Nanoparticle-Based Therapeutic Strategies for Enhanced Pancreatic Ductal Adenocarcinoma Immunotherapy
Abstract
:1. Introduction
2. Status and Dilemma of Immunotherapy for PDAC
2.1. Status of Immunotherapy for PDAC
Therapeutic Strategy | Phase | Stage | Number of Patients | Objective Response Rate | Median PFS (Months) | Median OS (Months) | Immune-Related Adverse Events (≥Grade 3) | Publication Year | NCT Number | Ref. | |
---|---|---|---|---|---|---|---|---|---|---|---|
Sigle ICI | ipilimumab (anti-CTLA-4) | II | Pre-treated LAPC/mPDAC | 27 | 0 | NA | NA | 11.1% (3/27) | 2010 | NCT00112580 | [32] |
BMS-936559 (anti-PD-L1) | I | advanced PDAC | 14 | 0 | NA | NA | NA | 2012 | NCT00729664 | [33] | |
pembrolizumab (anti-PD-1) | II | advanced PDAC | 22 | 18.2 (all dMMR patients) | 2.1 | 4 | NA | 2020 | NCT01876511 | [34] | |
Double ICIs | durvalumab (anti-PD-L1) + tremelimumab (anti-CTLA-4) vs. durvalumab | II | mPDAC | 32 vs. 33 | 3.1% vs. 0% | 1.5 vs. 1.5 | 3.1 vs. 3.6 | 22% vs. 6% | 2019 | NCT02558894 | [36] |
ICIs + chemotherapy | tremelimumab (anti-CTLA-4) + GEM | I | chemotherapy-naive mPDAC | 34 | 2 PR | NA | 7.4 | NA | 2014 | NCT00556023 | [38] |
ipilimumab (anti-CTLA-4) + GEM | Ib | advanced PDAC | 16 | 43% PR + SD | 2.5 | 8.5 | NA | 2016 | NCT01473940 | [39] | |
ipilimumab (anti-CTLA-4) + GEM | Ib | advanced PDAC | 21 | 14% | 2.78 | 6.9 | 19% | 2020 | NCT01473940 | [19] | |
GEM + Nab-P + pembrolizumab (anti-PD-1) | Ib/II | mPDAC | 17 | 100% PR + SD | 9.1 | 15 | 53% | 2018 | NCT02331251 | [40] | |
nivolumab (anti-PD-1) + GEM + Nab-P | I | advanced PDAC | 50 | 9% | 5.5 | 9.9 | 96% | 2020 | NCT02309177 | [41] | |
sintilimab (anti-PD-1) + FOLFIRINOX vs. FOLFIRINOX | III | metastatic and recurrent PDAC | 55 vs. 55 | 50% vs. 23.9% | 5.9 vs. 5.73 | 10.9 vs. 10.8 | 5.7% (sintilimab + FOLFIRINOX) | 2022 | NCT03977272 | [42] | |
GEM + Nab-P + durvalumab (anti-PD-L1) + tremelimumab (anti-CTLA-4) vs. GEM + Nab-P | II | mPDAC | 119 vs. 61 | 30.3% vs. 23.0% | 5.5 vs. 5.4 | 9.8 vs. 8.8 | 38% vs. 20% | 2020 | NCT02879318 | [43] | |
ICIs + radiotherapy | SBRT + nivolumab (anti-PD-1) vs. SBRT + nivolumab (anti-PD-1) + ipilimumab (anti-CTLA-4) | II | Refractory mPDAC | 41 vs. 43 | clinical benefit rate 17.1% vs. 37.2% | 1.7 vs. 1.6 | 3.8 vs. 3.8 | 24.4% vs. 30.2% | 2022 | NCT02866383 | [49] |
radiation + nivolumab (anti-PD-1) + ipilimumab (anti-CTLA-4) | II | metastatic MSS PDAC | 25 | 18% | 2.7 | 6.1 | 56% | 2021 | NCT03104439 | [50] | |
durvalumab (anti-PD-L1) + SBRT 8 Gy vs. durvalumab (anti-PD-L1) + SBRT 25 Gy vs. durvalumab (anti-PD-L1)/tremelimumab(anti-CTLA-4) + SBRT 8 Gy vs. durvalumab (anti-PD-L1)/tremelimumab(anti-CTLA-4) + SBRT 25 Gy | I | mPDAC | 14 vs. 10 vs. 19 vs. 16 | 5.1% | 1.7 vs. 2.5 vs. 0.9 vs. 2.3 | 3.3 vs. 9.0 vs. 2.1 vs. 4.2 | 7.1% vs. 33.3% vs. 21.1% vs. 62.5% | 2020 | NCT02311361 | [51] |
2.2. Dilemma in Immunotherapy for PDAC
3. Nanoparticle-Based Therapeutic Strategies for Enhanced PDAC Immunotherapy
3.1. Nanoparticle-Based Immunogenic Cell Death Strategies for Enhanced PDAC Immunotherapy
3.2. Nanoparticle-Based Immune Modulation Strategies for Enhanced PDAC Immunotherapy
3.3. Nanoparticle-Based Chemoimmunotherapy for Enhanced PDAC Immunotherapy
3.4. Nanoparticle-Based Stroma Modulation for Enhanced PDAC Immunotherapy
3.5. Nanoparticle-Based Photothermal/Photodynamic/Chemodynamic/Sonodynamic Therapy for Enhanced PDAC Immunotherapy
3.6. Nanoparticle-Based Imaging and Theranostic Agents for PDAC Immunotherapy
4. Conclusions and Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
ACI | adoptive cellular immunotherapy |
ACT | adoptive cell transfer |
APC | antigen-presenting cell |
CAF | cancer-associated fibroblast |
CDT | chemodynamic therapy |
CSF-1 | colony-stimulating factor-1 |
CSF-1R | colony-stimulating factor-1 receptor |
CTL | cytotoxic T cell lymphocyte |
CTLA-4 | cytotoxic T-lymphocyte-associated protein 4 |
CXCL12 | chemokine C-X-C motif ligand 12 |
DAMPs | damage-associated molecular patterns |
DC | dendritic cell |
dMMR | mismatch repair-deficient |
ECM | extracellular matrix |
5-FU | 6-5-fluorouracil |
HA | hyaluronic acid |
HA | hyaluronic acid |
ICD | Immunogenic cell death |
ICI | immune checkpoint inhibitor |
IDO | indoleamine 2,3-dioxygenase |
IFP | interstitial fluid pressure |
IL-10 | Interleukin-10 |
IL-12 | Interleukin-12 |
immuno-NP | immunostimulatory nanoparticle |
LMWH | low-molecular-weight heparin |
MDSC | myeloid-derived suppressor cells |
MP | phosphate-modified α-mangostin |
MSI-H | high microsatellite instability |
MSNP | mesoporous silica nanoparticle |
Nab | nano-albumin bound |
ORR | overall response rate |
OS | overall survival |
PD-1 | programmed cell death protein-1 |
PDAC | pancreatic ductal adenocarcinoma |
PD-L1 | programmed cell death ligand-1 |
PDT | photodynamic therapy |
PEG | polyethyleneglycol |
PEI | polyethylenimine |
PEI | polyethylenimine |
PFS | progression-free survival |
PR | partial response |
PSC | pancreatic stellate cells |
PTT | photothermal therapy |
RIG-I | retinoic acid-inducible gene I |
RLR | retinoic acid-inducible gene I-like receptor |
SBRT | stereotactic body radiotherapy |
SD | stable disease |
SDT | sonodynamic therapy |
SHH | sonic hedgehog |
TAM | tumor-associated macrophage |
TDLN | tumor-draining lymph node |
TIL | tumor-infiltrating lymphocyte |
TIME | tumor immune microenvironment |
TME | tumor microenvironment |
Treg | regulatory T cell |
FAK | focal adhesion kinase |
EPR | enhanced permeability and retention |
NIR | near-infrared |
IPTT | interventional PTT |
MRI | magnetic resonance imaging |
ION | iron oxide nanoparticle |
ICG | indocyanine green |
IMQ | immunoadjuvant imiquimod |
ROS | reactive oxygen species |
BRD4i | bromodomains, and extraterminal protein 4 inhibitor |
R-Exo | S-reassembled exosome |
CT | computed tomography |
PET | positron emission tomography |
IGF1R | insulin-like growth factor 1 receptor receptor |
IGF1 | insulin-like growth factor 1 |
PDX | patient-derived xenograft |
ION | Iron oxide nanoparticle |
STAT3 | signal transducer and activator of transcription 3 |
TGF-β | transforming growth factor-beta |
CXCR4 | C-X-C chemokine receptor 4 |
CCR7 | chemokine receptor 7 |
References
- Mizrahi, J.D.; Surana, R.; Valle, J.W.; Shroff, R.T. Pancreatic cancer. Lancet 2020, 395, 2008–2020. [Google Scholar] [CrossRef]
- Park, W.; Chawla, A.; O’Reilly, E.M. Pancreatic Cancer: A Review. JAMA 2021, 326, 851–862. [Google Scholar] [CrossRef]
- Neoptolemos, J.P.; Kleeff, J.; Michl, P.; Costello, E.; Greenhalf, W.; Palmer, D.H. Therapeutic developments in pancreatic cancer: Current and future perspectives. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 333–348. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarti, S.; Kamgar, M.; Mahipal, A. Systemic Therapy of Metastatic Pancreatic Adenocarcinoma: Current Status, Challenges, and Opportunities. Cancers 2022, 14, 2588. [Google Scholar] [CrossRef]
