Impact of Perfluoropentane Microdroplets Diameter and Concentration on Acoustic Droplet Vaporization Transition Efficiency and Oxygen Scavenging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Droplet Preparation and Characterization
2.2. Droplet Size and Stability Measurements
2.3. In Vitro Experimental Setup
2.4. Effect of Lumason on ADV-Mediated Oxygen Scavenging
2.5. Effect of Ultrasound Duty Cycle on ADV-Mediated Oxygen Scavenging
2.6. Effect of Droplet Concentration on ADV-Mediated Oxygen Scavenging
2.7. Comparison of Measured Oxygen Scavenging to the Transition Efficiency-Based Model
2.8. Statistical Analysis
3. Results
3.1. Droplet Manufacturing and Characterization
3.2. Droplet Stability at −20 °C
3.3. Effect of Lumason® on ADV-Mediated Oxygen Scavenging
3.4. Effect of Ultrasound Duty Cycle on ADV-Mediated Oxygen Scavenging
3.5. Effect of Droplet Concentration on ADV-Mediated Oxygen Scavenging
3.6. Comparison of Measured Oxygen Scavenging to the Transition Efficiency-Based Model
4. Discussion
4.1. Droplet Manufacturing and Characterization
4.2. Effect of Lumason® on ADV-Mediated Oxygen Scavenging
4.3. Ultrasound Insonation Parameters
4.4. Effect of Droplet Concentration on Ultrasound Mediated Oxygen Scavenging
4.5. Comparison of Measured Oxygen Scavenging to Transition Efficiency-Based Model
4.6. Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Wamel, A.; Sontum, P.C.; Healey, A.; Kvåle, S.; Bush, N.; Bamber, J.; de Lange Davies, C. Acoustic Cluster Therapy (ACT) Enhances the Therapeutic Efficacy of Paclitaxel and Abraxane® for Treatment of Human Prostate Adenocarcinoma in Mice. J. Control. Release 2016, 236, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Andersen, K.K.; Healey, A.J.; Bush, N.L.; Frijlink, M.E.; Hoff, L. Design, