Lidosomes: Innovative Vesicular Systems Prepared from Lidocaine Surfadrug
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Lidosomes Preparation
2.3. Niosomal Characterization
Determination of the Amount of LID in Vesicular Systems
2.4. Ex-Vivo Permeation Study
2.5. Skin LID Retention Studies
2.6. Statistical Analysis
3. Results and Discussion
LD Stability
4. Ex-Vivo Permeation Studies
4.1. Lidosomes
4.2. Gel Formulations and Combined Drug Therapy
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sarheed, O.; Dibi, M.; Ramesh, K.; Drechsler, M. Fabrication of Alginate-Based O/W Nanoemulsions for Transdermal Drug Delivery of Lidocaine: Influence of the Oil Phase and Surfactant. Molecules 2021, 26, 2556. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, S.; Shi, P. Transcriptional transactivator peptide modified lidocaine-loaded nanoparticulate drug delivery system for topical anesthetic therapy. Drug Deliv. 2016, 23, 3193–3199. [Google Scholar] [CrossRef]
- Liu, Y.; Cheng, M.; Zhao, J.; Zhang, X.; Huang, Z.; Zang, Y.; Ding, Y.; Zhang, J.; Ding, Z. Transdermal Delivery of Lidocaine-Loaded Elastic Nano-Liposomes with Microneedle Array Pretreatment. Biomedicines 2021, 9, 592. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.Q.; Zhang, B.L.; Chu, H.Q.; Liang, L.; Chen, B.Z.; Zheng, H.; Guo, X.D. A high-dosage microneedle for programmable lidocaine delivery and enhanced local long-lasting analgesia. Biomater. Adv. 2022, 133, 112620. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liao, X.; Zheng, B. Studies on local anesthetic lidocaine hydrochloride delivery via photo-triggered implantable polymeric microneedles as a patient-controlled transdermal analgesia system. J. Biomater. Sci. Polym. Ed. 2022, 33, 155–173. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, B. Editorial (thematic issue: “Nanosize drug delivery system”). Curr. Pharm. Biotechnol. 2013, 14, 1221. [Google Scholar] [CrossRef]
- Yasamineh, S.; Yasamineh, P.; Kalajahi, H.G.; Gholizadeh, O.; Yekanipour, Z.; Afkhami, H.; Eslami, M.; Kheirkhah, A.H.; Taghizadeh, M.; Yazdani, Y.; et al. A state-of-the-art review on the recent advances of niosomes as a targeted drug delivery system. Int. J. Pharm. 2022, 624, 121878. [Google Scholar] [CrossRef] [PubMed]
- Shakiba-Maram, N.; Avarvand, O.K.; Mohtasham, N.; Ahmady, A.Z. Lidocaine Hydrochloride Nanoparticles Preparation using Multiple Emulsions and its Physicochemical Evaluation. Int. J. Nanosci. 2021, 20, 2150022. [Google Scholar] [CrossRef]
- Vigato, A.A.; Machado, I.P.; del Valle, M.; da Ana, P.A.; Sepulveda, A.F.; Yokaichiya, F.; Franco, M.K.K.D.; Loiola, M.C.; Tófoli, G.R.; Cereda, C.M.S.; et al. Monoketonic Curcuminoid-Lidocaine Co-Deliver Using Thermosensitive Organogels: From Drug Synthesis to Epidermis Structural Studies. Pharmaceutics 2022, 14, 293. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Yao, X.; Du, X.; An, S. Local anesthetic lidocaine-encapsulated polymyxin–chitosan nanoparticles delivery for wound healing: In vitro and in vivo tissue regeneration. Drug Deliv. 2021, 28, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Daryab, M.; Faizi, M.; Mahboubi, A.; Aboofazeli, R. Preparation and Characterization of Lidocaine-Loaded, Microemulsion-Based Topical Gels. Iran. J. Pharm. Sci. 2022, 21, e123787. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhang, Y.; Han, S.; Qu, Z.; Zhao, J.; Chen, Y.; Chen, Z.; Duan, J.; Pan, Y.; Tang, X. Penetration enhancement of lidocaine hydrochlorid by a novel chitosan coated elastic liposome for transdermal drug delivery. J. Biomed. Nanotechnol. 2011, 7, 704–713. [Google Scholar] [CrossRef] [PubMed]
