Laser Microperforation Assisted Drug-Elution from Biodegradable Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Manufacturing Routine of a Drug-Eluting Films
2.2. Laser Microperforation Process
2.3. Assessment of the Drug Elution Kinetics
2.4. Effect of Hole Diameter on the Release Rate
2.5. Sample Characterization
3. Results
3.1. Film’s Dimensions and Payload
3.2. Laser Microperforation of a MB Loaded Biodegradable Film
3.3. Effect of Hole Diameter on Elution Rate
3.4. Quantification of the MB Elution Depending on the Number of Holes
- no holes (n = 6);
- 1 hole (n = 6);
- 2 holes (n = 6);
- 4 holes (n = 6).
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
PLGA | Poly(lactic-co-glycolic acid) |
PP | Polypropylene |
PLA | Polylactic acid |
PCL | Polycaprolactone |
MB | Methylene blue |
CMOS | Complementary metal–oxide–semiconductor |
LED | Light emitting diode |
SEM | Scanning electron microscope |
MEC | Minimum effective concentration |
MTC | Minimum toxic concentration |
Appendix A
Appendix A.1
Appendix A.2
References
- Livingston, M.; Tan, A. Coating techniques and release kinetics of drug-eluting stents. J. Med. Devices 2016, 10, 010801. [Google Scholar] [CrossRef]
- Sindeeva, O.A.; Prikhozhdenko, E.S.; Schurov, I.; Sedykh, N.; Goriainov, S.; Karamyan, A.; Mordovina, E.A.; Inozemtseva, O.A.; Kudryavtseva, V.; Shchesnyak, L.E.; et al. Patterned drug-eluting coatings for tracheal stents based on pla, plga, and pcl for the granulation formation reduction: In vivo studies. Pharmaceutics 2021, 13, 1437. [Google Scholar] [CrossRef]
- Singha, P.; Locklin, J.; Handa, H. A review of the recent advances in antimicrobial coatings for urinary catheters. Acta Biomater. 2017, 50, 20–40. [Google Scholar] [CrossRef] [Green Version]
- Quarterman, J.C.; Geary, S.M.; Salem, A.K. Evolution of drug-eluting biomedical implants for sustained drug delivery. Eur. J. Pharm. Biopharm. 2021, 159, 21–35. [Google Scholar] [CrossRef]
- Elmowafy, E.M.; Tiboni, M.; Soliman, M.E. Biocompatibility, biodegradation and biomedical applications of poly (lactic acid)/poly (lactic-co-glycolic acid) micro and nanoparticles. J. Pharm. Investig. 2019, 49, 347–380. [Google Scholar] [CrossRef]
- Yoo, J.Y.; Kim, J.M.; Seo, K.S.; Jeong, Y.K.; Lee, H.B.; Khang, G. Characterization of degradation behavior for PLGA in various pH condition by simple liquid chromatography method. Bio-Med. Mater. Eng. 2005, 15, 279–288. [Google Scholar]
- Xu, L.; Crawford, K.; Gorman, C.B. Effects of temperature and pH on the degradation of poly (lactic acid) brushes. Macromolecules 2011, 44, 4777–4782. [Google Scholar] [CrossRef]
- Fredenberg, S.; Wahlgren, M.; Reslow, M.; Axelsson, A. The mechanisms of drug release in poly (lactic-co-glycolic acid)-based drug delivery systems—A review. Int. J. Pharm. 2011, 415, 34–52. [Google Scholar] [CrossRef]
- Rhim, J.W. Preparation and characterization of vacuum sputter silver coated PLA film. LWT-Food Sci. Technol. 2013, 54, 477–484. [Google Scholar] [CrossRef]
- Wu, F.; Misra, M.; Mohanty, A.K. Challenges and new opportunities on barrier performance of biodegradable polymers for sustainable packaging. Prog. Polym. Sci. 2021, 117, 101395. [Google Scholar] [CrossRef]
- Walker, S.E.; Iazzetta, J.; Law, S.; Biniecki, K. Stability of commonly used antibiotic solutions in an elastomeric infusion device. Can. J. Hosp. Pharm. 2010, 63, 212. [Google Scholar] [CrossRef]
