A Traffic Light System to Maximize Carbohydrate Cryoprotectants’ Effectivity in Nanostructured Lipid Carriers’ Lyophilization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. NLCs’ Formulation
2.2.2. NLCs’ Lyophilization and Reconstitution
2.2.3. Particle Size and Surface Charge Characterization
2.2.4. Osmolarity Determination
2.2.5. Modelling through Artificial Intelligence Tools
3. Results
3.1. Cryoprotectants’ Characterization
3.2. Physicochemical Characterization of NLCs and Lyophilized Powders
3.3. Influence of Lyophilization Variables over NLCs’ Characteristics (Model 1)
3.4. Influence of Cryoprotectant Properties and Operation Conditions over NLCs’ Characteristics (Model 2)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
ANN | Artificial Neural Networks |
CP/CPs | Cryoprotectant/Cryoprotectants |
LN | Lipid Nanoparticles |
LP | Lyophilized Powders |
MD | Membership Degree |
MW | Molecular Weight |
MWCP | CPs’ molecular weight |
NFL | Neurofuzzy Logic |
NLCs | Nanostructured Lipid Carriers |
PdI | Polydispersity Index |
SLN | Solid Lipid Nanoparticles |
Tg | Glass transition temperature |
Tg´ | Glass transition temperature of the maximum cryo-concentrated solution |
ZP | Zeta Potential |
Π | Osmolarity |
References
- Fang, C.L.; Al-Suwayeh, S.A.; Fang, J.Y. Nanostructured lipid carriers (NLCs) for drug delivery and targeting. Recent Pat. Nanotechnol. 2013, 7, 41–55. [Google Scholar] [CrossRef] [PubMed]
- Beloqui, A.; Solinis, M.A.; Delgado, A.; Evora, C.; del Pozo-Rodriguez, A.; Rodriguez-Gascon, A. Biodistribution of Nanostructured Lipid Carriers (NLCs) after intravenous administration to rats: Influence of technological factors. Eur. J. Pharm. Biopharm. 2013, 84, 309–314. [Google Scholar] [CrossRef]
- Taratula, O.; Kuzmov, A.; Shah, M.; Garbuzenko, O.B.; Minko, T. Nanostructured lipid carriers as multifunctional nanomedicine platform for pulmonary co-delivery of anticancer drugs and siRNA. J. Control. Release 2013, 171, 349–357. [Google Scholar] [CrossRef] [Green Version]
- Qi, R.; Li, Y.Z.; Chen, C.; Cao, Y.N.; Yu, M.M.; Xu, L.; He, B.; Jie, X.; Shen, W.W.; Wang, Y.N.; et al. G5-PEG PAMAM dendrimer incorporating nanostructured lipid carriers enhance oral bioavailability and plasma lipid-lowering effect of probucol. J. Control. Release 2015, 210, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Gainza, G.; Bonafonte, D.C.; Moreno, B.; Aguirre, J.J.; Gutierrez, F.B.; Villullas, S.; Pedraz, J.L.; Igartua, M.; Hernandez, R.M. The topical administration of rhEGF-loaded nanostructured lipid carriers (rhEGF-NLC) improves healing in a porcine full-thickness excisional wound model. J. Control. Release 2015, 197, 41–47. [Google Scholar] [CrossRef]
- Heurtault, B. Physico-chemical stability of colloidal lipid particles. Biomaterials 2003, 24, 4283–4300. [Google Scholar] [CrossRef]
- Franze, S.; Selmin, F.; Samaritani, E.; Minghetti, P.; Cilurzo, F. Lyophilization of liposomal formulations: Still Necessary, still challenging. Pharmaceutics 2018, 10, 139. [Google Scholar] [CrossRef] [Green Version]
- Trenkenschuh, E.; Friess, W. Freeze-drying of nanoparticles: How to overcome colloidal instability by formulation and process optimization. Eur. J. Pharm. Biopharm. 2021, 165, 345–360. [Google Scholar] [CrossRef]
- Qi, J.; Lu, Y.I.; Wu, W. Manufacturing Solid Dosage Forms from Bulk Liquids Using the Fluid-bed Drying Technology. Curr. Pharm. Des. 2015, 21, 2668–2676. [Google Scholar] [CrossRef]
- Abdelwahed, W.; Degobert, G.; Stainmesse, S.; Fessi, H. Freeze-drying of nanoparticles: Formulation, process and storage considerations. Adv. Drug Deliv. Rev. 2006, 58, 1688–1713. [Google Scholar] [CrossRef]