- Schizas, D.; Charalampakis, N.; Kole, C.; Economopoulou, P.; Koustas, E.; Gkotsis, E.; Ziogas, D.; Psyrri, A.; Karamouzis, M.V. Immunotherapy for pancreatic cancer: A 2020 update. Cancer Treat. Rev. 2020, 86, 102016. [Google Scholar] [CrossRef]
- Götze, J.; Nitschke, C.; Uzunoglu, F.G.; Pantel, K.; Sinn, M.; Wikman, H. Tumor-Stroma Interaction in PDAC as a New Approach for Liquid Biopsy and its Potential Clinical Implications. Front. Cell Dev. Biol. 2022, 10, 918795. [Google Scholar] [CrossRef] [PubMed]
- Mace, T.A.; Ameen, Z.; Collins, A.; Wojcik, S.; Mair, M.; Young, G.S.; Fuchs, J.R.; Eubank, T.D.; Frankel, W.L.; Bekaii-Saab, T.; et al. Pancreatic cancer-associated stellate cells promote differentiation of myeloid-derived suppressor cells in a STAT3-dependent manner. Cancer Res. 2013, 73, 3007–3018. [Google Scholar] [CrossRef] [PubMed]
- Di Federico, A.; Mosca, M.; Pagani, R.; Carloni, R.; Frega, G.; De Giglio, A.; Rizzo, A.; Ricci, D.; Tavolari, S.; Di Marco, M.; et al. Immunotherapy in Pancreatic Cancer: Why Do We Keep Failing? A Focus on Tumor Immune Microenvironment, Predictive Biomarkers and Treatment Outcomes. Cancers 2022, 14, 2429. [Google Scholar] [CrossRef] [PubMed]
- Herting, C.J.; Karpovsky, I.; Lesinski, G.B. The tumor microenvironment in pancreatic ductal adenocarcinoma: Current perspectives and future directions. Cancer Metastasis Rev. 2021, 40, 675–689. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Xu, H.X.; Wu, C.T.; Wang, W.Q.; Jin, W.; Gao, H.L.; Li, H.; Zhang, S.R.; Xu, J.Z.; Qi, Z.H.; et al. Angiogenesis in pancreatic cancer: Current research status and clinical implications. Angiogenesis 2019, 22, 15–36. [Google Scholar] [CrossRef] [PubMed]
- Morrison, A.H.; Byrne, K.T.; Vonderheide, R.H. Immunotherapy and Prevention of Pancreatic Cancer. Trends Cancer 2018, 4, 418–428. [Google Scholar] [CrossRef] [PubMed]
- Ino, Y.; Yamazaki-Itoh, R.; Shimada, K.; Iwasaki, M.; Kosuge, T.; Kanai, Y.; Hiraoka, N. Immune cell infiltration as an indicator of the immune microenvironment of pancreatic cancer. Br. J. Cancer 2013, 108, 914–923. [Google Scholar] [CrossRef]
- Bu, F.; Nie, H.; Zhu, X.; Wu, T.; Lin, K.; Zhao, J.; Huang, J. A signature of 18 immune-related gene pairs to predict the prognosis of pancreatic cancer patients. Immun. Inflamm. Dis. 2020, 8, 713–726. [Google Scholar] [CrossRef]
- Ota, S.; Miyashita, M.; Yamagishi, Y.; Ogasawara, M. Baseline immunity predicts prognosis of pancreatic cancer patients treated with WT1 and/or MUC1 peptide-loaded dendritic cell vaccination and a standard chemotherapy. Hum. Vaccines Immunother. 2021, 17, 5563–5572. [Google Scholar] [CrossRef] [PubMed]
- Sadozai, H.; Acharjee, A.; Eppenberger-Castori, S.; Gloor, B.; Gruber, T.; Schenk, M.; Karamitopoulou, E. Distinct Stromal and Immune Features Collectively Contribute to Long-Term Survival in Pancreatic Cancer. Front. Immunol. 2021, 12, 643529. [Google Scholar] [CrossRef] [PubMed]
- Balachandran, V.P.; Łuksza, M.; Zhao, J.N.; Makarov, V.; Moral, J.A.; Remark, R.; Herbst, B.; Askan, G.; Bhanot, U.; Senbabaoglu, Y.; et al. Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature 2017, 551, 512–516. [Google Scholar] [CrossRef]
- Zhu, X.; Cao, Y.; Liu, W.; Ju, X.; Zhao, X.; Jiang, L.; Ye, Y.; Jin, G.; Zhang, H. Stereotactic body radiotherapy plus pembrolizumab and trametinib versus stereotactic body radiotherapy plus gemcitabine for locally recurrent pancreatic cancer after surgical resection: An open-label, randomised, controlled, phase 2 trial. Lancet Oncol. 2021, 22, 1093–1102. [Google Scholar] [CrossRef]
- Byrne, K.T.; Betts, C.B.; Mick, R.; Sivagnanam, S.; Bajor, D.L.; Laheru, D.A.; Chiorean, E.G.; O’Hara, M.H.; Liudahl, S.M.; Newcomb, C.; et al. Neoadjuvant Selicrelumab, an Agonist CD40 Antibody, Induces Changes in the Tumor Microenvironment in Patients with Resectable Pancreatic Cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2021, 27, 4574–4586. [Google Scholar] [CrossRef]
- Kamath, S.D.; Kalyan, A.; Kircher, S.; Nimeiri, H.; Fought, A.J.; Benson, A., 3rd; Mulcahy, M. Ipilimumab and Gemcitabine for Advanced Pancreatic Cancer: A Phase Ib Study. Oncology 2020, 25, e808–e815. [Google Scholar] [CrossRef]
- Krenz, B.; Gebhardt-Wolf, A.; Ade, C.P.; Gaballa, A.; Roehrig, F.; Vendelova, E.; Baluapuri, A.; Eilers, U.; Gallant, P.; D’Artista, L.; et al. MYC- and MIZ1-Dependent Vesicular Transport of Double-Strand RNA Controls Immune Evasion in Pancreatic Ductal Adenocarcinoma. Cancer Res. 2021, 81, 4242–4256. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Chang, H.; Nam, G.; Ko, Y.; Kim, S.H.; Roberts, T.M.; Ryu, J.H. RNAi-Based Approaches for Pancreatic Cancer Therapy. Pharmaceutics 2021, 13, 1638. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Zhou, Y.; Chen, X.; Ning, T.; Chen, H.; Guo, Q.; Zhang, Y.; Liu, P.; Zhang, Y.; Li, C.; et al. Pancreatic cancer-targeting exosomes for enhancing immunotherapy and reprogramming tumor microenvironment. Biomaterials 2021, 268, 120546. [Google Scholar] [CrossRef]
- Lakkakula, S.; Chalikonda, G.; Lakkakula, B. Nanoparticles in Pancreatic Cancer Imaging and Therapy. Crit. Rev. Oncog. 2019, 24, 139–148. [Google Scholar] [CrossRef]
- Yardley, D.A. Nab-Paclitaxel mechanisms of action and delivery. J. Control. Release Off. J. Control. Release Soc. 2013, 170, 365–372. [Google Scholar] [CrossRef] [PubMed]
- Von Hoff, D.D.; Ervin, T.; Arena, F.P.; Chiorean, E.G.; Infante, J.; Moore, M.; Seay, T.; Tjulandin, S.A.; Ma, W.W.; Saleh, M.N.; et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N. Engl. J. Med. 2013, 369, 1691–1703. [Google Scholar] [CrossRef] [PubMed]
- Frampton, J.E. Liposomal Irinotecan: A Review in Metastatic Pancreatic Adenocarcinoma. Drugs 2020, 80, 1007–1018. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Kshirsagar, P.G.; Gautam, S.K.; Gulati, M.; Wafa, E.I.; Christiansen, J.C.; White, B.M.; Mallapragada, S.K.; Wannemuehler, M.J.; Kumar, S.; et al. Nanocarriers for pancreatic cancer imaging, treatments, and immunotherapies. Theranostics 2022, 12, 1030–1060. [Google Scholar] [CrossRef] [PubMed]
- Jia, M.; Zhang, D.; Zhang, C.; Li, C. Nanoparticle-based delivery systems modulate the tumor microenvironment in pancreatic cancer for enhanced therapy. J. Nanobiotechnol. 2021, 19, 384. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, Z. The history and advances in cancer immunotherapy: Understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell. Mol. Immunol. 2020, 17, 807–821. [Google Scholar] [CrossRef] [PubMed]
- Bagchi, S.; Yuan, R.; Engleman, E.G. Immune Checkpoint Inhibitors for the Treatment of Cancer: Clinical Impact and Mechanisms of Response and Resistance. Annu. Rev. Pathol. 2021, 16, 223–249. [Google Scholar] [CrossRef] [PubMed]
- Hou, W.; Zhou, X.; Yi, C.; Zhu, H. Immune Check Point Inhibitors and Immune-Related Adverse Events in Small Cell Lung Cancer. Front. Oncol. 2021, 11, 604227. [Google Scholar] [CrossRef] [PubMed]
- Royal, R.E.; Levy, C.; Turner, K.; Mathur, A.; Hughes, M.; Kammula, U.S.; Sherry, R.M.; Topalian, S.L.; Yang, J.C.; Lowy, I.; et al. Phase 2 trial of single agent Ipilimumab (anti-CTLA-4) for locally advanced or metastatic pancreatic adenocarcinoma. J. Immunother. 2010, 33, 828–833. [Google Scholar] [CrossRef]
