil | - |
Name | P. sizovae | F. proliferatum | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
l-Asparaginase Activity | Specific Activity | l-asparaginase Activity | Specific Activity | |||||||||
Effect | Calculated t | p-Value | Effect | Calculated t | p-Value | Effect | Calculated t | p-Value | Effect | Calculated t | p-Value | |
Mean | 1.30 | 17.77 | 0.0000 | 0.37 | 16.27 | 0.0000 | 0.45 | 4.96 | 0.0043 | 0.12 | 5.73 | 0.0023 |
l-proline (x1) | 0.33 | 2.27 | 0.0721 | 0.15 | 3.39 | 0.0195 | −0.33 | −1.81 | 0.1293 | −0.07 | −1.60 | 0.1703 |
l-asparagine (x2) | 0.15 | 1.04 | 0.3456 | 0.05 | 1.11 | 0.3173 | 0.04 | 0.25 | 0.8132 | 0.01 | 0.31 | 0.7706 |
Urea (x3) | 0.41 | 2.80 | 0.0379 | 0.21 | 4.66 | 0.0055 | −0.10 | −0.54 | 0.6141 | −0.03 | −0.68 | 0.5283 |
Sodium nitrate (x4) | 0.28 | 1.91 | 0.1142 | −0.03 | −0.61 | 0.5681 | −0.18 | −1.00 | 0.3628 | −0.04 | −1.05 | 0.3431 |
Ammonium sulfate (x5) | 0.32 | 2.19 | 0.0798 | 0.07 | 1.55 | 0.1808 | −0.02 | −0.11 | 0.9191 | −0.02 | −0.37 | 0.7269 |
Peptone (x6) | 1.15 | 7.84 | 0.0005 | 0.22 | 4.94 | 0.0043 | 0.27 | 1.52 | 0.1887 | 0.06 | 1.42 | 0.2159 |
Yeast extract (x7) | 0.95 | 6.47 | 0.0013 | 0.26 | 5.66 | 0.0024 | 0.00 | 0.00 | 0.9985 | 0.00 | −0.06 | 0.9533 |
Glucose (x8) | −0.57 | −3.92 | 0.0112 | −0.19 | −4.33 | 0.0075 | 0.25 | 1.41 | 0.2188 | 0.06 | 1.35 | 0.2335 |
Sucrose (x9) | −0.64 | −4.40 | 0.0070 | −0.25 | −5.55 | 0.0026 | −0.08 | −0.45 | 0.6705 | −0.01 | −0.37 | 0.7269 |
Malt extract (x10) | −0.01 | −0.07 | 0.9459 | 0.08 | 1.67 | 0.1567 | 0.37 | 2.08 | 0.0922 | 0.10 | 2.40 | 0.0615 |
Temperature (x11) | 0.28 | 1.89 | 0.1176 | 0.13 | 2.83 | 0.0366 | 0.31 | 1.72 | 0.1468 | 0.08 | 1.85 | 0.1240 |
Inoculum (x12) | −0.88 | −5.99 | 0.0019 | −0.21 | −4.72 | 0.0052 | 0.22 | 1.21 | 0.2821 | 0.06 | 1.42 | 0.2159 |
Kinetic Parameter | Symbol | Units | P. sizovae | F. proliferatum | ||
---|---|---|---|---|---|---|
bPBD | aPBD | bPBD | aPBD | |||
Maximum biomass productivity | PX,max | g(X)/L·h | 1.31 | 0.16 | 0.70 | 0.48 |
Maximum enzyme productivity | PE,max | U/L·h | 12.85 | 56.90 | 11.36 | 33.68 |
Specific growth rate | µmax | h−1 | 0.08 | 0.11 | 0.08 | 0.07 |
Specific enzyme yield | µE,max | U/g(X)·h | 1.94 | 7.30 | 1.83 | 8.22 |
Biomass conversion factor in enzyme | YE/X | U/g(U) | 46.63 | 350.16 | 43.98 | 197.17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Freitas, M.; Souza, P.; Cardoso, S.; Cruvinel, K.; Abrunhosa, L.S.; Ferreira Filho, E.X.; Inácio, J.; Pinho, D.B.; Pessoa, A.; O. Magalhães, P. Filamentous Fungi Producing l-Asparaginase with Low Glutaminase Activity Isolated from Brazilian Savanna Soil. Pharmaceutics 2021, 13, 1268. https://doi.org/10.3390/pharmaceutics13081268
Freitas M, Souza P, Cardoso S, Cruvinel K, Abrunhosa LS, Ferreira Filho EX, Inácio J, Pinho DB, Pessoa A, O. Magalhães P. Filamentous Fungi Producing l-Asparaginase with Low Glutaminase Activity Isolated from Brazilian Savanna Soil. Pharmaceutics. 2021; 13(8):1268. https://doi.org/10.3390/pharmaceutics13081268
Chicago/Turabian StyleFreitas, Marcela, Paula Souza, Samuel Cardoso, Kellen Cruvinel, Letícia Santos Abrunhosa, Edivaldo X. Ferreira Filho, João Inácio, Danilo Batista Pinho, Adalberto Pessoa, and Pérola O. Magalhães. 2021. "Filamentous Fungi Producing l-Asparaginase with Low Glutaminase Activity Isolated from Brazilian Savanna Soil" Pharmaceutics 13, no. 8: 1268. https://doi.org/10.3390/pharmaceutics13081268
APA StyleFreitas, M., Souza, P., Cardoso, S., Cruvinel, K., Abrunhosa, L. S., Ferreira Filho, E. X., Inácio, J., Pinho, D. B., Pessoa, A., & O. Magalhães, P. (2021). Filamentous Fungi Producing l-Asparaginase with Low Glutaminase Activity Isolated from Brazilian Savanna Soil. Pharmaceutics, 13(8), 1268. https://doi.org/10.3390/pharmaceutics13081268