- Schoenmaker, L.; Witzigmann, D.; Kulkarni, J.A.; Verbeke, R.; Kersten, G.; Jiskoot, W.; Crommelin, D.J.A. mRNA-lipid nanoparticle COVID-19 vaccines: Structure and stability. Int. J. Pharm. 2021, 601, 120586. [Google Scholar] [CrossRef]
- Khan, A.A.; Abdulbaqi, I.M.; Abou Assi, R.; Murugaiyah, V.; Darwis, Y. Lyophilized Hybrid nanostructured lipid carriers to enhance the cellular uptake of verapamil: Statistical optimization and in vitro evaluation. Nanoscale Res. Lett. 2018, 13, 323. [Google Scholar] [CrossRef]
- Patel, P.; Patel, M. Enhanced oral bioavailability of nintedanib esylate with nanostructured lipid carriers by lymphatic targeting: In vitro, cell line and in vivo evaluation. Eur. J. Pharm. Sci. 2021, 159, 105715. [Google Scholar] [CrossRef]
- Khan, A.A.; Mudassir, J.; Akhtar, S.; Murugaiyah, V.; Darwis, Y. Freeze-Dried lopinavir-loaded nanostructured lipid carriers for enhanced cellular uptake and bioavailability: Statistical Optimization, in vitro and in vivo evaluations. Pharmaceutics 2019, 11, 97. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.K.; Kim, M.Y.; Kim, S.; Lee, J. Cryoprotectants for freeze drying of drug nano-suspensions: Effect of freezing rate. J. Pharm. Sci. 2009, 98, 4808–4817. [Google Scholar] [CrossRef] [PubMed]
- Colbourn, E.A.; Rowe, R.C. Novel approaches to neural and evolutionary computing in pharmaceutical formulation: Challenges and new possibilities. Future Med. Chem. 2009, 1, 713–726. [Google Scholar] [CrossRef] [PubMed]
- Landin, M. Artificial Intelligence tools for scaling up of high shear wet granulation process. J. Pharm. Sci. 2017, 106, 273–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez-Dorado, R.; Landin, M.; Altai, A.; Russo, P.; Aquino, R.P.; Del Gaudio, P. A novel method for the production of core-shell microparticles by inverse gelation optimized with artificial intelligent tools. Int. J. Pharm. 2018, 538, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Rouco, H.; Diaz-Rodriguez, P.; Rama-Molinos, S.; Remunan-Lopez, C.; Landin, M. Delimiting the knowledge space and the design space of nanostructured lipid carriers through artificial intelligence tools. Int. J. Pharm. 2018, 553, 522–530. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Rodriguez, P.; Landin, M. Smart design of intratumoral thermosensitive beta-lapachone hydrogels by Artificial neural networks. Int. J. Pharm. 2012, 433, 112–118. [Google Scholar] [CrossRef]
- Garcia-Del Rio, L.; Diaz-Rodriguez, P.; Landin, M. New tools to design smart thermosensitive hydrogels for protein rectal delivery in IBD. Mater. Sci. Eng. C 2020, 106, 110252. [Google Scholar] [CrossRef]
- Landin, M.; Rowe, R.C. Artificial neural networks technology to model, understand, and optimize drug formulations. In Formulation Tools for Pharmaceutical Development, 1st ed.; Aguilar, J.E., Ed.; Elsevier: Cambridge, UK, 2013; pp. 7–37. [Google Scholar]
- Colbourn, E.A.; Rowe, R.C. Neural Computing boosts formulation productivity. Pharm. Technol. 2003, 27, 22–25. [Google Scholar]
- Shao, Q.; Rowe, R.C.; York, P. Comparison of neurofuzzy logic and neural networks in modelling experimental data of an immediate release tablet formulation. Eur. J. Pharm. Sci. 2006, 28, 394–404. [Google Scholar] [CrossRef]
- Colbourn, E.; Rowe, R. Neural computing and pharmaceutical formulation. In Encyclopedia of Pharmaceutical Technology, 3rd ed.; Swarbrick, J., Boylan, J.C., Eds.; Marcel Dekker: New York, NY, USA, 2005; pp. 145–157. [Google Scholar]
- PubChem. Available online: http://pubchem.ncbi.nlm.nih.gov (accessed on 20 December 2019).
