90Y/177Lu-DOTATOC: From Preclinical Studies to Application in Humans
Abstract
:1. Introduction
2. PRRT: Radionuclides and Radiopharmaceuticals
Preparation of [90Y]Y-DOTATOC/[177Lu]Lu-DOTATOC
3. Preclinical Studies of Radiolabeled DOTATOC
3.1. Pharmacodynamics Studies
3.2. Pharmacokinetics Studies
3.3. Toxicological Studies
4. Clinical Studies of Radiolabeled DOTATOC
4.1. Pharmacokinetics and Pharmacodynamics Studies
4.2. Safety and Effectiveness Studies
4.3. Toxicological Studies
5. PRRT: Risks, Benefits, and Considerations
- (a)
- factors related to the biological characteristics of the tumor:
- (a1)
- Elevated lesional expression of SST-R2.
In fact, a high receptor expression is essential to ensure adequate accumulation of radiopharmaceuticals and a consequent adequate radiation dose to tumor lesions. Positive imaging with [111In]In-pentetreotide and mostly [68Ga]Ga-SS-As guarantee high accuracy to obtain this type of information. Numerous recent studies have confirmed that the lesion level uptake index (assessable by applying the Rotterdam scale in the monophotonic survey with [111In]In-pentetreotide and in a semi-quantitative mode by measuring the SUV in the PET-CT survey) is potentially correlated with the magnitude of the objective response (OR) and the efficacy of the treatment in terms of overall survival (OS) and progression-free survival (PFS), reductions in symptoms and, therefore, improved quality of life (QoL).- (a2)
- Histology positive for NET.
NETs include the neoplasms that most frequently and most abundantly express SST-R2. Among these, the histological variants that statistically best respond to PRRT include those of the gastro-entero-pancreatic tract and the forms of broncho-pulmonary origin. NETs that originate in the remaining organs of the respiratory system and in other locations (skin, thyroid, CNS, meninges), as well as other histotypes with neuroendocrine phenotypes, generally have less responsiveness and efficacy to the treatment.- (a3)
- Well-differentiated low graded shapes (WHO) [104].
The histotypes with a high degree of differentiation, i.e., G1 (Ki67 ≤ 3%) and G2 (Ki67 ≤ 10%), provide the best profiles of objective response and efficacy in terms of survival at PRRT. Some histotypes with G2 (Ki67 > 10%) and especially the well-differentiated G3 (Ki67 > 20%) forms may respond to treatment but have lower PFS and OS values.- (a4)
- Limited spread of disease.
The extent of disease spread is inversely proportional to the degree of objective response and therapeutic efficacy in terms of PFS and OS. Very often the NETs are indolent and slowly progressive, and their diagnosis occurs frequently when the disease is already systemic due to the presence of diffuse metastases or in any case not surgically attacked. Where technically possible and the patient’s general condition permits, surgical or interventional procedures aimed at eradicating or reducing the disease are recommended. Adjuvant post-surgical therapies, including PRRT, may be more successful after tumor debulking.- (a5)
- Hepatic and pancreatic localization.
Secondary hepatic lesions from NET are those that most frequently respond to PRRT, but primary NETs of the pancreas also show good responses to treatment. More resistant to treatment are secondary lymph node lesions and, above all, skeletal ones. PRRT with intra-arterial administration of the radiopharmaceutical through the hepatic artery represents—in patients with localized liver disease—an alternative modality (compared to the classic systemic intravenous administration) capable of expanding the therapeutic response and outcome of patients.- (a6)
- Good performance status.
A good general clinical status of the patient, a good life expectancy and the absence of comorbidities are potential factors directly related to the success of the treatment. In particular, the absence of risk factors for bone marrow toxicity (anemia, leukocytopenia, thrombocytopenia from previous chemotherapy or radiation treatments) and for renal toxicity (diabetes, hypertension, primary and secondary nephropathies) allows, in a context of greater tolerability by of these two critical organs, the administration of the highest levels of administrable radiopharmaceutical activity, which results in a higher absorbed dose to the tumor lesions.- (a7)
- Favorable genotype.
It is known, in clinical practice, how similar clinical presentations of NETs can respond differently or even opposite to the various types of treatment, including PRRT. The evaluation of the cellular genome, which can be performed with specific tests still in the experimental phase (NeTest), will, in the near future, describe the state of the disease and predict its prognosis and possible response to therapeutic treatments [105,106]. - (b)
- Factors related to the therapeutic management of the patient to be treated:
- (b1)
- Multidisciplinary evaluation.
The preliminary discussion of each single clinical case, the collegial choice of treatment, the timing and sequencing between the different treatments that make up the patient’s therapeutic plan, as well as the participatory evaluation of the follow-up, represent the ideal prerequisites for an efficient and effective management of the patient affected by NETs. Various studies correlate patient outcomes with how they are managed within structured specialized clinical paths and/or specialized and highly equipped Centers to respond to this type of patient.- (b2)
- Adherence to PRRT protocols (and guidelines).
- (a)
- Reduced bone marrow function.
- (b)
- Reduced kidney function.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Uccelli, L.; Martini, P.; Cittanti, C.; Carnevale, A.; Missiroli, L.; Giganti, M.; Bartolomei, M.; Boschi, A. Therapeutic Radiometals: Worldwide Scientific Literature Trend Analysis (2008–2018). Molecules 2019, 24, 640. [Google Scholar] [CrossRef] [Green Version]
- Boschi, A.; Uccelli, L.; Pasquali, M.; Pasqualini, R.; Guerrini, R.; Duatti, A. Mixed Tridentate π-Donor and Monodentate π-Acceptor Ligands as Chelating Systems for Rhenium-188 and Technetium-99m Nitrido Radiopharmaceuticals. Curr. Radiopharm. 2014, 6, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Boschi, A.; Martini, P.; Uccelli, L. 188Re(V) Nitrido Radiopharmaceuticals for Radionuclide Therapy. Pharmaceuticals 2017, 10, 12. [Google Scholar] [CrossRef] [Green Version]