- Wang, Y.P.; Xiao, Y.J.; Duan, J.; Yang, J.H.; Wang, Y.; Zhang, C.L. Accelerated hydrolytic degradation of poly (lactic acid) achieved by adding poly (butylene succinate). Polym. Bull. 2016, 73, 1067–1083. [Google Scholar] [CrossRef]
- Lee, L.Y.; Ranganath, S.H.; Fu, Y.; Zheng, J.L.; Lee, H.S.; Wang, C.H.; Smith, K.A. Paclitaxel release from micro-porous PLGA disks. Chem. Eng. Sci. 2009, 64, 4341–4349. [Google Scholar] [CrossRef]
- Gherasim, O.; Popescu-Pelin, G.; Florian, P.; Icriverzi, M.; Roseanu, A.; Mitran, V.; Cimpean, A.; Socol, G. Bioactive ibuprofen-loaded PLGA coatings for multifunctional surface modification of medical devices. Polymers 2021, 13, 1413. [Google Scholar] [CrossRef]
- Tsukada, Y.; Tsujimoto, H. Development of drug-eluting stent coated with PLGA nanoparticles as drug carriers. KONA Powder Part. J. 2013, 30, 2. [Google Scholar] [CrossRef] [Green Version]
- Lu, L.; Garcia, C.A.; Mikos, A.G. In vitro degradation of thin poly (DL-lactic-co-glycolic acid) films. J. Biomed. Mater. Res. 1999, 46, 236–244. [Google Scholar] [CrossRef]
- Murcia Valderrama, M.A.; van Putten, R.J.; Gruter, G.J.M. PLGA barrier materials from CO2. The influence of lactide co-monomer on glycolic acid polyesters. ACS Appl. Polym. Mater. 2020, 2, 2706–2718. [Google Scholar] [CrossRef]
- Laracuente, M.L.; Marina, H.Y.; McHugh, K.J. Zero-order drug delivery: State of the art and future prospects. J. Controll. Release 2020, 327, 834–856. [Google Scholar] [CrossRef]
- Nokhodchi, A.; Momin, M.N.; Shokri, J.; Shahsavari, M.; Rashidi, P.A. Factors affecting the release of nifedipine from a swellable elementary osmotic pump. Drug Deliv. 2008, 15, 43–48. [Google Scholar] [CrossRef] [Green Version]
- Sinchaipanid, N.; Pongwai, S.; Limsuwan, P.; Mitrevej, A. Design of salbutamol EOP tablets from pharmacokinetics parameters. Pharm. Dev. Technol. 2003, 8, 135–142. [Google Scholar] [CrossRef]
- Wu, Z.J.; Luo, Z.; Rastogia, A.; Stavchansky, S.; Bowman, P.D.; Ho, P.S. Micro-fabricated perforated polymer devices for long-term drug delivery. Biomed. Microdevices 2011, 13, 485–491. [Google Scholar] [CrossRef]
- Sutradhar, K.B.; Sumi, C.D. Implantable microchip: The futuristic controlled drug delivery system. Drug Deliv. 2016, 23, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Meng, E.; Hoang, T. Micro-and nano-fabricated implantable drug-delivery systems. Therapeutic Deliv. 2012, 3, 1457–1467. [Google Scholar] [CrossRef] [Green Version]
- Tran, P.H.L.; Tran, T.T.D.; Park, J.B.; Lee, B.J. Controlled release systems containing solid dispersions: Strategies and mechanisms. Pharm. Res. 2011, 28, 2353–2378. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdurashitov, A.S.; Proshin, P.I.; Sindeeva, O.A.; Sukhorukov, G.B. Laser Microperforation Assisted Drug-Elution from Biodegradable Films. Pharmaceutics 2022, 14, 2144. https://doi.org/10.3390/pharmaceutics14102144
Abdurashitov AS, Proshin PI, Sindeeva OA, Sukhorukov GB. Laser Microperforation Assisted Drug-Elution from Biodegradable Films. Pharmaceutics. 2022; 14(10):2144. https://doi.org/10.3390/pharmaceutics14102144
Chicago/Turabian StyleAbdurashitov, Arkady S., Pavel I. Proshin, Olga A. Sindeeva, and Gleb B. Sukhorukov. 2022. "Laser Microperforation Assisted Drug-Elution from Biodegradable Films" Pharmaceutics 14, no. 10: 2144. https://doi.org/10.3390/pharmaceutics14102144
APA StyleAbdurashitov, A. S., Proshin, P. I., Sindeeva, O. A., & Sukhorukov, G. B. (2022). Laser Microperforation Assisted Drug-Elution from Biodegradable Films. Pharmaceutics, 14(10), 2144. https://doi.org/10.3390/pharmaceutics14102144