- Varshosaz, J.; Eskandari, S.; Tabbakhian, M. Freeze-drying of nanostructure lipid carriers by different carbohydrate polymers used as cryoprotectants. Carbohydr. Polym. 2012, 88, 1157–1163. [Google Scholar] [CrossRef]
- Fonte, P.; Andrade, F.; Azevedo, C.; Pinto, J.; Seabra, V.; van de Weert, M.; Reis, S.; Sarmento, B. Effect of the freezing step in the stability and bioactivity of protein-loaded plga nanoparticles upon lyophilization. Pharm. Res. 2016, 33, 2777–2793. [Google Scholar] [CrossRef]
- Amis, T.M.; Renukuntla, J.; Bolla, P.K.; Clark, B.A. Selection of cryoprotectant in lyophilization of progesterone-loaded stearic acid solid lipid nanoparticles. Pharmaceutics 2020, 12, 892. [Google Scholar] [CrossRef] [PubMed]
- Allison, S.D.; dC Molina, M.; Anchordoquy, T.J. Stabilization of lipid/DNA complexes during the freezing step of the lyophilization process: The particle isolation hypothesis. Biochim. Biophys. Acta Biomembr. 2000, 1468, 127–138. [Google Scholar] [CrossRef] [Green Version]
- Mensink, M.A.; Frijlink, H.W.; van der Voort Maarschalk, K.; Hinrichs, W.L. How sugars protect proteins in the solid state and during drying (review): Mechanisms of stabilization in relation to stress conditions. Eur. J. Pharm. Biopharm. 2017, 114, 288–295. [Google Scholar] [CrossRef]
- Fonte, P.; Reis, S.; Sarmento, B. Facts and evidences on the lyophilization of polymeric nanoparticles for drug delivery. J. Control. Release 2016, 225, 75–86. [Google Scholar] [CrossRef] [PubMed]
- Caetano, L.A.; Almeida, A.J.; Goncalves, L.M. Effect of Experimental parameters on alginate/chitosan microparticles for BCG encapsulation. Mar. Drugs 2016, 14, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hua, Z.-Z.; Li, B.-G.; Liu, Z.-J.; Sun, D.-W. Freeze-Drying of liposomes with cryoprotectants and its effect on retention rate of encapsulated ftorafur and vitamin A. Dry. Technol. 2003, 21, 1491–1505. [Google Scholar] [CrossRef]
- Yue, P.F.; Li, G.; Dan, J.X.; Wu, Z.F.; Wang, C.H.; Zhu, W.F.; Yang, M. Study on formability of solid nanosuspensions during solidification: II novel roles of freezing stress and cryoprotectant property. Int. J. Pharm. 2014, 475, 35–48. [Google Scholar] [CrossRef] [PubMed]
- Aksan, A.; Toner, M. Isothermal Desiccation and Vitrification Kinetics of Trehalose−Dextran Solutions. Langmuir 2004, 20, 5521–5529. [Google Scholar] [CrossRef] [PubMed]
- Kalichevsky-Dong, M. The glass transition and microbial stability. In The Stability and Shelf-Life of Food, 1st ed.; Kilkast, D., Subramaniam, P., Eds.; Elsevier: Cambridge, UK, 2000; pp. 25–54. [Google Scholar]
- Patil, V.V.; Dandekar, P.P.; Patravale, V.B.; Thorat, B.N. Freeze Drying: Potential for powdered nanoparticulate product. Dry. Technol. 2010, 28, 624–635. [Google Scholar] [CrossRef]
- Andreani, T.; Kiill, C.P.; de Souza, A.L.R.; Fangueiro, J.F.; Doktorovová, S.; Garcia, M.L.; Gramião, M.P.D.; Silva, A.M.; Souto, E.B. Effect of cryoprotectants on the reconstitution of silica nanoparticles produced by sol–gel technology. J. Therm. Anal. Calorim. 2014, 120, 1001–1007. [Google Scholar] [CrossRef]