- Uccelli, L.; Martini, P.; Pasquali, M.; Boschi, A. Monoclonal Antibodies Radiolabeling with Rhenium-188 for Radioimmunotherapy. BioMed Res. Int. 2017, 2017. [Google Scholar] [CrossRef] [Green Version]
- Werner, R.A.; Bluemel, C.; Allen-Auerbach, M.S.; Higuchi, T.; Herrmann, K. 68Gallium- and 90Yttrium-/177Lutetium: “theranostic twins” for diagnosis and treatment of NETs. Ann. Nucl. Med. 2014, 29, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Kulke, M.H.; Siu, L.L.; Tepper, J.E.; Fisher, G.; Jaffe, D.; Haller, D.G.; Ellis, L.M.; Benedetti, J.K.; Bergsland, E.K.; Hobday, T.J.; et al. Future Directions in the Treatment of Neuroendocrine Tumors: Consensus Report of the National Cancer Institute Neuroendocrine Tumor Clinical Trials Planning Meeting. J. Clin. Oncol. 2011, 29, 934–943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Modlin, I.M.; Lye, K.D.; Kidd, M. A 5-decade analysis of 13,715 carcinoid tumors. Cancer 2003, 97, 934–959. [Google Scholar] [CrossRef] [PubMed]
- Teunissen, J.J.M.; Kwekkeboom, D.J.; Valkema, R.; Krenning, E.P. Nuclear medicine techniques for the imaging and treatment of neuroendocrine tumours. Endocr. Relat. Cancer 2011, 18, S27–S51. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.C.; Hassan, M.; Phan, A.; Dagohoy, C.; Leary, C.; Mares, J.E.; Abdalla, E.K.; Fleming, J.B.; Vauthey, J.-N.; Rashid, A.; et al. One Hundred Years After “Carcinoid”: Epidemiology of and Prognostic Factors for Neuroendocrine Tumors in 35,825 Cases in the United States. J. Clin. Oncol. 2016, 26, 3063–3072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Modlin, I.M.; Oberg, K.; Chung, D.C.; Jensen, R.T.; de Herder, W.W.; Thakker, R.V.; Caplin, M.; Fave, G.D.; Kaltsas, G.A.; Krenning, E.P.; et al. Gastroenteropancreatic neuroendocrine tumours. Lancet Oncol. 2008, 9, 61–72. [Google Scholar] [CrossRef]
- De Baere, T.; Deschamps, F.; Tselikas, L.; Ducreux, M.; Planchard, D.; Pearson, E.; Berdelou, A.; Leboulleux, S.; Elias, D.; Baudin, E. GEP-NETS UPDATE: Interventional radiology: Role in the treatment of liver metastases from GEP-NETs. Eur. J. Endocrinol. 2015, 172, R151–R166. [Google Scholar] [CrossRef] [Green Version]
- Rajekar, H.; Bogammana, K.; Stubbs, R.S. Selective Internal Radiation Therapy for Gastrointestinal Neuroendocrine Tumour Liver Metastases: A New and Effective Modality for Treatment. Int. J. Hepatol. 2011, 2011, 404916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jann, H.; Denecke, T.; Koch, M.; Pape, U.F.; Wiedenmann, B.; Pavel, M. Impact of Octreotide Long-Acting Release on Tumour Growth Control as a First-Line Treatment in Neuroendocrine Tumours of Pancreatic Origin. Neuroendocrinology 2013, 98, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Bison, S.M.; Konijnenberg, M.W.; Melis, M.; Pool, S.E.; Bernsen, M.R.; Teunissen, J.J.M.; Kwekkeboom, D.J.; de Jong, M. Peptide receptor radionuclide therapy using radiolabeled somatostatin analogs: Focus on future developments. Clin. Transl. Imaging 2014, 2, 55–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panzuto, F.; Rinzivillo, M.; Fazio, N.; de Braud, F.; Luppi, G.; Zatelli, M.C.; Lugli, F.; Tomassetti, P.; Riccardi, F.; Nuzzo, C.; et al. Real-World Study of Everolimus in Advanced Progressive Neuroendocrine Tumors. Oncologist 2015, 20, 570. [Google Scholar] [CrossRef] [Green Version]
- Dong, M.; Phan, A.T.; Yao, J.C. New Strategies for Advanced Neuroendocrine Tumors in the Era of Targeted Therapy. Clin. Cancer Res. 2012, 18, 1830–1836. [Google Scholar] [CrossRef] [Green Version]
- Kulke, M.H.; Bendell, J.; Kvols, L.; Picus, J.; Pommier, R.; Yao, J. Evolving Diagnostic and Treatment Strategies for Pancreatic Neuroendocrine Tumors. J. Hematol. Oncol. 2011, 4, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Zaknun, J.J.; Bodei, L.; Mueller-Brand, J.; Pavel, M.E.; Baum, R.P.; Hörsch, D.; O’Dorisio, M.S.; O’Dorisiol, T.M.; Howe, J.R.; Cremonesi, M.; et al. The joint IAEA, EANM, and SNMMI practical guidance on peptide receptor radionuclide therapy (PRRNT) in neuroendocrine tumours. Eur. J. Nucl. Med. Mol. Imaging 2013, 40, 800–816. [Google Scholar] [CrossRef] [Green Version]
- Reubi, J.C.; Schaer, J.-C.; Laissue, J.A.; Waser, B. Somatostatin receptors and their subtypes in human tumors and in peritumoral vessels. Metab.-Clin. Exp. 1996, 45, 39–41. [Google Scholar] [CrossRef]
- Kwekkeboom, D.J.; Krenning, E.P. Somatostatin receptor imaging. Semin. Nucl. Med. 2002, 32, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Reubi, J.; Waser, B.; Schaer, J.-C.; Laissue, J.A. Somatostatin receptor sst1–sst5 expression in normal and neoplastic human tissues using receptor autoradiography with subtype-selective ligands. Eur. J. Nucl. Med. 2001, 28, 836–846. [Google Scholar] [CrossRef] [PubMed]
- Reubi, J.C.; Schär, J.-C.; Waser, B.; Wenger, S.; Heppeler, A.; Schmitt, J.S.; Mäcke, H.R. Affinity profiles for human somatostatin receptor subtypes SST1–SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur. J. Nucl. Med. 2000, 27, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Heppeler, A.; Froidevaux, S.; Mäcke, H.R.; Jermann, E.; Béhé, M.; Powell, P.; Hennig, M. Radiometal-Labelled Macrocyclic Chelator-Derivatised Somatostatin Analogue with Superb Tumour-Targeting Properties and Potential for Receptor-Mediated Internal Radiotherapy. Chem. Eur. J. 1999, 5, 1974–1981. [Google Scholar] [CrossRef]
- Ducreux, M.; Ruszniewski, P.; Chayvialle, J.-A.; Blumberg, J.; Cloarec, D.; Michel, H.; Raymond, J.M.; Dupas, J.-L.; Gouerou, H.; Jian, R.; et al. The Antitumoral Effect of the Long-Acting Somatostatin Analog Lanreotide in Neuroendocrine Tumors. Am. J. Gastroenterol. 2000, 95, 3276–3281. [Google Scholar] [CrossRef]
- Strosberg, J.; El-Haddad, G.; Wolin, E.; Hendifar, A.; Yao, J.; Chasen, B.; Mittra, E.; Kunz, P.L.; Kulke, M.H.; Jacene, H.; et al. Phase 3 Trial of 177 Lu-Dotatate for Midgut Neuroendocrine Tumors. N. Engl. J. Med. 2017, 376, 125–135. [Google Scholar] [CrossRef]
- Baum, R.P.; Kluge, A.W.; Kulkarni, H.; Schorr-Neufing, U.; Niepsch, K.; Bitterlich, N.; van Echteld, C.J. [177Lu-DOTA]0-D-Phe1-Tyr3-Octreotide (177Lu-DOTATOC) For Peptide Receptor Radiotherapy in Patients with Advanced Neuroendocrine Tumours: A Phase-II Study. Theranostics 2016, 6, 501–510. [Google Scholar] [CrossRef]