- Brahmer, J.R.; Tykodi, S.S.; Chow, L.Q.; Hwu, W.J.; Topalian, S.L.; Hwu, P.; Drake, C.G.; Camacho, L.H.; Kauh, J.; Odunsi, K.; et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 2012, 366, 2455–2465. [Google Scholar] [CrossRef] [PubMed]
- Marabelle, A.; Le, D.T.; Ascierto, P.A.; Di Giacomo, A.M.; De Jesus-Acosta, A.; Delord, J.P.; Geva, R.; Gottfried, M.; Penel, N.; Hansen, A.R.; et al. Efficacy of Pembrolizumab in Patients with Noncolorectal High Microsatellite Instability/Mismatch Repair-Deficient Cancer: Results From the Phase II KEYNOTE-158 Study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2020, 38, 1–10. [Google Scholar] [CrossRef]
- Ahmad-Nielsen, S.A.; Bruun Nielsen, M.F.; Mortensen, M.B.; Detlefsen, S. Frequency of mismatch repair deficiency in pancreatic ductal adenocarcinoma. Pathol. Res. Pract. 2020, 216, 152985. [Google Scholar] [CrossRef]
- O’Reilly, E.M.; Oh, D.Y.; Dhani, N.; Renouf, D.J.; Lee, M.A.; Sun, W.; Fisher, G.; Hezel, A.; Chang, S.C.; Vlahovic, G.; et al. Durvalumab with or without Tremelimumab for Patients with Metastatic Pancreatic Ductal Adenocarcinoma: A Phase 2 Randomized Clinical Trial. JAMA Oncol. 2019, 5, 1431–1438. [Google Scholar] [CrossRef]
- Deshmukh, S.K.; Tyagi, N.; Khan, M.A.; Srivastava, S.K.; Al-Ghadhban, A.; Dugger, K.; Carter, J.E.; Singh, S.; Singh, A.P. Gemcitabine treatment promotes immunosuppressive microenvironment in pancreatic tumors by supporting the infiltration, growth, and polarization of macrophages. Sci. Rep. 2018, 8, 12000. [Google Scholar] [CrossRef]
- Aglietta, M.; Barone, C.; Sawyer, M.B.; Moore, M.J.; Miller, W.H., Jr.; Bagalà, C.; Colombi, F.; Cagnazzo, C.; Gioeni, L.; Wang, E.; et al. A phase I dose escalation trial of tremelimumab (CP-675,206) in combination with gemcitabine in chemotherapy-naive patients with metastatic pancreatic cancer. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2014, 25, 1750–1755. [Google Scholar] [CrossRef]
- Kalyan, A.; Kircher, S.M.; Mohindra, N.A.; Nimeiri, H.S.; Maurer, V.; Rademaker, A.; Benson, A.B.; Mulcahy, M.F. Ipilimumab and gemcitabine for advanced pancreas cancer: A phase Ib study. J. Clin. Oncol. 2016, 34 (Suppl. S5), e15747. [Google Scholar] [CrossRef]
- Weiss, G.J.; Blaydorn, L.; Beck, J.; Bornemann-Kolatzki, K.; Urnovitz, H.; Schütz, E.; Khemka, V. Phase Ib/II study of gemcitabine, nab-paclitaxel, and pembrolizumab in metastatic pancreatic adenocarcinoma. Investig. New Drugs 2018, 36, 96–102. [Google Scholar] [CrossRef]
- Wainberg, Z.A.; Hochster, H.S.; Kim, E.J.; George, B.; Kaylan, A.; Chiorean, E.G.; Waterhouse, D.M.; Guiterrez, M.; Parikh, A.; Jain, R.; et al. Open-label, Phase I Study of Nivolumab Combined with nab-Paclitaxel Plus Gemcitabine in Advanced Pancreatic Cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2020, 26, 4814–4822. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Chen, Y.; Huang, D.; Guo, C.; Zhang, Q.; Li, X.; Zhang, X.; Gao, S.; Que, R.; Shen, Y.; et al. Randomized phase III study of sintilimab in combination with modified folfrinox versus folfrinox alone in patients with metastatic and recurrent pancreatic cancer in China: The CISPD3 trial. J. Clin. Oncol. 2022, 40 (Suppl. S4), 560. [Google Scholar] [CrossRef]
- Renouf, D.J.; Loree, J.M.; Knox, J.J.; Kavan, P.; Jonker, D.J.; Welch, S.; Couture, F.; Lemay, F.; Tehfe, M.; Harb, M.; et al. Predictive value of germline ATM mutations in the CCTG PA.7 trial: Gemcitabine (GEM) and nab-paclitaxel (Nab-P) versus GEM, nab-P, durvalumab (D) and tremelimumab (T) as first-line therapy in metastatic pancreatic ductal adenocarcinoma (mPDAC). J. Clin. Oncol. 2021, 39 (Suppl. S15), 4135. [Google Scholar] [CrossRef]
- Luo, W.; Wang, Y.; Zhang, T. Win or loss? Combination therapy does improve the oncolytic virus therapy to pancreatic cancer. Cancer Cell Int. 2022, 22, 160. [Google Scholar] [CrossRef] [PubMed]
- Lum, L.G.; Thakur, A.; Choi, M.; Deol, A.; Kondadasula, V.; Schalk, D.; Fields, K.; Dufrense, M.; Philip, P.; Dyson, G.; et al. Clinical and immune responses to anti-CD3 x anti-EGFR bispecific antibody armed activated T cells (EGFR BATs) in pancreatic cancer patients. Oncoimmunology 2020, 9, 1773201. [Google Scholar] [CrossRef]
- Middleton, G.; Silcocks, P.; Cox, T.; Valle, J.; Wadsley, J.; Propper, D.; Coxon, F.; Ross, P.; Madhusudan, S.; Roques, T.; et al. Gemcitabine and capecitabine with or without telomerase peptide vaccine GV1001 in patients with locally advanced or metastatic pancreatic cancer (TeloVac): An open-label, randomised, phase 3 trial. Lancet Oncol. 2014, 15, 829–840. [Google Scholar] [CrossRef]
- Lucia, F.; Geier, M.; Schick, U.; Bourbonne, V. Narrative Review of Synergistics Effects of Combining Immunotherapy and Stereotactic Radiation Therapy. Biomedicines 2022, 10, 1414. [Google Scholar] [CrossRef]
- Stump, C.T.; Roehle, K.; Manjarrez Orduno, N.; Dougan, S.K. Radiation combines with immune checkpoint blockade to enhance T cell priming in a murine model of poorly immunogenic pancreatic cancer. Open Biol. 2021, 11, 210245. [Google Scholar] [CrossRef]
- Chen, I.M.; Johansen, J.S.; Theile, S.; Hjaltelin, J.X.; Novitski, S.I.; Brunak, S.; Hasselby, J.P.; Willemoe, G.L.; Lorentzen, T.; Madsen, K.; et al. Randomized Phase II Study of Nivolumab with or without Ipilimumab Combined with Stereotactic Body Radiotherapy for Refractory Metastatic Pancreatic Cancer (CheckPAC). J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2022, 40, 3180–3189. [Google Scholar] [CrossRef]
- Parikh, A.R.; Szabolcs, A.; Allen, J.N.; Clark, J.W.; Wo, J.Y.; Raabe, M.; Thel, H.; Hoyos, D.; Mehta, A.; Arshad, S.; et al. Radiation therapy enhances immunotherapy response in microsatellite stable colorectal and pancreatic adenocarcinoma in a phase II trial. Nat. Cancer 2021, 2, 1124–1135. [Google Scholar] [CrossRef]
- Xie, C.; Duffy, A.G.; Brar, G.; Fioravanti, S.; Mabry-Hrones, D.; Walker, M.; Bonilla, C.M.; Wood, B.J.; Citrin, D.E.; Gil Ramirez, E.M.; et al. Immune Checkpoint Blockade in Combination with Stereotactic Body Radiotherapy in Patients with Metastatic Pancreatic Ductal Adenocarcinoma. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2020, 26, 2318–2326. [Google Scholar] [CrossRef] [PubMed]
- Brouwer, T.P.; Vahrmeijer, A.L.; de Miranda, N. Immunotherapy for pancreatic cancer: Chasing the light at the end of the tunnel. Cell. Oncol. 2021, 44, 261–278. [Google Scholar] [CrossRef] [PubMed]
- Yin, C.; Alqahtani, A.; Noel, M.S. The Next Frontier in Pancreatic Cancer: Targeting the Tumor Immune Milieu and Molecular Pathways. Cancers 2022, 14, 2619. [Google Scholar] [CrossRef] [PubMed]
- Alexandrov, L.B.; Nik-Zainal, S.; Wedge, D.C.; Aparicio, S.A.; Behjati, S.; Biankin, A.V.; Bignell, G.R.; Bolli, N.; Borg, A.; Børresen-Dale, A.L.; et al. Signatures of mutational processes in human cancer. Nature 2013, 500, 415–421. [Google Scholar] [CrossRef]