- Omar, M.M.; Hasan, O.A.; El Sisi, A.M. Preparation and optimization of lidocaine transferosomal gel containing permeation enhancers: A promising approach for enhancement of skin permeation. Int. J. Nanomed. 2019, 14, 1551–1562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaikh, V.R.; Dagade, D.; Hundiwale, D.G.; Patil, K.J. Volumetric studies of aqueous solutions of local anesthetical drug compounds [hydrochlorides of procaine (PC HCl), lidocaine (LC HCl) and tetracaine (TC HCl)] at 298.15 K. J. Mol. Liq. 2011, 164, 239–242. [Google Scholar] [CrossRef]
- Tavano, L.; Nicoletta, F.P.; Picci, N.; Muzzalupo, R. Cromolyn as surface active drug (surfadrug): Effect of the self-association on diffusion and percutaneous permeation. Colloids Surf. B. Biointerfaces 2016, 139, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Tavano, L.; Mazzotta, E.; Muzzalupo, R. Innovative topical formulations from diclofenac sodium used as surfadrug: The birth of Diclosomes. Colloids Surf. B Biointerfaces 2018, 164, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, M.; Jain, N.K. Niosomes: A Controlled and Novel Drug Delivery System. Indian Drugs 1994, 31, 81–86. [Google Scholar]
- Bangham, A.D.; Standish, M.M.; Watkins, J.C. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol. 1965, 13, 238–252, IN26–IN27. [Google Scholar] [CrossRef]
- Fenton, R.R.; Easdale, W.J.; Er, H.M.; O’Mara, S.M.; McKeage, M.J.; Russell, P.J.; Hambley, T.W. Preparation, DNA binding, and in vitro cytotoxicity of a pair of enantiomeric platinum (II) complexes, [(R)-and (S)-3-aminohexahydroazepine] dichloro-platinum (II). Crystal structure of the S enantiomer. J. Med. Chem. 1997, 40, 1090–1098. [Google Scholar]
- Antunes, F.E.; Gentile, L.; Rossi, C.O.; Tavano, L.; Ranieri, G.A. Gels of Pluronic F127 and nonionic surfactants from rheological characterization to controlled drug permeation. Colloids Surf. B Biointerfaces 2011, 87, 42–48. [Google Scholar] [CrossRef]
- Golzari, S.E.; Soleimanpour, H.; Mahmoodpoor, A.; Safari, S.; Ala, A. Lidocaine and Pain Management in the Emergency Department: A Review Article. Anesthesiol. Pain Med. 2014, 3, e15444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaikh, V.R.; Dagade, D.; Terdale, S.S.; Hundiwale, D.G.; Patil, K.J. Activity and Activity Coefficient Studies of Aqueous Binary Solutions of Procaine, Lidocaine, and Tetracaine Hydrochloride at 298.15 K. J. Chem. Eng. Data 2012, 57, 3114–3122. [Google Scholar] [CrossRef]
- Hata, T.; Matsuki, H.; Kaneshina, S. Effect of local anesthetics on the bilayer membrane of dipalmitoylphosphatidylcholine: Interdigitation of lipid bilayer and vesicle–micelle transition. Biophys. Chem. 2000, 87, 25–36. [Google Scholar] [CrossRef]
- Arora, P.; Mukherjee, B. Design, development, physicochemical, and in vitro and in vivo evaluation of transdermal patches containing diclofenac diethylammonium salt. J. Pharm. Sci. 2002, 91, 2076–2089. [Google Scholar] [CrossRef] [PubMed]
- Walters, K.A.; Bialik, W.; Brain, K.R. The effects of surfactants on penetration across the skin. Int. J. Cosmet. Sci. 1993, 15, 260–271. [Google Scholar] [CrossRef] [PubMed]