CP | CP Concentration (%) | MwCP (g/mol) | Π (mmol/kg) |
---|---|---|---|
Fructose | 2.5 | 180.16 | 154 |
Fructose | 5 | 180.16 | 279 |
Fructose | 10 | 180.16 | 551 |
Fructose | 15 | 180.16 | 894 |
Fructose | 20 | 180.16 | 1141 |
Glucose | 2.5 | 180.16 | 135 |
Glucose | 5 | 180.16 | 257 |
Glucose | 10 | 180.16 | 547 |
Glucose | 15 | 180.16 | 820 |
Glucose | 20 | 180.16 | 1127 |
Mannitol | 2.5 | 182.17 | 142 |
Mannitol | 5 | 182.17 | 270 |
Mannitol | 10 | 182.17 | 593 |
Mannitol | 15 | 182.17 | 945 |
Sorbitol | 2.5 | 182.17 | 131 |
Sorbitol | 5 | 182.17 | 253 |
Sorbitol | 10 | 182.17 | 615 |
Sorbitol | 15 | 182.17 | 864 |
Sorbitol | 20 | 182.17 | 1146 |
Sucrose | 2.5 | 342.3 | 73 |
Sucrose | 5 | 342.3 | 140 |
Sucrose | 10 | 342.3 | 300 |
Sucrose | 15 | 342.3 | 434 |
Sucrose | 20 | 342.3 | 602 |
Trehalose | 2.5 | 342.3 | 70 |
Trehalose | 5 | 342.3 | 134 |
Trehalose | 10 | 342.3 | 281 |
Trehalose | 15 | 342.3 | 381 |
Trehalose | 20 | 342.3 | 538 |
Lactose | 2.5 | 342.3 | 72 |
Lactose | 5 | 342.3 | 142 |
Lactose | 10 | 342.3 | 248 |
Output | Submodels | Inputs from FormRules® | R2 | Calculated f Value | Degrees of Freedom | f Critical for p ˂ 0.01 |
---|---|---|---|---|---|---|
Δ size | Submodel 1 | CP × Speed | 91.77 | 10.17 | 34 and 31 | 2.32 |
Submodel 2 | CP × %CP | |||||
Δ PdI | Submodel 1 | CP × %CP | 76.04 | 8.29 | 18 and 47 | 2.34 |
Submodel 2 | Speed | |||||
Submodel 3 | %CP | |||||
Δ ZP | Submodel 1 | CP × Speed | 51.35 | 3.52 | 15 and 50 | 2.42 |
Submodel 2 | %CP |
Output | Submodels | Inputs from FormRules® | R2 | Calculated f Value | Degrees of Freedom | f Critical for p ˂ 0.01 |
---|---|---|---|---|---|---|
Δ size | Submodel 1 | MWCP × Π | 74.38 | 10.14 | 14 and 49 | 2.47 |
Submodel 2 | MWCP × Speed | |||||
Δ PdI | Submodel 1 | MWCP × Π | 70.50 | 12.65 | 10 and 53 | 2.68 |
Submodel 2 | Speed | |||||
Δ ZP | Submodel 1 | Π | 1.58 | 0.49 | 2 and 61 | 4.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rouco, H.; Diaz-Rodriguez, P.; Guillin, A.; Remuñán-López, C.; Landin, M. A Traffic Light System to Maximize Carbohydrate Cryoprotectants’ Effectivity in Nanostructured Lipid Carriers’ Lyophilization. Pharmaceutics 2021, 13, 1330. https://doi.org/10.3390/pharmaceutics13091330
Rouco H, Diaz-Rodriguez P, Guillin A, Remuñán-López C, Landin M. A Traffic Light System to Maximize Carbohydrate Cryoprotectants’ Effectivity in Nanostructured Lipid Carriers’ Lyophilization. Pharmaceutics. 2021; 13(9):1330. https://doi.org/10.3390/pharmaceutics13091330
Chicago/Turabian StyleRouco, Helena, Patricia Diaz-Rodriguez, Alba Guillin, Carmen Remuñán-López, and Mariana Landin. 2021. "A Traffic Light System to Maximize Carbohydrate Cryoprotectants’ Effectivity in Nanostructured Lipid Carriers’ Lyophilization" Pharmaceutics 13, no. 9: 1330. https://doi.org/10.3390/pharmaceutics13091330