- Muller, M.; Haghnejad, V.; Schaefer, M.; Gauchotte, G.; Caron, B.; Peyrin-Biroulet, L.; Bronowicki, J.P.; Neuzillet, C.; Lopez, A. The Immune Landscape of Human Pancreatic Ductal Carcinoma: Key Players, Clinical Implications, and Challenges. Cancers 2022, 14, 995. [Google Scholar] [CrossRef]
- Öhlund, D.; Handly-Santana, A.; Biffi, G.; Elyada, E.; Almeida, A.S.; Ponz-Sarvise, M.; Corbo, V.; Oni, T.E.; Hearn, S.A.; Lee, E.J.; et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J. Exp. Med. 2017, 214, 579–596. [Google Scholar] [CrossRef]
- Thomas, D.; Radhakrishnan, P. Tumor-stromal crosstalk in pancreatic cancer and tissue fibrosis. Mol. Cancer 2019, 18, 14. [Google Scholar] [CrossRef]
- Murphy, K.J.; Chambers, C.R.; Herrmann, D.; Timpson, P.; Pereira, B.A. Dynamic Stromal Alterations Influence Tumor-Stroma Crosstalk to Promote Pancreatic Cancer and Treatment Resistance. Cancers 2021, 13, 3481. [Google Scholar] [CrossRef]
- Rhim, A.D.; Oberstein, P.E.; Thomas, D.H.; Mirek, E.T.; Palermo, C.F.; Sastra, S.A.; Dekleva, E.N.; Saunders, T.; Becerra, C.P.; Tattersall, I.W.; et al. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell 2014, 25, 735–747. [Google Scholar] [CrossRef]
- Tao, J.; Yang, G.; Zhou, W.; Qiu, J.; Chen, G.; Luo, W.; Zhao, F.; You, L.; Zheng, L.; Zhang, T.; et al. Targeting hypoxic tumor microenvironment in pancreatic cancer. J. Hematol. Oncol. 2021, 14, 14. [Google Scholar] [CrossRef]
- Garcia, C.J.G.; Huang, Y.; Fuentes, N.R.; Turner, M.C.; Monberg, M.E.; Lin, D.; Nguyen, N.D.; Fujimoto, T.N.; Zhao, J.; Lee, J.J.; et al. Stromal HIF2 Regulates Immune Suppression in the Pancreatic Cancer Microenvironment. Gastroenterology 2022, 162, 2018–2031. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wang, X.; Chen, L.; Wang, J.; Zhang, J.; Tang, J.; Ji, Y.; Song, J.; Wang, L.; Zhao, Y.; et al. Oxygen microcapsules improve immune checkpoint blockade by ameliorating hypoxia condition in pancreatic ductal adenocarcinoma. Bioact. Mater. 2022, 20, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Hegde, A.; Jayaprakash, P.; Couillault, C.A.; Piha-Paul, S.; Karp, D.; Rodon, J.; Pant, S.; Fu, S.; Dumbrava, E.E.; Yap, T.A.; et al. A Phase I Dose-Escalation Study to Evaluate the Safety and Tolerability of Evofosfamide in Combination with Ipilimumab in Advanced Solid Malignancies. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2021, 27, 3050–3060. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Q.; Hong, Y. Tumor Vessel Normalization: A Window to Enhancing Cancer Immunotherapy. Technol. Cancer Res. Treat. 2020, 19, 1533033820980116. [Google Scholar] [CrossRef]
- Nagathihalli, N.S.; Castellanos, J.A.; Shi, C.; Beesetty, Y.; Reyzer, M.L.; Caprioli, R.; Chen, X.; Walsh, A.J.; Skala, M.C.; Moses, H.L.; et al. Signal Transducer and Activator of Transcription 3, Mediated Remodeling of the Tumor Microenvironment Results in Enhanced Tumor Drug Delivery in a Mouse Model of Pancreatic Cancer. Gastroenterology 2015, 149, 1932–1943.e1939. [Google Scholar] [CrossRef] [PubMed]
- Gilles, M.E.; Maione, F.; Cossutta, M.; Carpentier, G.; Caruana, L.; Di Maria, S.; Houppe, C.; Destouches, D.; Shchors, K.; Prochasson, C.; et al. Nucleolin Targeting Impairs the Progression of Pancreatic Cancer and Promotes the Normalization of Tumor Vasculature. Cancer Res. 2016, 76, 7181–7193. [Google Scholar] [CrossRef]
- Giordano, G.; Pancione, M.; Olivieri, N.; Parcesepe, P.; Velocci, M.; Di Raimo, T.; Coppola, L.; Toffoli, G.; D’Andrea, M.R. Nano albumin bound-paclitaxel in pancreatic cancer: Current evidences and future directions. World J. Gastroenterol. 2017, 23, 5875–5886. [Google Scholar] [CrossRef]
- Bhaw-Luximon, A.; Jhurry, D. New avenues for improving pancreatic ductal adenocarcinoma (PDAC) treatment: Selective stroma depletion combined with nano drug delivery. Cancer Lett. 2015, 369, 266–273. [Google Scholar] [CrossRef]
- Meng, H.; Nel, A.E. Use of nano engineered approaches to overcome the stromal barrier in pancreatic cancer. Adv. Drug Deliv. Rev. 2018, 130, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Tang, X.; Zhao, W.; Qiu, Y.; He, J.; Wan, D.; Li, J.; Wang, X.; He, X.; Liu, Y.; et al. Mild hyperthermia promotes immune checkpoint blockade-based immunotherapy against metastatic pancreatic cancer using size-adjustable nanoparticles. Acta Biomater. 2021, 133, 244–256. [Google Scholar] [CrossRef]
- Li, S.; Zhang, W.; Xing, R.; Yuan, C.; Xue, H.; Yan, X. Supramolecular Nanofibrils Formed by Coassembly of Clinically Approved Drugs for Tumor Photothermal Immunotherapy. Adv. Mater. 2021, 33, e2100595. [Google Scholar] [CrossRef]
- Sun, J.; Wan, Z.; Xu, J.; Luo, Z.; Ren, P.; Zhang, B.; Diao, D.; Huang, Y.; Li, S. Tumor size-dependent abscopal effect of polydopamine-coated all-in-one nanoparticles for immunochemo-photothermal therapy of early- and late-stage metastatic cancer. Biomaterials 2021, 269, 120629. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Li, Y.; Wang, M.; Liu, K.; Hoover, A.R.; Li, M.; Towner, R.A.; Mukherjee, P.; Zhou, F.; Qu, J.; et al. Synergistic interventional photothermal therapy and immunotherapy using an iron oxide nanoplatform for the treatment of pancreatic cancer. Acta Biomater. 2022, 138, 453–462. [Google Scholar] [CrossRef]
- Sun, F.; Zhu, Q.; Li, T.; Saeed, M.; Xu, Z.; Zhong, F.; Song, R.; Huai, M.; Zheng, M.; Xie, C.; et al. Regulating Glucose Metabolism with Prodrug Nanoparticles for Promoting Photoimmunotherapy of Pancreatic Cancer. Adv. Sci. 2021, 8, 2002746. [Google Scholar] [CrossRef]
- Jang, Y.; Kim, H.; Yoon, S.; Lee, H.; Hwang, J.; Jung, J.; Chang, J.H.; Choi, J.; Kim, H. Exosome-based photoacoustic imaging guided photodynamic and immunotherapy for the treatment of pancreatic cancer. J. Control. Release Off. J. Control. Release Soc. 2021, 330, 293–304. [Google Scholar] [CrossRef] [PubMed]
- Nicholas, D.; Nesbitt, H.; Farrell, S.; Logan, K.; McMullin, E.; Gillan, T.; Kelly, P.; O’Rourke, D.; Porter, S.; Thomas, K.; et al. Exploiting a Rose Bengal-bearing, oxygen-producing nanoparticle for SDT and associated immune-mediated therapeutic effects in the treatment of pancreatic cancer. Eur. J. Pharm. Biopharm. Off. J. Arb. Fur Pharm. Verfahr. Ev 2021, 163, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Feng, L.; Jin, P.; Shen, J.; Lu, J.; Song, Y.; Wang, G.; Chen, Q.; Huang, D.; Zhang, Y.; et al. Cavitation assisted endoplasmic reticulum targeted sonodynamic droplets to enhanced anti-PD-L1 immunotherapy in pancreatic cancer. J. Nanobiotechnol. 2022, 20, 283. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, Y.; Zhou, S.; Sun, M.; Chen, L.; Wang, J.; Xu, M.; Liu, S.; Liang, K.; Zhang, Q.; et al. Tailored Chemodynamic Nanomedicine Improves Pancreatic Cancer Treatment via Controllable Damaging Neoplastic Cells and Reprogramming Tumor Microenvironment. Nano Lett. 2020, 20, 6780–6790. [Google Scholar] [CrossRef]