- Schuchardt, C.; Kulkarni, H.R.; Prasad, V.; Zachert, C.; Müller, D.; Baum, R.P. The Bad Berka Dose Protocol: Comparative Results of Dosimetry in Peptide Receptor Radionuclide Therapy Using 177Lu-DOTATATE, 177Lu-DOTANOC, and 177Lu-DOTATOC. Recent Results Cancer Res. 2013, 194, 519–536. [Google Scholar] [CrossRef] [PubMed]
- Teunissen, J.J.M.; Kwekkeboom, D.J.; de Jong, M.; Esser, J.P.; Valkema, R.; Krenning, E.P. Peptide receptor radionuclide therapy. Best Pract. Res. Clin. Gastroenterol. 2005, 19, 595–616. [Google Scholar] [CrossRef] [Green Version]
- De Jong, M.; Breeman, W.A.P.; Valkema, R.; Bernard, B.F.; Krenning, E.P. Combination Radionuclide Therapy Using 177Lu- and 90Y-Labeled Somatostatin Analogs. J. Nucl. Med. 2005, 46, 13S–17S. [Google Scholar]
- Kunikowska, J.; Królicki, L.; Hubalewska-Dydejczyk, A.; Mikołajczak, R.; Sowa-Staszczak, A.; Pawlak, D. Clinical results of radionuclide therapy of neuroendocrine tumours with 90 Y-DOTATATE and tandem 90Y/177Lu-DOTATATE: Which is a better therapy option? Eur. J. Nucl. Med. Mol. Imaging 2011, 38, 1788–1797. [Google Scholar] [CrossRef] [Green Version]
- Seregni, E.; Maccauro, M.; Chiesa, C.; Mariani, L.; Pascali, C.; Mazzaferro, V.; De Braud, F.; Buzzoni, R.; Milione, M.; Lorenzoni, A.; et al. Treatment with tandem [90Y]DOTA-TATE and [177Lu]DOTA-TATE of neuroendocrine tumours refractory to conventional therapy. Eur. J. Nucl. Med. Mol. Imaging 2013, 41, 223–230. [Google Scholar] [CrossRef]
- Maecke, H.R.; Reubi, J.C. Somatostatin Receptors as Targets for Nuclear Medicine Imaging and Radionuclide Treatment. J. Nucl. Med. 2011, 52, 841–844. [Google Scholar] [CrossRef] [Green Version]
- Baur, B.; Solbach, C.; Andreolli, E.; Winter, G.; Machulla, H.-J.; Reske, S.N. Synthesis, Radiolabelling and In Vitro Characterization of the Gallium-68-, Yttrium-90- and Lutetium-177-Labelled PSMA Ligand, CHX-A″-DTPA-DUPA-Pep. Pharmaceuticals 2014, 7, 517–529. [Google Scholar] [CrossRef] [Green Version]
- Collamati, F.; Bellini, F.; Bocci, V.; De Lucia, E.; Ferri, V.; Fioroni, F.; Grassi, E.; Iori, M.; Marafini, M.; Morganti, S.; et al. Time Evolution of DOTATOC Uptake in Neuroendocrine Tumors in View of a Possible Application of Radioguided Surgery with β−Decay. J. Nucl. Med. 2015, 56, 1501–1506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jamar, F.; Barone, R.; Mathieu, I.; Walrand, S.; Labar, D.; Carlier, P.; De Camps, J.; Schran, H.; Chen, T.; Smith, M.C.; et al. 86Y-DOTA0-d -Phe1-Tyr3-octreotide (SMT487)—A phase 1 clinical study: Pharmacokinetics, biodistribution and renal protective effect of different regimens of amino acid co-infusion. Eur. J. Nucl. Med. Mol. Imaging 2003, 30, 510–518. [Google Scholar] [CrossRef] [PubMed]
- Cremonesi, M.; Ferrari, M.; Zoboli, S.; Chinol, M.; Stabin, M.G.; Orsi, F.; Maecke, H.R.; Jermann, E.; Robertson, C.; Fiorenza, M.; et al. Biokinetics and dosimetry in patients administered with 111In-DOTA-Tyr3 -octreotide: Implications for internal radiotherapy with 90Y-DOTATOC. Eur. J. Nucl. Med. 1999, 26, 877–886. [Google Scholar] [CrossRef] [PubMed]
- Cremonesi, M.; Ferrari, M.; Bodei, L.; Tosi, G.; Paganelli, G. Systemic and locoregional dosimetry in receptor radionuclide therapy with peptides-PubMed. Q. J. Nucl. Med. Mol. Imaging 2006, 50, 288–295. [Google Scholar]
- Esser, J.P.; Krenning, E.P.; Teunissen, J.J.M.; Kooij, P.P.M.; Van Gameren, A.L.H.; Bakker, W.H.; Kwekkeboom, D.J. Comparison of [177Lu-DOTA0,Tyr3]octreotate and [177Lu-DOTA0,Tyr3]octreotide: Which peptide is preferable for PRRT? Eur. J. Nucl. Med. Mol. Imaging 2006, 33, 1346–1351. [Google Scholar] [CrossRef]
- Otte, A.; Mueller-Brand, J.; Dellas, S.; Nitzsche, E.; Herrmann, R.; Maecke, H. Yttrium-90-labelled somatostatin-analogue for cancer treatment. Lancet 1998, 351, 417–418. [Google Scholar] [CrossRef]
- Valkema, R.; De Jong, M.; Bakker, W.H.; Breeman, W.A.P.; Kooij, P.P.M.; Lugtenburg, P.J.; De Jong, F.H.; Christiansen, A.; Kam, B.L.R.; De Herder, W.W.; et al. Phase I study of peptide receptor radionuclide therapy with [111In-DTPA0]octreotide: The rotterdam experience. Semin. Nucl. Med. 2002, 32, 110–122. [Google Scholar] [CrossRef]
- Anthony, L.B.; Woltering, E.A.; Espenan, G.D.; Cronin, M.D.; Maloney, T.J.; McCarthy, K.E. Indium-111-pentetreotide prolongs survival in gastroenteropancreatic malignancies. Semin. Nucl. Med. 2002, 32, 123–132. [Google Scholar] [CrossRef]
- De Jong, M.; Krenning, E. New Advances in Peptide Receptor Radionuclide Therapy. J. Nucl. Med. 2002, 43, 617–620. [Google Scholar] [PubMed]
- Bernard, B.F.; Krenning, E.P.; Breeman, W.A.P.; Rolleman, E.J.; Bakker, W.H.; Visser, T.J.; Mäcke, H.; de Jong, M. D-Lysine Reduction of Indium-111 Octreotide and Yttrium-90 Octreotide Renal Uptake. J. Nucl. Med. 1997, 38, 1929–1933. [Google Scholar] [PubMed]
- Iori, M.; Capponi, P.C.; Rubagotti, S.; Esposizione, L.R.; Seemann, J.; Pitzschler, R.; Dreger, T.; Formisano, D.; Grassi, E.; Fioroni, F.; et al. Labelling of 90Y- and 177Lu-DOTA-Bioconjugates for targeted radionuclide Therapy: A comparison among manual, semiautomated, and fully automated synthesis. Contrast Media Mol. Imaging 2017, 2017, 8160134. [Google Scholar] [CrossRef] [Green Version]
- Cremonesi, M.; Ferrari, M.; Paganelli, G.; Rossi, A.; Chinol, M.; Bartolomei, M.; Prisco, G.; Tosi, G. Radiation protection in radionuclide therapies with 90Y-conjugates: Risks and safety. Eur. J. Nucl. Med. Mol. Imaging 2006, 33, 1321–1327. [Google Scholar] [CrossRef]
- Taylor, J.E.; Theveniau, M.A.; Bashirzadeh, R.; Reisine, T.; Eden, P.A. Detection of somatostatin receptor subtype 2 (SSTR2) in established tumors and tumor cell lines: Evidence for SSTR2 heterogeneity. Peptides 1994, 15, 1229–1236. [Google Scholar] [CrossRef]
- De Jong, M.; Bakker, W.H.; Krenning, E.P.; Breeman, W.A.P.; van der Pluijm, M.E.; Bernard, B.F.; Visser, T.J.; Jermann, E.; Béhé, M.; Powell, P.; et al. Yttrium-90 and indium-111 labelling, receptor binding and biodistribution of [DOTA0,d-Phe1,Tyr3]octreotide, a promising somatostatin analogue for radionuclide therapy. Eur. J. Nucl. Med. 1997, 24, 368–371. [Google Scholar] [CrossRef] [PubMed]