- Yasir, M.; Som, I.; Bhatia, K. Status of surfactants as penetration enhancers in transdermal drug delivery. J. Pharm. Bioallied Sci. 2012, 4, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Tewes, F.; Corrigan, O.I.; Healy, A.M. Surfactants in Pharmaceutical Products and Systems. In Encyclopedia of Pharmaceutical Science and Technology, 4th ed.; CRC Press: Boca Raton, FL, USA, 2013; pp. 3464–3476. [Google Scholar]
- Nascimento, M.H.M.; Franco, M.K.K.D.; Yokaichyia, F.; de Paula, E.; Lombello, C.B.; de Araujo, D.R. Hyaluronic acid in Pluronic F-127/F-108 hydrogels for postoperative pain in arthroplasties: Influence on physico-chemical properties and structural requirements for sustained drug-release. Int. J. Biol. Macromol. 2018, 111, 1245–1254. [Google Scholar] [CrossRef]
Formulation | LID (mg) | CA (mg) | Hydration Medium |
---|---|---|---|
LD HCl A | 14 | H2O | |
LD HCl B | 27 | H2O | |
LD 5.5 A | 27 | H2O pH 5.5 | |
LD 5.5 B | 30 | H2O pH 5.5 | |
LD | 30 | H2O | |
LD:CA | 27 | 4 | H2O |
LD 7.9 | 30 | H2O pH 7.9 | |
LD HCl 7.9 | 30 | H2O pH 7.9 |
Formulation | Diameter (nm) | I.P. | ζ-Potential (mV) | DL(%) LID | E(%) CA |
---|---|---|---|---|---|
LD HCl A | 707 ± 15 | 0.249 | −13.0 ± 0.709 | 2.13% ± 0.2 | - |
LD HCl B | 506 ± 12 | 0.288 | −14.3 ± 1.190 | 1.19% ± 0.7 | - |
LD 5.5 A | 430 ± 10 | 0.264 | −26.1 ± 0.900 | 19.5% ± 0.5 | - |
LD 5.5 B | 574 ± 11 | 0.271 | −27.6 ±0.833 | 35.6% ± 0.3 | - |
LD | 437 ± 10 | 0.229 | −23.5 ± 0.208 | 37.1% ± 0.2 | - |
LD:CA | 519 ± 14 | 0.277 | −23.1 ±0.493 | 67.5% ± 0.2 | 87.75% ± 0.8 |
LD 7.9 | 512 ± 11 | 0.287 | −31.2 ±0.666 | 61.2% ± 0.3 | - |
LD HCl 7.9 | 612 ± 13 | 0.277 | −30.5 ±0.351 | 64.8% ± 0.6 | - |
Formulations | Time (day) | Diameter (nm) | P.I. | ζ-potential (mV) | DL% |
---|---|---|---|---|---|
LD | 0 | 437 ± 10 | 0.229 | −23.5 ± 0.208 | 37.1 ± 0.2 |
15 | 321 ± 9 | 0.235 | −23.2 ± 0.907 | 36.9 ± 0.3 | |
30 | 305± 11 | 0.295 | −22.3 ± 0.819 | 37.3 ± 0.2 | |
60 | 253± 9 | 0.180 | −21.4 ± 0.896 | 36.7 ± 0.5 | |
90 | 175 ± 9 | 0.294 | −19.3 ± 0.451 | 36.8 ± 0.4 | |
LD 5.5 B | 0 | 574 ± 15 | 0.271 | −27.6 ±0.833 | 35.6 ± 0.3 |
15 | 570 ± 17 | 0.204 | −27.5 ± 0.173 | 34.3 ± 0.2 | |
30 | 520 ± 19 | 0.235 | −27.4 ± 0.864 | 34.4 ± 0.3 | |
60 | 506 ± 19 | 0.215 | −25.7 ± 0.366 | 33.4 ± 0.2 | |
90 | 501± 18 | 0.276 | −26.5 ± 0.456 | 33.3 ± 0.2 |
Formulation | LID Retained into Skin (μg/cm2) |
---|---|
LD | 387.02 |
LD 5.5 B | 352.16 |
LD 7.9 | 545.67 |
LID SOL | 165.87 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romeo, M.; Mazzotta, E.; Perrotta, I.D.; Muzzalupo, R. Lidosomes: Innovative Vesicular Systems Prepared from Lidocaine Surfadrug. Pharmaceutics 2022, 14, 2190. https://doi.org/10.3390/pharmaceutics14102190
Romeo M, Mazzotta E, Perrotta ID, Muzzalupo R. Lidosomes: Innovative Vesicular Systems Prepared from Lidocaine Surfadrug. Pharmaceutics. 2022; 14(10):2190. https://doi.org/10.3390/pharmaceutics14102190
Chicago/Turabian StyleRomeo, Martina, Elisabetta Mazzotta, Ida Daniela Perrotta, and Rita Muzzalupo. 2022. "Lidosomes: Innovative Vesicular Systems Prepared from Lidocaine Surfadrug" Pharmaceutics 14, no. 10: 2190. https://doi.org/10.3390/pharmaceutics14102190
APA StyleRomeo, M., Mazzotta, E., Perrotta, I. D., & Muzzalupo, R. (2022). Lidosomes: Innovative Vesicular Systems Prepared from Lidocaine Surfadrug. Pharmaceutics, 14(10), 2190. https://doi.org/10.3390/pharmaceutics14102190