- Zhao, X.; Yang, K.; Zhao, R.; Ji, T.; Wang, X.; Yang, X.; Zhang, Y.; Cheng, K.; Liu, S.; Hao, J.; et al. Inducing enhanced immunogenic cell death with nanocarrier-based drug delivery systems for pancreatic cancer therapy. Biomaterials 2016, 102, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Jiang, J.; Chang, C.H.; Liao, Y.P.; Lodico, J.J.; Tang, I.; Zheng, E.; Qiu, W.; Lin, M.; Wang, X.; et al. Development of Facile and Versatile Platinum Drug Delivering Silicasome Nanocarriers for Efficient Pancreatic Cancer Chemo-Immunotherapy. Small 2021, 17, e2005993. [Google Scholar] [CrossRef]
- Shen, J.; Sun, C.; Wang, Z.; Chu, Z.; Liu, C.; Xu, X.; Xia, M.; Zhao, M.; Wang, C. Sequential receptor-mediated mixed-charge nanomedicine to target pancreatic cancer, inducing immunogenic cell death and reshaping the tumor microenvironment. Int. J. Pharm. 2021, 601, 120553. [Google Scholar] [CrossRef] [PubMed]
- Parayath, N.N.; Hong, B.V.; Mackenzie, G.G.; Amiji, M.M. Hyaluronic acid nanoparticle-encapsulated microRNA-125b repolarizes tumor-associated macrophages in pancreatic cancer. Nanomedicine 2021, 16, 2291–2303. [Google Scholar] [CrossRef]
- Li, M.; Li, M.; Yang, Y.; Liu, Y.; Xie, H.; Yu, Q.; Tian, L.; Tang, X.; Ren, K.; Li, J.; et al. Remodeling tumor immune microenvironment via targeted blockade of PI3K-γ and CSF-1/CSF-1R pathways in tumor associated macrophages for pancreatic cancer therapy. J. Control. Release Off. J. Control. Release Soc. 2020, 321, 23–35. [Google Scholar] [CrossRef]
- Cao, S.; Saw, P.E.; Shen, Q.; Li, R.; Liu, Y.; Xu, X. Reduction-responsive RNAi nanoplatform to reprogram tumor lipid metabolism and repolarize macrophage for combination pancreatic cancer therapy. Biomaterials 2022, 280, 121264. [Google Scholar] [CrossRef]
- Lu, Z.; Long, Y.; Wang, Y.; Wang, X.; Xia, C.; Li, M.; Zhang, Z.; He, Q. Phenylboronic acid modified nanoparticles simultaneously target pancreatic cancer and its metastasis and alleviate immunosuppression. Eur. J. Pharm. Biopharm. Off. J. Arb. Fur Pharm. Verfahr. Ev 2021, 165, 164–173. [Google Scholar] [CrossRef] [PubMed]
- Lorkowski, M.E.; Atukorale, P.U.; Bielecki, P.A.; Tong, K.H.; Covarrubias, G.; Zhang, Y.; Loutrianakis, G.; Moon, T.J.; Santulli, A.R.; Becicka, W.M.; et al. Immunostimulatory nanoparticle incorporating two immune agonists for the treatment of pancreatic tumors. J. Control. Release Off. J. Control. Release Soc. 2021, 330, 1095–1105. [Google Scholar] [CrossRef] [PubMed]
- Miao, L.; Li, J.; Liu, Q.; Feng, R.; Das, M.; Lin, C.M.; Goodwin, T.J.; Dorosheva, O.; Liu, R.; Huang, L. Transient and Local Expression of Chemokine and Immune Checkpoint Traps to Treat Pancreatic Cancer. ACS Nano 2017, 11, 8690–8706. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Li, J.; Liu, Q.; Song, W.; Zhang, X.; Tiruthani, K.; Hu, H.; Das, M.; Goodwin, T.J.; Liu, R.; et al. Local Blockade of Interleukin 10 and C-X-C Motif Chemokine Ligand 12 with Nano-Delivery Promotes Antitumor Response in Murine Cancers. ACS Nano 2018, 12, 9830–9841. [Google Scholar] [CrossRef]
- Das, M.; Shen, L.; Liu, Q.; Goodwin, T.J.; Huang, L. Nanoparticle Delivery of RIG-I Agonist Enables Effective and Safe Adjuvant Therapy in Pancreatic Cancer. Molecular therapy: J. Am. Soc. Gene Ther. 2019, 27, 507–517. [Google Scholar] [CrossRef] [PubMed]
- Han, B.J.; Murphy, J.D.; Qin, S.; Ye, J.; Uccello, T.P.; Garrett-Larsen, J.; Belt, B.A.; Prieto, P.A.; Egilmez, N.K.; Lord, E.M.; et al. Microspheres Encapsulating Immunotherapy Agents Target the Tumor-Draining Lymph Node in Pancreatic Ductal Adenocarcinoma. Immunol. Investig. 2020, 49, 808–823. [Google Scholar] [CrossRef]
- Jung, J.Y.; Ryu, H.J.; Lee, S.H.; Kim, D.Y.; Kim, M.J.; Lee, E.J.; Ryu, Y.M.; Kim, S.Y.; Kim, K.P.; Choi, E.Y.; et al. siRNA Nanoparticle Targeting PD-L1 Activates Tumor Immunity and Abrogates Pancreatic Cancer Growth in Humanized Preclinical Model. Cells 2021, 10, 2734. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Wen, Z.F.; Chen, L.; Zhou, N.; Liu, H.; Dong, S.; Hu, H.M.; Mou, Y. Polyethyleneimine modification of aluminum hydroxide nanoparticle enhances antigen transportation and cross-presentation of dendritic cells. Int. J. Nanomed. 2018, 13, 3353–3365. [Google Scholar] [CrossRef]
- Lu, J.; Liu, X.; Liao, Y.P.; Salazar, F.; Sun, B.; Jiang, W.; Chang, C.H.; Jiang, J.; Wang, X.; Wu, A.M.; et al. Nano-enabled pancreas cancer immunotherapy using immunogenic cell death and reversing immunosuppression. Nat. Commun. 2017, 8, 1811. [Google Scholar] [CrossRef]
- Huang, H.; Jiang, C.T.; Shen, S.; Liu, A.; Gan, Y.J.; Tong, Q.S.; Chen, S.B.; Gao, Z.X.; Du, J.Z.; Cao, J.; et al. Nanoenabled Reversal of IDO1-Mediated Immunosuppression Synergizes with Immunogenic Chemotherapy for Improved Cancer Therapy. Nano Lett. 2019, 19, 5356–5365. [Google Scholar] [CrossRef]
- Sun, J.; Wan, Z.; Chen, Y.; Xu, J.; Luo, Z.; Parise, R.A.; Diao, D.; Ren, P.; Beumer, J.H.; Lu, B.; et al. Triple drugs co-delivered by a small gemcitabine-based carrier for pancreatic cancer immunochemotherapy. Acta Biomater. 2020, 106, 289–300. [Google Scholar] [CrossRef] [PubMed]
- Tong, Q.S.; Miao, W.M.; Huang, H.; Luo, J.Q.; Liu, R.; Huang, Y.C.; Zhao, D.K.; Shen, S.; Du, J.Z.; Wang, J. A Tumor-Penetrating Nanomedicine Improves the Chemoimmunotherapy of Pancreatic Cancer. Small 2021, 17, e2101208. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, Q.; Wang, Y.; Chu, Y.; Luo, Y.; You, H.; Su, B.; Li, C.; Guo, Q.; Sun, T.; et al. Penetrating Micelle for Reversing Immunosuppression and Drug Resistance in Pancreatic Cancer Treatment. Small 2022, 18, e2107712. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Chen, X.; Xu, Y.; Han, X.; Wang, M.; Gong, T.; Zhang, Z.R.; Kao, W.J.; Fu, Y. Hierarchical assembly of hyaluronan coated albumin nanoparticles for pancreatic cancer chemoimmunotherapy. Nanoscale 2019, 11, 16476–16487. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, J.; Liao, Y.P.; Tang, I.; Zheng, E.; Qiu, W.; Lin, M.; Wang, X.; Ji, Y.; Mei, K.C.; et al. Combination Chemo-Immunotherapy for Pancreatic Cancer Using the Immunogenic Effects of an Irinotecan Silicasome Nanocarrier Plus Anti-PD-1. Adv. Sci. 2021, 8, 2002147. [Google Scholar] [CrossRef]
- Wang, M.; Hu, Q.; Huang, J.; Zhao, X.; Shao, S.; Zhang, F.; Yao, Z.; Ping, Y.; Liang, T. Engineered a dual-targeting biomimetic nanomedicine for pancreatic cancer chemoimmunotherapy. J. Nanobiotechnol. 2022, 20, 85. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Chen, Y.; Zhou, S.; Chen, L.; Wang, J.; Pei, Y.; Xu, M.; Feng, J.; Jiang, T.; Liang, K.; et al. Dual-mechanism based CTLs infiltration enhancement initiated by Nano-sapper potentiates immunotherapy against immune-excluded tumors. Nat. Commun. 2020, 11, 622. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gao, Z.; Du, X.; Chen, S.; Zhang, W.; Wang, J.; Li, H.; He, X.; Cao, J.; Wang, J. Co-inhibition of the TGF-β pathway and the PD-L1 checkpoint by pH-responsive clustered nanoparticles for pancreatic cancer microenvironment regulation and anti-tumor immunotherapy. Biomater. Sci. 2020, 8, 5121–5132. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Xiao, Z.; Li, T.; Chen, H.; Yuan, Y.; Wang, Y.A.; Hsiao, C.H.; Chow, D.S.; Overwijk, W.W.; Li, C. Stromal Modulation Reverses Primary Resistance to Immune Checkpoint Blockade in Pancreatic Cancer. ACS Nano 2018, 12, 9881–9893. [Google Scholar] [CrossRef] [PubMed]