- De Jong, M.; Bernard, B.F.; De Bruin, E.; Van Gameren, A.; Bakker, W.H.; Visser, T.J.; Mäcke, H.R.; Krenning, E.P. Internalization of radiolabelled [DTPA0]octreotide and [DOTA0,Tyr3]octreotide: Peptides for somatostatin receptor-targeted scintigraphy and radionuclide therapy. Nucl. Med. Commun. 1998, 19, 283–288. [Google Scholar] [CrossRef] [PubMed]
- Stolz, B.; Smith-Jones, P.; Albert, R.; Tolcsvai, L.; Briner, U.; Ruser, G.; Mäcke, H.; Weckbecker, G.; Bruns, C. Somatostatin Analogues for Somatostatin-Receptor-Mediated Radiotherapy of Cancer. Digestion 1996, 57, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Froidevaux, S.; Heppeler, A.; Eberle, A.N.; Meier, A.-M.; Häusler, M.; Beglinger, C.; Béhé, M.; Powell, P.; Mäcke, H.R. Preclinical Comparison in AR4–2J Tumor-Bearing Mice of Four Radiolabeled 1,4,7,10-Tetraazacyclododecane-1,4,7,10-Tetraacetic Acid-Somatostatin Analogs for Tumor Diagnosis and Internal Radiotherapy. Endocrinology 2000, 141, 3304–3312. [Google Scholar] [CrossRef]
- De Jong, M.; Breeman, W.A.P.; Bernard, B.F.; Bakker, W.H.; Visser, T.J.; Kooij, P.P.M.; Van Gameren, A.; Krenning, E.P. Tumor Response After [90Y-DOTA0,Tyr3]-Octreotide Radionuclide Therapy in a Transplantable Rat Tumor Model Is Dependent on Tumor Size. J. Nucl. Med. 2001, 42, 1841–1846. [Google Scholar]
- De Jong, M.; Valkema, R.; Jamar, F.; Kvols, L.K.; Kwekkeboom, D.J.; Breeman, W.A.P.; Bakker, W.H.; Smith, C.; Pauwels, S.; Krenning, E.P. Somatostatin receptor-targeted radionuclide therapy of tumors: Preclinical and clinical findings. Semin. Nucl. Med. 2002, 32, 133–140. [Google Scholar] [CrossRef]
- Capello, A.; Krenning, E.P.; Breeman, W.A.P.; Bernard, B.F.; Konijnenberg, M.W.; De Jong, M. Tyr3-Octreotide and Tyr3-Octreotate Radiolabeled with 177Lu or 90Y: Peptide Receptor Radionuclide Therapy Results In Vitro. Cancer Biother. Radiopharm. 2003, 18, 761–768. [Google Scholar] [CrossRef] [PubMed]
- De Jong, M.; Bakker, W.H.; Breeman, W.A.P.; Bernard, B.F.; Hofland, L.J.; Visser, T.J.; Srinivasan, A.; Schmidt, M.; Béhé, M.; Mäcke, H.R.; et al. Pre-Clinical Comparison Of [DTPA0] Octreotide, [DTPA0,Tyr3] Octreotide And [DOTA0,Tyr3] Octreotide As Carriers For Somatostatin Receptor-Targeted Scintigraphy And Radionuclide Therapy. Int. J. Cancer 1998, 75, 406–411. [Google Scholar] [CrossRef]
- Cremonesi, M.; Ferrari, M.; Bodei, L.; Tosi, G.; Paganelli, G. Dosimetry in Peptide Radionuclide Receptor Therapy: A Review. J. Nucl. Med. 2006, 47, 1467–1475. [Google Scholar] [PubMed]
- De Jong, M.; Breeman, W.; Bernard, H.; Bakker, W.; Van Gameren, A.; Bugaj, J.; Erion, J.; Srinivasan, A.; Maecke, H.; Krenning, E. Receptor-targeted radionuclide therapy using radiolabelled somatostatin analogues: Tumour size versus curability-Web of Science Core Collection. Eur. J. Nucl. Med. 2001, 28, 1026. [Google Scholar]
- Limouris, G.S.; Chatziioannou, A.; Kontogeorgakos, D.; Mourikis, D.; Lyra, M.; Dimitriou, P.; Stavraka, A.; Gouliamos, A.; Vlahos, L. Selective hepatic arterial infusion of In-111-DTPA-Phe1 -octreotide in neuroendocrine liver metastases. Eur. J. Nucl. Med. Mol. Imaging 2008, 35, 1827–1837. [Google Scholar] [CrossRef]
- Kratochwil, C.; López-Benítez, R.; Mier, W.; Haufe, S.; Isermann, B.; Kauczor, H.-U.; Choyke, P.L.; Haberkorn, U.; Giesel, F.L. Hepatic arterial infusion enhances DOTATOC radiopeptide therapy in patients with neuroendocrine liver metastases. Endocr. Relat. Cancer 2011, 18, 595–602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwekkeboom, D.J.; Bakker, W.H.; Kooij, P.P.; Konijnenberg, M.W.; Srinivasan, A.; Erion, J.L.; Schmidt, M.A.; Bugaj, J.L.; de Jong, M.; Krenning, E.P. [177Lu-DOTA0,Tyr3]octreotate: Comparison with [111In-DTPA0]octreotide in patients. Eur. J. Nucl. Med. 2001, 28, 1319–1325. [Google Scholar] [CrossRef]
- Nisa, L.; Savelli, G.; Giubbini, R. Yttrium-90 DOTATOC therapy in GEP-NET and other SST2 expressing tumors: A selected review. Ann. Nucl. Med. 2010, 25, 75–85. [Google Scholar] [CrossRef]
- Valkema, R.; Jamar, F.; Bakker, W.; Norenberg, J.; Smith, C.; Stolz, B.; Kvols, L.; Pauwels, S.; Krenning, E. Safety and efficacy of [Y-90-DOTA, Tyr3]-octreotide (Y-90-SMT487; OctreoTher) peptide receptor radionuclide therapy (PRRT). Preliminary results of a phase-1 study-Web of Science Core Collection. Eur. J. Nucl. Med. 2011, 28, 1025. [Google Scholar]
- Kwekkeboom, D.J.; De Herder, W.W.; Kam, B.L.; Van Eijck, C.H.; Van Essen, M.; Kooij, P.P.; Feelders, R.A.; Van Aken, M.O.; Krenning, E.P. Treatment With the Radiolabeled Somatostatin Analog [177Lu-DOTA0,Tyr3]Octreotate: Toxicity, Efficacy, and Survival. J. Clin. Oncol. 2008, 26, 2124–2130. [Google Scholar] [CrossRef] [Green Version]
- Kwekkeboom, D.J.; Bakker, W.H.; Kam, B.L.; Teunissen, J.J.M.; Kooij, P.P.M.; de Herder, W.W.; Feelders, R.A.; van Eijck, C.H.J.; de Jong, M.; Srinivasan, A.; et al. Treatment of patients with gastro-entero-pancreatic (GEP) tumours with the novel radiolabelled somatostatin analogue [177Lu-DOTA0,Tyr3]octreotate. Eur. J. Nucl. Med. Mol. Imaging 2003, 30, 417–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swärd, C.; Bernhardt, P.; Ahlman, H.; Wängberg, B.; Forssell-Aronsson, E.; Larsson, M.; Svensson, J.; Rossi-Norrlund, R.; Kölby, L. [177Lu-DOTA0-Tyr3]-Octreotate Treatment in Patients with Disseminated Gastroenteropancreatic Neuroendocrine Tumors: The Value of Measuring Absorbed Dose to the Kidney. World J. Surg. 2010, 34, 1368–1372. [Google Scholar] [CrossRef]
- Garkavij, M.; Nickel, M.; Sjögreen-Gleisner, K.; Ljungberg, M.; Ohlsson, T.; Wingårdh, K.; Strand, S.E.; Tennvall, J. 177Lu-[DOTA0,Tyr3] octreotate therapy in patients with disseminated neuroendocrine tumors: Analysis of dosimetry with impact on future therapeutic strategy. Cancer 2010, 116, 1084–1092. [Google Scholar] [CrossRef]
- Bodei, L.; Cremonesi, M.; Grana, C.M.; Fazio, N.; Iodice, S.; Baio, S.M.; Bartolomei, M.; Lombardo, D.; Ferrari, M.E.; Sansovini, M.; et al. Peptide receptor radionuclide therapy with 177Lu-DOTATATE: The IEO phase I-II study. Eur. J. Nucl. Med. Mol. Imaging 2011, 38, 2125–2135. [Google Scholar] [CrossRef]
- Sowa-Staszczak, A.; Pach, D.; Kunikowska, J.; Krolicki, L.; Stefanska, A.; Tomaszuk, M.; Buziak-Bereza, M.; Mikolajczak, R.; Matyja, M.; Gilis-Januszewska, A.; et al. Efficacy and safety of 90Y-DOTATATE therapy in neuroendocrine tumours. Endokrynol. Pol. 2011, 62, 392–400. [Google Scholar]