- Blair, A.B.; Kim, V.M.; Muth, S.T.; Saung, M.T.; Lokker, N.; Blouw, B.; Armstrong, T.D.; Jaffee, E.M.; Tsujikawa, T.; Coussens, L.M.; et al. Dissecting the Stromal Signaling and Regulation of Myeloid Cells and Memory Effector T Cells in Pancreatic Cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2019, 25, 5351–5363. [Google Scholar] [CrossRef]
- Blair, A.B.; Wang, J.; Davelaar, J.; Baker, A.; Li, K.; Niu, N.; Wang, J.; Shao, Y.; Funes, V.; Li, P.; et al. Dual stromal targeting sensitizes pancreatic adenocarcinoma for anti-PD-1 therapy. Gastroenterology 2022. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, W.; Liang, C.; Shi, S.; Yu, X.; Chen, Q.; Sun, T.; Lu, Y.; Zhang, Y.; Guo, Q.; et al. Codelivery Nanosystem Targeting the Deep Microenvironment of Pancreatic Cancer. Nano Lett. 2019, 19, 3527–3534. [Google Scholar] [CrossRef]
- Xie, Y.; Hang, Y.; Wang, Y.; Sleightholm, R.; Prajapati, D.R.; Bader, J.; Yu, A.; Tang, W.; Jaramillo, L.; Li, J.; et al. Stromal Modulation and Treatment of Metastatic Pancreatic Cancer with Local Intraperitoneal Triple miRNA/siRNA Nanotherapy. ACS Nano 2020, 14, 255–271. [Google Scholar] [CrossRef]
- Ahmed, A.; Tait, S.W.G. Targeting immunogenic cell death in cancer. Mol. Oncol. 2020, 14, 2994–3006. [Google Scholar] [CrossRef]
- Duan, X.; Chan, C.; Lin, W. Nanoparticle-Mediated Immunogenic Cell Death Enables and Potentiates Cancer Immunotherapy. Angew. Chem. 2019, 58, 670–680. [Google Scholar]
- Jiang, M.; Zeng, J.; Zhao, L.; Zhang, M.; Ma, J.; Guan, X.; Zhang, W. Chemotherapeutic drug-induced immunogenic cell death for nanomedicine-based cancer chemo-immunotherapy. Nanoscale 2021, 13, 17218–17235. [Google Scholar] [CrossRef]
- von Itzstein, M.S.; Burke, M.C.; Brekken, R.A.; Aguilera, T.A.; Zeh, H.J.; Beg, M.S. Targeting TAM to Tame Pancreatic Cancer. Target. Oncol. 2020, 15, 579–588. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Knolhoff, B.L.; Meyer, M.A.; Nywening, T.M.; West, B.L.; Luo, J.; Wang-Gillam, A.; Goedegebuure, S.P.; Linehan, D.C.; DeNardo, D.G. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res. 2014, 74, 5057–5069. [Google Scholar] [CrossRef]
- Pergamo, M.; Miller, G. Myeloid-derived suppressor cells and their role in pancreatic cancer. Cancer Gene Ther. 2017, 24, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wang, Q.; Shen, Y.; Hassan, M.; Shen, J.; Jiang, W.; Su, Y.; Chen, J.; Bai, L.; Zhou, W.; et al. Pseudoneutrophil Cytokine Sponges Disrupt Myeloid Expansion and Tumor Trafficking to Improve Cancer Immunotherapy. Nano Lett. 2020, 20, 242–251. [Google Scholar] [CrossRef] [PubMed]
- Long, Y.; Lu, Z.; Xu, S.; Li, M.; Wang, X.; Zhang, Z.; He, Q. Self-Delivery Micellar Nanoparticles Prevent Premetastatic Niche Formation by Interfering with the Early Recruitment and Vascular Destruction of Granulocytic Myeloid-Derived Suppressor Cells. Nano Lett. 2020, 20, 2219–2229. [Google Scholar] [CrossRef]
- Wu, W.; Wang, X.; Zhang, W.; Tian, L.; Booth, J.L.; Duggan, E.S.; More, S.; Liu, L.; Dozmorov, M.; Metcalf, J.P. RIG-I Signaling via MAVS Is Dispensable for Survival in Lethal Influenza Infection In Vivo. Mediat. Inflamm. 2018, 2018, 6808934. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, W.; Xu, Z.P.; Gu, W. PD-L1 Distribution and Perspective for Cancer Immunotherapy-Blockade, Knockdown, or Inhibition. Front. Immunol. 2019, 10, 2022. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, G.; Chen, Y.; Wang, H.; Hua, Y.; Cai, Z. Immunogenic cell death in cancer therapy: Present and emerging inducers. J. Cell. Mol. Med. 2019, 23, 4854–4865. [Google Scholar] [CrossRef]
- Zhao, T.; Ren, H.; Jia, L.; Chen, J.; Xin, W.; Yan, F.; Li, J.; Wang, X.; Gao, S.; Qian, D.; et al. Inhibition of HIF-1α by PX-478 enhances the anti-tumor effect of gemcitabine by inducing immunogenic cell death in pancreatic ductal adenocarcinoma. Oncotarget 2015, 6, 2250–2262. [Google Scholar] [CrossRef]
- Zhan, H.X.; Zhou, B.; Cheng, Y.G.; Xu, J.W.; Wang, L.; Zhang, G.Y.; Hu, S.Y. Crosstalk between stromal cells and cancer cells in pancreatic cancer: New insights into stromal biology. Cancer Lett. 2017, 392, 83–93. [Google Scholar] [CrossRef]
- Hosein, A.N.; Brekken, R.A.; Maitra, A. Pancreatic cancer stroma: An update on therapeutic targeting strategies. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 487–505. [Google Scholar] [CrossRef] [PubMed]
- Olive, K.P.; Jacobetz, M.A.; Davidson, C.J.; Gopinathan, A.; McIntyre, D.; Honess, D.; Madhu, B.; Goldgraben, M.A.; Caldwell, M.E.; Allard, D.; et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 2009, 324, 1457–1461. [Google Scholar] [CrossRef] [PubMed]
- Onishi, H.; Katano, M. Hedgehog signaling pathway as a new therapeutic target in pancreatic cancer. World J. Gastroenterol. 2014, 20, 2335–2342. [Google Scholar] [CrossRef] [PubMed]
- Ebelt, N.D.; Zuniga, E.; Passi, K.B.; Sobocinski, L.J.; Manuel, E.R. Hyaluronidase-Expressing Salmonella Effectively Targets Tumor-Associated Hyaluronic Acid in Pancreatic Ductal Adenocarcinoma. Mol. Cancer Ther. 2020, 19, 706–716. [Google Scholar] [CrossRef]
- Wong, K.M.; Horton, K.J.; Coveler, A.L.; Hingorani, S.R.; Harris, W.P. Targeting the Tumor Stroma: The Biology and Clinical Development of Pegylated Recombinant Human Hyaluronidase (PEGPH20). Curr. Oncol. Rep. 2017, 19, 47. [Google Scholar] [CrossRef]
- Provenzano, P.P.; Cuevas, C.; Chang, A.E.; Goel, V.K.; Von Hoff, D.D.; Hingorani, S.R. Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell 2012, 21, 418–429. [Google Scholar] [CrossRef]
- Ramanathan, R.K.; McDonough, S.L.; Philip, P.A.; Hingorani, S.R.; Lacy, J.; Kortmansky, J.S.; Thumar, J.; Chiorean, E.G.; Shields, A.F.; Behl, D.; et al. Phase IB/II Randomized Study of FOLFIRINOX Plus Pegylated Recombinant Human Hyaluronidase Versus FOLFIRINOX Alone in Patients With Metastatic Pancreatic Adenocarcinoma: SWOG S1313. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2019, 37, 1062–1069. [Google Scholar] [CrossRef]
- Van Cutsem, E.; Tempero, M.A.; Sigal, D.; Oh, D.Y.; Fazio, N.; Macarulla, T.; Hitre, E.; Hammel, P.; Hendifar, A.E.; Bates, S.E.; et al. Randomized Phase III Trial of Pegvorhyaluronidase Alfa with Nab-Paclitaxel Plus Gemcitabine for Patients with Hyaluronan-High Metastatic Pancreatic Adenocarcinoma. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2020, 38, 3185–3194. [Google Scholar] [CrossRef]
- Hakim, N.; Patel, R.; Devoe, C.; Saif, M.W. Why HALO 301 Failed and Implications for Treatment of Pancreatic Cancer. Pancreas 2019, 3, e1–e4. [Google Scholar] [CrossRef]
- Huang, X.; Lu, Y.; Guo, M.; Du, S.; Han, N. Recent strategies for nano-based PTT combined with immunotherapy: From a biomaterial point of view. Theranostics 2021, 11, 7546–7569. [Google Scholar] [CrossRef]
- Banerjee, S.M.; El-Sheikh, S.; Malhotra, A.; Mosse, C.A.; Parker, S.; Williams, N.R.; MacRobert, A.J.; Hamoudi, R.; Bown, S.G.; Keshtgar, M.R. Photodynamic Therapy in Primary Breast Cancer. J. Clin. Med. 2020, 10, 483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wojewoda, K.; Gillstedt, M.; Tovi, J.; Salah, L.; Wennberg Larkö, A.M.; Sjöholm, A.; Sandberg, C. Optimizing treatment of acne with photodynamic therapy (PDT) to achieve long-term remission and reduce side effects. A prospective randomized controlled trial. J. Photochem. Photobiol. B 2021, 223, 112299. [Google Scholar] [CrossRef] [PubMed]
- DeWitt, J.M.; Sandrasegaran, K.; O’Neil, B.; House, M.G.; Zyromski, N.J.; Sehdev, A.; Perkins, S.M.; Flynn, J.; McCranor, L.; Shahda, S. Phase 1 study of EUS-guided photodynamic therapy for locally advanced pancreatic cancer. Gastrointest. Endosc. 2019, 89, 390–398. [Google Scholar] [CrossRef] [PubMed]
- Huggett, M.T.; Jermyn, M.; Gillams, A.; Illing, R.; Mosse, S.; Novelli, M.; Kent, E.; Bown, S.G.; Hasan, T.; Pogue, B.W.; et al. Phase I/II study of verteporfin photodynamic therapy in locally advanced pancreatic cancer. Br. J. Cancer 2014, 110, 1698–1704. [Google Scholar] [CrossRef]
- Miyoshi, N.; Kundu, S.K.; Tuziuti, T.; Yasui, K.; Shimada, I.; Ito, Y. Combination of Sonodynamic and Photodynamic Therapy against Cancer Would Be Effective through Using a Regulated Size of Nanoparticles. Nanosci. Nanoeng. 2016, 4, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Liu, T.; Li, W.; Ma, Z.; Pei, P.; Zhang, W.; Yang, K.; Tao, Y. Tumor microenvironment-responsive BSA nanocarriers for combined chemo/chemodynamic cancer therapy. J. Nanobiotechnol. 2022, 20, 223. [Google Scholar] [CrossRef] [PubMed]
- Nabil, G.; Bhise, K.; Sau, S.; Atef, M.; El-Banna, H.A.; Iyer, A.K. Nano-engineered delivery systems for cancer imaging and therapy: Recent advances, future direction and patent evaluation. Drug Discov. Today 2019, 24, 462–491. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Lee, N.; Arifin, D.R.; Shats, I.; Janowski, M.; Walczak, P.; Hyeon, T.; Bulte, J.W.M. In Vivo Micro-CT Imaging of Human Mesenchymal Stem Cells Labeled with Gold-Poly-L-Lysine Nanocomplexes. Adv. Funct. Mater. 2017, 27, 1604213. [Google Scholar] [CrossRef] [PubMed]
- Salvanou, E.A.; Kolokithas-Ntoukas, A.; Liolios, C.; Xanthopoulos, S.; Paravatou-Petsotas, M.; Tsoukalas, C.; Avgoustakis, K.; Bouziotis, P. Preliminary Evaluation of Iron Oxide Nanoparticles Radiolabeled with 68Ga and 177Lu as Potential Theranostic Agents. Nanomaterials 2022, 12, 2490. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.M.; Jung, M.H.; Lee, J.S.; Lee, J.S.; Lim, I.C.; Im, H.; Kim, S.W.; Kang, S.A.; Cho, W.J.; Park, J.K. Chelator-Free Copper-64-Incorporated Iron Oxide Nanoparticles for PET/MR Imaging: Improved Radiocopper Stability and Cell Viability. Nanomaterials 2022, 12, 2791. [Google Scholar] [CrossRef]
- Hu, X.; Xia, F.; Lee, J.; Li, F.; Lu, X.; Zhuo, X.; Nie, G.; Ling, D. Tailor-Made Nanomaterials for Diagnosis and Therapy of Pancreatic Ductal Adenocarcinoma. Adv. Sci. 2021, 8, 2002545. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Fan, C.; Zhu, H.; Le, W.; Cui, S.; Chen, X.; Li, W.; Zhang, F.; Huang, Y.; Sh, D.; et al. Glypican-1-antibody-conjugated Gd-Au nanoclusters for FI/MRI dual-modal targeted detection of pancreatic cancer. Int. J. Nanomed. 2018, 13, 2585–2599. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Yin, H.; Bi, R.; Gao, G.; Li, K.; Liu, H.L. ENO1-targeted superparamagnetic iron oxide nanoparticles for detecting pancreatic cancer by magnetic resonance imaging. J. Cell. Mol. Med. 2020, 24, 5751–5757. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Qian, W.; Uckun, F.M.; Wang, L.; Wang, Y.A.; Chen, H.; Kooby, D.; Yu, Q.; Lipowska, M.; Staley, C.A.; et al. IGF1 Receptor Targeted Theranostic Nanoparticles for Targeted and Image-Guided Therapy of Pancreatic Cancer. ACS Nano 2015, 9, 7976–7991. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Cabral, H.; Song, B.; Aoki, I.; Chen, Z.; Nishiyama, N.; Huang, Y.; Kataoka, K.; Mi, P. Nanoprobe-Based Magnetic Resonance Imaging of Hypoxia Predicts Responses to Radiotherapy, Immunotherapy, and Sensitizing Treatments in Pancreatic Tumors. ACS Nano 2021, 16, 13526–13538. [Google Scholar] [CrossRef]
- Luo, X.; Hu, D.; Gao, D.; Wang, Y.; Chen, X.; Liu, X.; Zheng, H.; Sun, M.; Sheng, Z. Metabolizable Near-Infrared-II Nanoprobes for Dynamic Imaging of Deep-Seated Tumor-Associated Macrophages in Pancreatic Cancer. ACS Nano 2021, 15, 10010–10024. [Google Scholar] [CrossRef] [PubMed]
- Frelaut, M.; Le Tourneau, C.; Borcoman, E. Hyperprogression under Immunotherapy. Int. J. Mol. Sci. 2019, 20, 2674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Strategy | Agent/Drug | Nanoparticle | Administration | Immune Effect | Publication Year | Ref. |
---|---|---|---|---|---|---|
Nano-based ICD | oxaliplatin | amphiphilic diblock copolymer nanoparticles | iv | DAMPs↑; DCs↑; CD3+CD8+ cytotoxic T lymphocytes↑ | 2016 | [79] |
oxaliplatin | silicasome nanocarrier | iv | CD8+/FoxP3+ T cell ratios↑; | 2021 | [80] | |
ingenol-3-mebutate (I3A) | 2-(3-((S)-5-amino-1-car_x0002_boxypentyl)-ureido) pentanedioate (ACUPA− ) and triphenylphosphonium (TPP+) modified nanomicelles | iv | DCs↑; CD8+ T cells↑; CD4+ T cells↑ | 2021 | [81] | |
Nano-based immune modulation | M2 peptides + miR-125b | hyaluronic acid-poly(ethylene imine) nanoparticles | ip | M1-to-M2 macrophage ratio↑; | 2021 | [82] |
PI3K-γ inhibitor NVP-BEZ 235 + CSF-1R-siRNA | nanomicelle (M2 TAMs targeting nanomicelles) | iv | M2-TAMs↓; MDSCs↓; M1-TAMs↑; CD8+ and CD4+ T cell infiltration↑; | 2020 | [83] | |
monoacylglycerol lipase siRNA + endocannabinoid receptor-2 (key receptor regulating macrophage phenotype) siRNA | reduction-responsive poly (disulfide amide) (PDSA)-based nanoplatform | iv | repolarization of TAMs into tumor-inhibiting M1-like phenotype | 2021 | [84] | |
paclitaxel-loaded 3-aminophenylboronic acid_x005f_x0002_modified low molecular weight heparin–D-α-tocopheryl succinate | micellar nanoparticle | iv | infiltration of CD4+ T cells and CD8+ T cells↑; MDSCs ↓ | 2021 | [85] | |
cyclic diguanylate monophosphate (cdGMP), an agonist of the stimulator of interferon genes (STING) pathway + monophosphoryl lipid A (MPLA), a Toll-like receptor 4 (TLR4) pathway agonist | immuno-nanoparticles | iv | CD45+ immune cells↑; DC cells↑; macrophages↑ | 2021 | [86] | |
IL-10 trap + CXCL12 trap | liposome-protamine-DNA | ip | M2 macrophages↓; MDSCs↓; PD-L1+ cells↓; Immuno suppressive plasma cells (ISPCs)↓; activated DCs↑; NK cells↑; CD8+ T cells in tumor↑ | 2018 | [87] | |
CXCL12 trap + PD-L1 trap | liposome-protamine-DNA | iv | MDSCs↓; Treg cells↓; accumulated macrophages↓; M1/M2 ↑; T cell infiltration↑ | 2017 | [88] | |
Bcl2 double-stranded RNA (dsRNA) + Retinoic acid-inducible gene I (RIG-I)-like receptors | lipid calcium phosphate nanoparticles | iv | Th1 cytokines↑; CD8+ T cells/Treg cells↑; M1/M2 ↑; immunosuppressive B regulatory cells↓ | 2019 | [89] | |