- Van Vliet, E.I.; Hermans, J.J.; de Ridder, M.A.; Teunissen, J.J.; Kam, B.L.; de Krijger, R.R.; Krenning, E.P.; Kwekkeboom, D.J. Tumor Response Assessment to Treatment with [177Lu-DOTA0,Tyr3]Octreotate in Patients with Gastroenteropancreatic and Bronchial Neuroendocrine Tumors: Differential Response of Bone Versus Soft-Tissue Lesions. J. Nucl. Med. 2012, 53, 1359–1366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Vliet, E.I.; Krenning, E.P.; Teunissen, J.J.; Bergsma, H.; Kam, B.L.; Kwekkeboom, D.J. Comparison of Response Evaluation in Patients with Gastroenteropancreatic and Thoracic Neuroendocrine Tumors After Treatment with [177Lu-DOTA0,Tyr3]Octreotate. J. Nucl. Med. 2013, 54, 1689–1696. [Google Scholar] [CrossRef] [Green Version]
- Sansovini, M.; Severi, S.; Ambrosetti, A.; Monti, M.; Nanni, O.; Sarnelli, A.; Bodei, L.; Garaboldi, L.; Bartolomei, M.; Paganelli, G. Treatment with the Radiolabelled Somatostatin Analog 177Lu-DOTATATE for Advanced Pancreatic Neuroendocrine Tumors. Neuroendocrinology 2013, 97, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Ezziddin, S.; Attassi, M.; Yong-Hing, C.J.; Ahmadzadehfar, H.; Willinek, W.; Grünwald, F.; Guhlke, S.; Biersack, H.-J.; Sabet, A. Predictors of Long-Term Outcome in Patients with Well-Differentiated Gastroenteropancreatic Neuroendocrine Tumors After Peptide Receptor Radionuclide Therapy with 177Lu-Octreotate. J. Nucl. Med. 2014, 55, 183–190. [Google Scholar] [CrossRef] [Green Version]
- Paganelli, G.; Sansovini, M.; Ambrosetti, A.; Severi, S.; Monti, M.; Scarpi, E.; Donati, C.; Ianniello, A.; Matteucci, F.; Amadori, D. 177Lu-Dota-octreotate radionuclide therapy of advanced gastrointestinal neuroendocrine tumors: Results from a phase II study. Eur. J. Nucl. Med. Mol. Imaging 2014, 41, 1845–1851. [Google Scholar] [CrossRef]
- Delpassand, E.S.; Samarghandi, A.; Zamanian, S.; Wolin, E.M.; Hamiditabar, M.; Espenan, G.D.; Erion, J.L.; O’Dorisio, T.M.; Kvols, L.K.; Simon, J.; et al. Peptide receptor radionuclide therapy with 177Lu-DOTATATE for patients with somatostatin receptor-expressing neuroendocrine tumors: The first US phase 2 experience. Pancreas 2014, 43, 518–525. [Google Scholar] [CrossRef] [Green Version]
- Danthala, M.; Kallur, K.G.; Prashant, G.R.; Rajkumar, K.; Rao, M.R. 177 Lu-DOTATATE therapy in patients with neuroendocrine tumours: 5 years’ experience from a tertiary cancer care centre in India. Eur. J. Nucl. Med. Mol. Imaging 2014, 41, 1319–1326. [Google Scholar] [CrossRef] [PubMed]
- Sabet, A.; Dautzenberg, K.; Haslerud, T.; Aouf, A.; Sabet, A.; Simon, B.; Mayer, K.; Biersack, H.-J.; Ezziddin, S. Specific efficacy of peptide receptor radionuclide therapy with 177 Lu-octreotate in advanced neuroendocrine tumours of the small intestine. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 1238–1246. [Google Scholar] [CrossRef] [PubMed]
- Van Vliet, E.I.; Van Eijck, C.H.; De Krijger, R.R.; Van Dijkum, E.J.N.; Teunissen, J.J.; Kam, B.L.; De Herder, W.W.; Feelders, R.A.; Bonsing, B.A.; Brabander, T.; et al. Neoadjuvant treatment of nonfunctioning pancreatic neuroendocrine tumors with [177Lu-DOTA0,Tyr3]octreotate. J. Nucl. Med. 2015, 56, 1647–1653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forrer, F.; Uusijärvi, H.; Storch, D.; Maecke, H.R.; Mueller-Brand, J. Treatment with 177Lu-DOTATOC of Patients with Relapse of Neuroendocrine Tumors After Treatment with 90Y-DOTATOC. J. Nucl. Med. 2005, 46, 1310–1316. [Google Scholar] [PubMed]
- Frilling, A.; Weber, F.; Saner, F.; Bockisch, A.; Hofmann, M.; Mueller-Brand, J.; Broelsch, C.E. Treatment with 90Y- and 177Lu-DOTATOC in patients with metastatic neuroendocrine tumors. Surgery 2006, 140, 968–977. [Google Scholar] [CrossRef] [PubMed]
- Forrer, F.; Riedweg, I.; Maecke, H.; Mueller-Brand, J. Radiolabeled DOTATOC in patients with advanced paraganglioma and pheochromocytoma. Q. J. Nucl. Med. Mol. Imaging 2008, 52, 334. [Google Scholar]
- Pfeifer, A.K.; Gregersen, T.; Grønbæk, H.; Hansen, C.P.; Müller-Brand, J.; Bruun, K.H.; Krogh, K.; Kjær, A.; Knigge, U. Peptide Receptor Radionuclide Therapy with 90Y-DOTATOC and 177Lu-DOTATOC in Advanced Neuroendocrine Tumors: Results from a Danish Cohort Treated in Switzerland. Neuroendocrinology 2011, 93, 189–196. [Google Scholar] [CrossRef]
- Villard, L.; Romer, A.; Marincek, N.; Brunner, P.; Koller, M.T.; Schindler, C.; Ng, Q.K.T.; Mäcke, H.R.; Müller-Brand, J.; Rochlitz, C.; et al. Cohort study of somatostatin-based radiopeptide therapy with [90Y-DOTA]-TOC versus [90Y-DOTA]-TOC plus [177Lu-DOTA]-TOC in neuroendocrine cancers. J. Clin. Oncol. 2012, 30, 1100–1106. [Google Scholar] [CrossRef]
- Dumont, R.A.; Seiler, D.; Marincek, N.; Brunner, P.; Radojewski, P.; Rochlitz, C.; Müller-Brand, J.; Maecke, H.R.; Briel, M.; Walter, M.A. Survival after somatostatin based radiopeptide therapy with 90Y-DOTATOC vs. 90Y-DOTATOC plus 177Lu-DOTATOC in metastasized gastrinoma. Am. J. Nucl. Med. Mol. Imaging 2015, 5, 46. [Google Scholar]
- Romer, A.; Seiler, D.; Marincek, N.; Brunner, P.; Koller, M.T.; Ng, Q.K.T.; Maecke, H.R.; Müller-Brand, J.; Rochlitz, C.; Briel, M.; et al. Somatostatin-based radiopeptide therapy with [177Lu-DOTA]-TOC versus [90Y-DOTA]-TOC in neuroendocrine tumours. Eur. J. Nucl. Med. Mol. Imaging 2013, 41, 214–222. [Google Scholar] [CrossRef]
- Marincek, N.; Radojewski, P.; Dumont, R.A.; Brunner, P.; Müller-Brand, J.; Maecke, H.R.; Briel, M.; Walter, M.A. Somatostatin Receptor–Targeted Radiopeptide Therapy with 90Y-DOTATOC and 177Lu-DOTATOC in Progressive Meningioma: Long-Term Results of a Phase II Clinical Trial. J. Nucl. Med. 2015, 56, 171–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radojewski, P.; Dumont, R.; Marincek, N.; Brunner, P.; Mäcke, H.R.; Müller-Brand, J.; Briel, M.; Walter, M.A. Towards tailored radiopeptide therapy. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Hörsch, D.; Ezziddin, S.; Haug, A.; Gratz, K.F.; Dunkelmann, S.; Miederer, M.; Schreckenberger, M.; Krause, B.J.; Bengel, F.M.; Bartenstein, P.; et al. Effectiveness and side-effects of peptide receptor radionuclide therapy for neuroendocrine neoplasms in Germany: A multi-institutional registry study with prospective follow-up. Eur. J. Cancer 2016, 58, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Bodei, L.; Cremonesi, M.; Grana, C.M.; Chinol, M.; Baio, S.M.; Severi, S.; Paganelli, G. Yttrium-labelled peptides for therapy of NET. Eur. J. Nucl. Med. Mol. Imaging 2012, 39, 93–102. [Google Scholar] [CrossRef]