IL-12+SBRT | microspheres | intratumoral injection | upregulation of Th1 and antitumor factors IL-12, IFN-γ, CXCL10, and granzyme B | 2020 | [90] | |
PD-L1 | poly(lactic-co-glycolic acid;PLGA)-based siRNA nanoparticle | iv | IFN-gamma positive CD8+ T cells↑; Granzyme B+ cell↑; | 2021 | [91] | |
oxygen | microcapsules | intratumoral injection by ultrasound-guided percutaneous injection | oxygen microcapsules + anti-PD-1 antibody: the infiltration of TAMs and polarize pro-tumor M2↓; macrophages into anti-tumor M1 macrophages; the proportion of Th1 cells↑; CTLs↑ | 2022 | [62] | |
DCs vaccine | aluminum hydroxide nanoparticle with polyethyleneimine (PEI) modification (LV@HPA/PEI). | subcutaneously vaccinated | CD3+ CD8+ IFNγ+ T cells↑; | 2018 | [92] | |
Nano-based chemo-immunotherapy | IDO inhibitor, indoximod (IND)+ oxaliplatin (OX) | mesoporous silica nanoparticles(MSNP) | iv | CD8+/Tregs↑; DC maturation↑; cytotoxic T lymphocytes↑; Foxp3+ T cells(Tregs)↓; | 2017 | [93] |
IDO1 siRNA+oxaliplatin | cationic lipid-assisted nanoparticles | iv | DC maturation↑; tumor-infiltrating T lymphocytes↓; Treg↓; central memory T cells (TCM)↑; effector memory T cells (TEM)↑; | 2019 | [94] | |
GEM + NLG919 (IDO1 inhibitor) + paclitaxel | micelles | iv | CD4+ IFNγ+ T cells↑; CD8+ IFNγ+ T cells↑; Treg cells↓ | 2020 | [95] | |
gemcitabine | pH-sensitive polymer | ip and iv | down-regulated the infiltration of macrophages in the tumor tissue; up-regulated the PD-L1 expression on the surface of cancer cells; MDSC↓; CD3+T cells↑; CD8+ T cells↑; CD4+ T cells↑; TAMs↓; Tregs↓; | 2021 | [96] | |
GEM + signal transducer and activator of transcription 3 (STAT3) inhibitor (HJC0152) | micelle | iv | reversing M2 to M1-TAMs, M1/M2↑; downregulating MDSCs/Tregs, and upregulating Teff | 2022 | [97] | |
celastrol (CLT) + 1-methyltryptophan (MT, IDO inhibitor) | hyaluronic acid coated cationic albumin nanoparticle | iv | CD4+ T cells in the spleen↑; CD8+ T cellsin the spleen↑; | 2019 | [98] | |
irinotecan+Anti-PD-1 antibody | silicasome | iv(irinotecan) + ip(anti-PD-1) | irinotecan by the silicasome: CD8+ T cells/Treg cells↑; PD-L1 expression↑; | 2021 | [99] | |
galectin-9 siRNA + oxaliplatin | exosome | iv | M2-TAMs↓; Tregs↓; M1-TAMs↑; cytotoxic T cells and helper T cells↑; CD8+ CTLs↑; mature DC ↑; | 2020 | [22] | |
gemcitabine-loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles + M2-like macrophages peptides (M2pep) +PD-L1 antibody | biomimetic dual-targeting nanomedicine | iv | elimination of PD-L1-positive macrophages and the downregulation of PD-L1 expression; reprogrammed macrophages, downregulated PD-L1 expression, and sustained T cell populations, | 2022 | [100] | |
Nano-based stoma modulation | α-mangostin + LIGHT (tumor necrosis factor superfamily 14) | calcium phosphate liposome | iv | CD45+CD3+CD8+ T cells↑; CD45+CD3+CD4+ T cells ↑; CD45+B220+ B cells↑; Tregs and F4/80+ macrophages↓; CD8+ T/CD4+ T↑; CD4+T/Treg ↑; induces the intratumoral tertiary lymphoid structures | 2020 | [101] |
TGF-β receptor inhibitors (LY2157299) + siRNA targeting PD-L1 (siPD-L1) | acidic tumor extracellular pH (pHe) responsive clustered nanoparticle | iv | tumor infiltrating CD8+ T cells↑; IFN-γ↑; | 2020 | [102] | |
sonic hedgehog inhibitor (cyclopamine) + cytotoxic chemotherapy drug (paclitaxel) | polymeric micelles | iv | infiltration CD8+T cells↑; | 2018 | [103] | |
PEGPH20+GVAX | PEGylated recombinant human PH20 hyaluronidase | iv | infiltrating CD3+CD8+ T cells↑; infiltrating CD3+CD4+ T cells↑ | 2019 | [104] | |
PEGPH20+FAKinhibitor+anti-PD-1 antibody | PEGylated recombinant human PH20 hyaluronidase | iv + oral gavage + ip | Increases T cell infiltration and alters T cell phenotype towards effector memory T cells. | 2022 | [105] | |
paclitaxel + phosphorylated gemcitabine | codelivery micelles | iv | cytotoxic T cells↑; T helper cells↑; Tregs cells↓; tumor infiltration by the CD4+ and CD8+ T cells↑; | 2019 | [106] | |
CXCR4 antagonist + anti-miR-210 + siKRASG12D | cholesterol-modified polymeric | ip | CD8+ T cells infiltration↑; M2 TAMs↓; | 2020 | [107] | |
Nano-based PTT/PDT/CDT/SDT | mild hyperthermia + immune checkpoint blockade (BMS-202) | size-adjustable thermo-and fibrotic matrix-sensitive liposomes | iv + laser irradiation | DC maturation↑; infiltration of CD4+ T cells↑; infiltration of CD8+ T cells↑; Tregs↓; chemokines (IL-6, IFN-γ) ↑ | 2021 | [70] |
immunomodulatory thymopentin + near-infrared indocyanine green | self-assembly nanoparticle | in situ injection + laser irradiation | CD3+CD4+ T cells↑; CD3+CD8+ T cells↑; CD4+IL-4+ T cells ↑; CD8+INF-γ+ T cells↑; | 2021 | [71] | |
GEM+NLG919 (IDO inhibitor) | polydopamine (dp)-coated nanoparticles | iv + laser irradiation | intratumoral infiltration of CD8+ T↑; (IFN-γ) in CTLs↑; GZB positive NK cells↑ | 2021 | [72] | |
indocyanine green (ICG,photothermal agent) + imiquimod (IMQ,toll-like-receptor-7 agonist) | iron oxide nanoplatform | iv + laser irradiation | polarization of macrophages to the M1 phenotype; tumor infiltration of T cells↑; Tregs↓; CD8+ T cells/Treg cells↑; CD4+ T cells/Treg cells↑ | 2022 | [73] | |
bromodomain-containing protein 4 inhibitor (BRD4i) JQ1+ cyclodextrin-grafted hyaluronic acid (HA-CD) + pyropheophorbide a (PPa) | supramolecular prodrug nanoplatform | iv + laser irradiation | DC maturation↑; intratumoral infiltration of CD8+ T ↑; intratumoral infiltration of Tregs ↓ memory T lymphocytes (TEM) infiltration↑ | 2021 | [74] | |
chlorin e6 photosensitizer | tumor-derived exosomes | iv + laser irradiation | release of cytokines from immune cells | 2021 | [75] | |
Rose Bengal+ CaO2 nanoparticle | pH-sensitive polymethacrylate-coated CaO2 nanoparticle | iv + ultrasound | CD8+T cells↑; Treg↓ | 2021 | [76] | |
cavitation-assisted endoplasmic reticulum targeted sonodynamic droplets+PD-L1 antibody | nanodroplets | iv + ultrasound | DC maturation↑ | 2022 | [77] | |
4-(phosphonooxy)phenyl-2,4-dinitrobenzenesulfonate + Fe3 + hyaluronic acid decoration | chemodynamic nanocomplex | iv | induced the polarization of the M2 phenotype back to the M1 phenotype | 2020 | [78] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, W.; Yang, B.; Zhu, H. Nanoparticle-Based Therapeutic Strategies for Enhanced Pancreatic Ductal Adenocarcinoma Immunotherapy. Pharmaceutics 2022, 14, 2033. https://doi.org/10.3390/pharmaceutics14102033
Hou W, Yang B, Zhu H. Nanoparticle-Based Therapeutic Strategies for Enhanced Pancreatic Ductal Adenocarcinoma Immunotherapy. Pharmaceutics. 2022; 14(10):2033. https://doi.org/10.3390/pharmaceutics14102033
Chicago/Turabian StyleHou, Wanting, Biao Yang, and Hong Zhu. 2022. "Nanoparticle-Based Therapeutic Strategies for Enhanced Pancreatic Ductal Adenocarcinoma Immunotherapy" Pharmaceutics 14, no. 10: 2033. https://doi.org/10.3390/pharmaceutics14102033
APA StyleHou, W., Yang, B., & Zhu, H. (2022). Nanoparticle-Based Therapeutic Strategies for Enhanced Pancreatic Ductal Adenocarcinoma Immunotherapy. Pharmaceutics, 14(10), 2033. https://doi.org/10.3390/pharmaceutics14102033