- Bodei, L.; Cremonesi, M.; Paganelli, G. Yttrium-based therapy for neuroendocrine tumors. PET Clin. 2014, 9, 71–82. [Google Scholar] [CrossRef]
- Rolleman, E.J.; Valkema, R.; de Jong, M.; Kooij, P.P.; Krenning, E.P. Safe and effective inhibition of renal uptake of radiolabelled octreotide by a combination of lysine and arginine. Eur. J. Nucl. Med. Mol. Imaging 2003, 30, 9–15. [Google Scholar] [CrossRef]
- Davì, M.V.; Bodei, L.; Francia, G.; Bartolomei, M.; Oliani, C.; Scilanga, L.; Reghellin, D.; Falconi, M.; Paganelli, G.; Cascio, V.L.; et al. Carcinoid crisis induced by receptor radionuclide therapy with 90Y-DOTATOC in a case of liver metastases from bronchial neuroendocrine tumor (atypical carcinoid). J. Endocrinol. Investig. 2014, 29, 563–567. [Google Scholar] [CrossRef]
- Bodei, L.; Cremonesi, M.; Grana, C.; Rocca, P.; Bartolomei, M.; Chinol, M.; Paganelli, G. Receptor radionuclide therapy with 90Y-[DOTA]0-Tyr3-octreotide (90Y-DOTATOC) in neuroendocrine tumours. Eur. J. Nucl. Med. Mol. Imaging 2004, 31, 1038–1046. [Google Scholar] [CrossRef]
- De Keizer, B.; van Aken, M.O.; Feelders, R.A.; de Herder, W.W.; Kam, B.L.R.; van Essen, M.; Krenning, E.P.; Kwekkeboom, D.J. Hormonal crises following receptor radionuclide therapy with the radiolabeled somatostatin analogue [177Lu-DOTA0,Tyr3]octreotate. Eur. J. Nucl. Med. Mol. Imaging 2008, 35, 749–755. [Google Scholar] [CrossRef] [Green Version]
- Bodei, L.; Ferone, D.; Grana, C.M.; Cremonesi, M.; Signore, A.; Dierckx, R.A.; Paganelli, G. Peptide receptor therapies in neuroendocrine tumors. J. Endocrinol. Investig. 2014, 32, 360–369. [Google Scholar] [CrossRef]
- Van der Zwan, W.A.; Bodei, L.; Mueller-Brand, J.; de Herder, W.W.; Kvols, L.K.; Kwekkeboom, D.J. GEP–NETs UPDATE: Radionuclide therapy in neuroendocrine tumors. Eur. J. Endocrinol. 2015, 172, R1–R8. [Google Scholar] [CrossRef] [Green Version]
- Kwekkeboom, D.J.; Mueller-Brand, J.; Paganelli, G.; Anthony, L.B.; Pauwels, S.; Kvols, L.K.; O’Dorisio, T.M.; Valkema, R.; Bodei, L.; Chinol, M.; et al. Overview of Results of Peptide Receptor Radionuclide Therapy with 3 Radiolabeled Somatostatin Analogs. J. Nucl. Med. 2005, 46, 62S–66S. [Google Scholar] [PubMed]
- Cremonesi, M.; Botta, F.; Di Dia, A.; Ferrari, M.; Bodei, L.; De Cicco, C.; Rossi, A.; Bartolomei, M.; Mei, R.; Severi, S.; et al. Dosimetry for treatment with radiolabelled somatostatin analogues. A review. Q. J. Nucl. Med. Mol. Imaging 2010, 54, 37–51. [Google Scholar] [PubMed]
- Sansovini, M.; Severi, S.; Ianniello, A.; Nicolini, S.; Fantini, L.; Mezzenga, E.; Ferroni, F.; Scarpi, E.; Monti, M.; Bongiovanni, A.; et al. Long-term follow-up and role of FDG PET in advanced pancreatic neuroendocrine patients treated with 177Lu-D OTATATE. Eur. J. Nucl. Med. Mol. Imaging 2017, 44, 490–499. [Google Scholar] [CrossRef] [PubMed]
- Guerriero, F.; Ferrari, M.E.; Botta, F.; Fioroni, F.; Grassi, E.; Versari, A.; Sarnelli, A.; Pacilio, M.; Amato, E.; Strigari, L.; et al. Kidney dosimetry in 177Lu and 90Y peptide receptor radionuclide therapy: Influence of image timing, time-activity integration method, and risk factors. Biomed Res. Int. 2013, 2013. [Google Scholar] [CrossRef] [Green Version]
- Cremonesi, M.; Ferrari, M.; Di Dia, A.; Botta, F.; De Cicco, C.; Bodei, L.; Paganelli, G. Recent issues on dosimetry and radiobiology for peptide receptor radionuclide therapy. Q. J. Nucl. Med. Mol. Imaging 2011, 55, 155–167. [Google Scholar]
- Valkema, R.; Pauwels, S.A.; Kvols, L.K.; Kwekkeboom, D.J.; Jamar, F.; de Jong, M.; Barone, R.; Walrand, S.; Kooij, P.P.M.; Bakker, W.H.; et al. Long-Term Follow-Up of Renal Function After Peptide Receptor Radiation Therapy with 90Y-DOTA0,Tyr3-Octreotide and 177Lu-DOTA0, Tyr3-Octreotate. J. Nucl. Med. 2005, 46, 83S–91S. [Google Scholar]
- Teunissen, J.J.M.; Kwekkeboom, D.J.; Krenning, E.P. Quality of Life in Patients With Gastroenteropancreatic Tumors Treated With [177Lu-DOTA0,Tyr3]octreotate. J. Clin. Oncol. 2016, 22, 2724–2729. [Google Scholar] [CrossRef]
- Khan, S.; Krenning, E.P.; van Essen, M.; Kam, B.L.; Teunissen, J.J.; Kwekkeboom, D.J. Quality of Life in 265 Patients with Gastroenteropancreatic or Bronchial Neuroendocrine Tumors Treated with [177Lu-DOTA0,Tyr3]Octreotate. J. Nucl. Med. 2011, 52, 1361–1368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pavel, M.; O’Toole, D.; Costa, F.; Capdevila, J.; Gross, D.; Kianmanesh, R.; Krenning, E.; Knigge, U.; Salazar, R.; Pape, U.-F.; et al. ENETS Consensus Guidelines Update for the Management of Distant Metastatic Disease of Intestinal, Pancreatic, Bronchial Neuroendocrine Neoplasms (NEN) and NEN of Unknown Primary Site. Neuroendocrinology 2016, 103, 172–185. [Google Scholar] [CrossRef] [PubMed]
- Nagtegaal, I.D.; Odze, R.D.; Klimstra, D.; Paradis, V.; Rugge, M.; Schirmacher, P.; Washington, K.M.; Carneiro, F.; Cree, I.A. The 2019 WHO classification of tumours of the digestive system. Histopathology 2020, 76, 182–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Modlin, I.M.; Frilling, A.; Salem, R.R.; Alaimo, D.; Drymousis, P.; Wasan, H.S.; Callahan, S.; Faiz, O.; Weng, L.; Teixeira, N.; et al. Blood measurement of neuroendocrine gene transcripts defines the effectiveness of operative resection and ablation strategies. Surgery 2016, 159, 336–347. [Google Scholar] [CrossRef] [PubMed]
- Bodei, L.; Kidd, M.; Modlin, I.M.; Severi, S.; Drozdov, I.; Nicolini, S.; Kwekkeboom, D.J.; Krenning, E.P.; Baum, R.P.; Paganelli, G. Measurement of circulating transcripts and gene cluster analysis predicts and defines therapeutic efficacy of peptide receptor radionuclide therapy (PRRT) in neuroendocrine tumors. Eur. J. Nucl. Med. Mol. Imaging 2016, 43, 839–851. [Google Scholar] [CrossRef] [Green Version]
- Lapa, C.; Werner, R.A.; Bluemel, C.; Lueckerath, K.; Muegge, D.O.; Strate, A.; Haenscheid, H.; Schirbel, A.; Allen-Auerbach, M.S.; Bundschuh, R.A.; et al. Prediction of clinically relevant hyperkalemia in patients treated with peptide receptor radionuclide therapy. EJNMMI Res. 2014, 4, 74. [Google Scholar] [CrossRef] [Green Version]
- Pfob, C.H.; Eiber, M.; Luppa, P.; Maurer, F.; Maurer, T.; Tauber, R.; D’Alessandria, C.; Feuerecker, B.; Scheidhauer, K.; Ott, A.; et al. Hyperkalemia in patients treated with endoradiotherapy combined with amino acid infusion is associated with severe metabolic acidosis. EJNMMI Res. 2018, 8, 1271. [Google Scholar] [CrossRef] [Green Version]
SSt-As Ligands | Currently Used for… |
---|---|
[Phe1]-octreotide (Oc) | diagnosis |
[Tyr3]-octreotide (TOC) or SMT487 | diagnosis & therapy |
[Tyr3,Thr8]-octreotide o [Tyr3]-octreotate (TATE) | diagnosis &therapy |
[1-Nal3]-octreotide (NOC) | diagnosis |
Radioisotopes | |
γ-emitter: Indium-111 (111In) | diagnosis & dosimetry & therapy |
Technetium-99 m | diagnosis |
β+-emitters: Yttrium-86 (86Y) | dosimetry |
Gallium-68 (68Ga) | diagnosis |
β−-emitters: Yttrium-90 (90Y) | therapy |
Lutetium-177 (177Lu) | dosimetry & therapy |
Chelating Systems | |
DTPA | diagnosis |
DOTA | diagnosis & therapy |
HYNIC | diagnosis |
90Y | 177Lu | ||
---|---|---|---|
Max Energy β− | 2.284 MeV (99.9%) | Max Energy β− | 497.8 keV (100%) |
T1/2 | 64.1 h | T1/2 | 6.6475 d |
β− human tissue range (max) | 11 mm | β− human tissue range (max) | 1.7 mm |
β− human tissue range (mean) | 3.9 mm | β− human tissue range (mean) | 0.23 mm |
Radiopharmaceuticals | Tumor Lesions (mGy/MBq) | Kidneys (mGy/MBq) |
---|---|---|
[177Lu]Lu-DOTATOC | 4.9 (0.3–39.7) | 0.6 (0.3–1.6) |
[177Lu]Lu-DOTATATE | 5.2 (0.1–89.6) | 0.8 (0.3–2.6) |
[177Lu]Lu-DOTANOC | 2.0 (0.5–31.7) | 1.1 (0.6–1.5) |
Autor | Patients | Therapy Response | Survival | Toxicity | Note |
---|---|---|---|---|---|
Kwekkeboom DJ, 2003, [63] | n. 35 GP-NETs | CR: 3% | Nausea and vomiting within the first 24 h after administration in 30% of pts; WHO toxicity grade 3 anaemia, leucocytopenia and thrombocytopenia: 0%, 1% and 1%; Serum creatinine and creatinine clearance did not change significantly. | Patients were treated with doses of 100, 150 or 200 mCi [177Lu]Lu-octreotate, to a final cumulative dose of 600–800 mCi, with treatment intervals of 6–9 weeks | |
PR: 35% | |||||
SD: 41% | |||||
PD: 21% | |||||
Kwekkeboom DJ, 2008, [62] | n. 310 GEP-NETs | CR: 2% | PFS: 33 m OS: 46 m | Hematologic toxicity G3–4: 3.6% MDS: 3 pts; Temporary, nonfatal, liver toxicity: 2 Pts. | Few adverse events, interesting efficacy |
MR 15% | |||||
PR: 28% | |||||
SD: 35% | |||||
PD: 20% | |||||
Sward C, 2010, [64] | n. 26 GEP-NETs | MR + PR: 37% | G3 hematologic toxicity: 3 pts; A significant reduction in GFR (p = 0.0013) was observed during follow-up. | Authors underline the role of absorbed dose to the kidneys as a limiting factor for PRRT. | |
SD: 50% | |||||
PD: 13% | |||||
Garkavij M, 2010, [65] | n. 12 NETs | OR: 17% | Transitory nausea G2: 30%; Vomiting G2: 10%; Abdominal pain G2:6%; Neutropenia G3: 2 pt; Thrombocytopenia G3: 2 pt. | Renal and hematologic toxicity did not indicate any restriction for a more aggressive approach. | |
MR: 25% | |||||
SD: 41% | |||||
PD: 17% | |||||
Bodei L, 2011, [66] | n. 51 NETs | OR: 32.6% | PFS: 36 m | Leucopenia G3: 1 pts; OS at 36 mts: 68%; Thrombocytopenia G3: 1 pts; Median creatinine clearance decrease after PRRT: 6 mts 21.7%, 1 year 23.9%, 2 years 27.6%. | Treatment was well-tolerated and effective. |
CR: 2% | |||||
PR: 27% | |||||
MR + PR: 26% | |||||
SD: 27% | |||||
PD: 18% | |||||
Sowa-Staszczak A, 2011, [67] | n. 46 NETs | PR: 31% | PFS: 37.4 m | During 12 months follow-up, transient decrease of PLT, WBC and haemoglobin values was observed; A transient increase of creatinine level (within normal ranges) and decrease of GFR were found. | NETs [90Y]Y-octreotate therapy results in symptomatic relief and tumour mass reduction; The mild critical organ toxicity does not limit the PRRT of NETs. |
SD: 47% | |||||
PD: 22% | |||||
van Vliet EI, 2012, [68] | n. 42 NETs | DCR: 83% | The tumor markers also decreased significantly after treatment. | ||
van Vliet EI, 2013, [69] | n. 268 NETs | OR: 28% | PFS: 34 m OS: 74 m | Pts with PD as treatment outcome had significantly shorter PFS and OS than patients with an OR or stable disease with all 4 scoring systems; PFS and OS were comparable for pts with tumor regression and stable disease. | Both Response Evaluation Criteria In Solid Tumors (RECIST) (unidimensional) and Southwest Oncology Group (SWOG) solid tumor response criteria (bidimensional) were considered. |
SD: 49% | |||||
PD: 24% | |||||
Sansovini M, 2013, [70] | n. 52 P-NETs | DCR: 81% | The most common AEs were transient hematologic toxicity, nausea, asthenia, and mild alopecia (max G2); G3 renal toxicity: 1 pts. | PFS was significantly longer after a total activity of 27.8 GBq, which can thus be considered the recommended dosage | |
Ezzeddin S, 2014, [71] | n. 74 GEP-NETs | MR: 17.6% | PFS: 26 m OS: 55 m | G3–4 transient myelosuppression: 10%; No irreversible toxicity, including renal toxicity (G3–4), was noted. | Even patients with a Ki-67 index ofg reater than 10% seemed to benefit from PRRT. |
PR: 36.5% | |||||
SD: 35.1% | |||||
PD: 10.8% | |||||
Paganelli G, 2014, [72] | n. 43 GE-NETs | DCR: 84% | PFS: 36 m | The most common AEs were transient hematologic toxicity, nausea, asthenia, and mild alopecia (max G2). | Both activity levels (27.8 GBq and 18.5 GBq) proved safe and effective in all pts. |
CR: 7% | |||||
SD: 77% | |||||
Delpassand ES, 2014, [73] | n. 37 GEP-NETs | MR: 3% | No significant acute or delayed hematologic or renal toxicity was observed. | Treatment was well-tolerated and effective, QOF was also improved. | |
PR: 28% | |||||
SD: 41% | |||||
PD: 28% | |||||
Danthala M, 2014, [74] | n. 40 NETs | MR: 25% | Mild renal toxicity: 1 pt; Carcinoid crisis: 1 pt; Fatal hepatic failure: 1 pt; Myocardial infarction 2 mts after the second cycle: 1 pt. | Best responses were reported when more than 2 cycles were given; Accurate safety controls requested. | |
PR: 32.5% | |||||
SD: 22.5% | |||||
PD: 20% | |||||
Sabet A, 2015, [75] | n. 61 GE-NETs | DCR: 91.8% | PFS: 33 m OS: 61 m | Reversible hematologic toxicity (≥G3): 8.2%; No significant renal toxicity (≥G3) was Observed. | High DCR and long PFS can be achieved with PRRT after failure of standard biotherapy. |
MR: 31.1% | |||||
PR: 13.1% | |||||
SD: 47.5% | |||||
PD: 8.2% | |||||
van Vliet EI, 2015, [76] | n. 29 P-NETs | PFS: 69 m | The median PFS was 69 mo for patients with successful surgery and 49 mo for the other patients; For comparison, the median PFS in 90 other patients with a nonfunctioning pancreatic NET with more than 3 liver metastases or other metastases was 25 mo. | After the treatment with [177Lu]Lu-octreotate, successful surgery was performed in 9 of 29 patients (31%); Neoadjuvant treatment with [177Lu]Lu-octreotate is a valuable option for patients with initially unresectable pancreatic NETs. | |
Strosberg J, 2017, [25] | n. 116 + 113 GE-NETs | OR: 18% | At the cut off date for the primary analysis, the estimated rate of progression-free survival at month 20 was 65.2% in the [177Lu]Lu-octreotate group and 10.8% in the control group. | First phase 3 study: PRRTversus LAR octreotide |
Autor | Patients | Therapy Response | Survival | Toxicity | Note |
---|---|---|---|---|---|
Forrer F, 2005, [77] | n. 27 NETs | MR: 18% | Therapy was well-tolerated. No serious adverse events occurred | [177Lu]Lu-DOTATOC therapy in patients with relapse after [90Y]Y -DOTATOC treatment is feasible, safe, and efficacious | |
PR: 7% | |||||
SD: 44% | |||||
PD: 30% | |||||
Baum RP, 2016, [26] | n. 56 NETs | DCR: 66.1% | PFS: 17.4 OS: 34.2 | There were no serious AEs; One case of self-limiting G3 myelotoxicity was reported; Although 20% of pts had mild renal insufficiency at baseline, there was no evidence of exacerbated or de novo renal toxicity after PRRT. | The observed safety profile suggests a particularly favorable therapeutic index, including in patients with impaired bone marrow or renal function. |
OR: 33.9% | |||||
CR: 16.1% | |||||
Frilling A, 2006, [78] | n. 20 NETs | PR: 25% | After 90Y treatment moderate toxicity was observed in 8 patients; No serious adverse events were documentable. | [177Lu]Lu-DOTATOC and [90Y]Y-DOTATOC treatment; All patients received [90Y]Y-DOTATOC as initial treatment. In case of disease relapse the treatment was repeated with [177Lu]Lu-DOTATOC. | |
SD: 55% | |||||
PD: 20% | |||||
Forrer F, 2008, [79] | n. 28 PGG/FCC | PR: 7% | PFS: 3–42 m | Authors found 1 thrombocytopenia grade 1, and 1 anemia grade 1; No non-hematological toxicity, especially no kidney toxicity occurred. | [177Lu]Lu-DOTATOC and [90Y]Y-DOTATOC treatment; Therapy seems to be less effective than in gastroentero-pancreatic neuroendocrine tumors. |
MR: 25% | |||||
SD: 47% | |||||
PD: 21% | |||||
Pfeifer AK, 2011, [80] | n. 69 NETs | CR: 7.4% | PFS: 29 m | The overall frequency of serious adverse events was low. | [177Lu]Lu-DOTATOC or [90Y]Y-DOTATOC treatment; Pancreatic NET seemed to respond better to PRRT than small intestinal carcinoid tumors (p = 0.03). |
PR: 16.2% | |||||
SD: 61.8% | |||||
PD: 14.4% | |||||
Villard L, 2012, [81] | n. 486 NETs | OS: 3.96–5.51 y | The rates of severe hematologic toxicities (6.3% v 4.4%; p = 0.25) and severe renal toxicity (8.9% v 11.2%; p = 0.47) were comparable in both groups. | [177Lu]Lu-DOTATOC or/and [90Y]Y-DOTATOC treatment; Patients receiving [90Y]Y-DOTATOC + [177Lu]Lu-DOTATOC had a significantly longer survival than patients receiving [90Y]Y-DOTATOC alone (5.51 v 3.96 years; hazard ratio, 0.64; 95% CI, 0.47 to 0.88; p = 0.006). | |
Dumont RA, 2014, [82] | n. 36 GSN | OR: 72.2% | OS: 45.1 m | A total of 21 patients (58.3%) experienced hematotoxicity grade 1/2, while 1 patient (2.8%) experienced hematotoxicity grade 3; no grade 4 hematotoxicity occurred; Furthermore, 2 patients (5.6%) developed grade 4 renal toxicity; no grade 5 renal toxicity occurred. | [177Lu]Lu-DOTATOC and [90Y]Y-DOTATOC treatment; Response to [90Y]Y-DOTATOC and [90Y]Y-DOTATOC plus 177Lu]Lu-DOTATOC therapy is associated with a longer survival in patients with metastasized gastrinoma. |
Romer A, 2014, [83] | n. 1051 NETs | OS: 35.9–45.5 m | The rate of severe transient haematotoxicities was lower after [177Lu]Lu-DOTATOC treatment (1.4 vs. 10.1%, p = 0.001), while the rate of severe permanent renal toxicities was similar in both treatment groups (9.2 vs. 7.8%, p = 0.32) | [177Lu]Lu-DOTATOC or [90Y]Y-DOTATOC treatment; The present results revealed nodifference in median overall survival after [177Lu]Lu-DOTATOC and [90Y]Y-DOTATOC;Furthermore, [177Lu]Lu-DOTATOC was less haematotoxic than [90Y]Y-DOTATOC. | |
Marincek N, 2015, [84] | n. 34 MNG | SD: 68% | OS: 8.6 y | Severe hematotoxicity occurred in 3 patients, and severe renal toxicity in 1 patient. | [177Lu]Lu-DOTATOC and [90Y]Y-DOTATOC treatment; [177Lu]Lu-DOTATOC and [90Y]Y-DOTATOC are promising tools for treating progressive unresectable meningioma, especially in cases of high tracer uptake in the tumor. |
Rodojewski P, 2015, [85] | n. 1449 NETs | OR: 39.3–53.8% | OS: 48.2–64.9 m | [90Y]Y-DOTATOC induced higher hematotoxicity rates than combined treatment (9.5% vs. 4.0%, p = 0.005) or [177Lu]Lu-DOTATOC (9.5 vs. 1.4%, p = 0.002). Renal toxicity was similar among the treatments. | [177Lu]Lu-DOTATOC or/and [90Y]Y-DOTATOC treatment; [90Y]Y-DOTATOC plus [177Lu]Lu-DOTATOC was associated with longer survival than [90Y]Y-DOTATOC or [177Lu]Lu-DOTATOC alone |
Horsch D, 2016, [86] | n. 450 NETs | DCR: 66.1% | PFS: 41 m OS: 38 m | Bone marrow and renal function AEs higher than G3: 0.2–1.5%. | [177Lu]Lu-DOTATOC or/and [90Y]Y-DOTATOC treatment; Treatment was well-tolerated and effective |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uccelli, L.; Boschi, A.; Cittanti, C.; Martini, P.; Panareo, S.; Tonini, E.; Nieri, A.; Urso, L.; Caracciolo, M.; Lodi, L.; et al. 90Y/177Lu-DOTATOC: From Preclinical Studies to Application in Humans. Pharmaceutics 2021, 13, 1463. https://doi.org/10.3390/pharmaceutics13091463
Uccelli L, Boschi A, Cittanti C, Martini P, Panareo S, Tonini E, Nieri A, Urso L, Caracciolo M, Lodi L, et al. 90Y/177Lu-DOTATOC: From Preclinical Studies to Application in Humans. Pharmaceutics. 2021; 13(9):1463. https://doi.org/10.3390/pharmaceutics13091463
Chicago/Turabian StyleUccelli, Licia, Alessandra Boschi, Corrado Cittanti, Petra Martini, Stefano Panareo, Eugenia Tonini, Alberto Nieri, Luca Urso, Matteo Caracciolo, Luca Lodi, and et al. 2021. "90Y/177Lu-DOTATOC: From Preclinical Studies to Application in Humans" Pharmaceutics 13, no. 9: 1463. https://doi.org/10.3390/pharmaceutics13091463
APA StyleUccelli, L., Boschi, A., Cittanti, C., Martini, P., Panareo, S., Tonini, E., Nieri, A., Urso, L., Caracciolo, M., Lodi, L., Carnevale, A., Giganti, M., & Bartolomei, M. (2021). 90Y/177Lu-DOTATOC: From Preclinical Studies to Application in Humans. Pharmaceutics, 13(9), 1463. https://doi.org/10.3390/pharmaceutics13091463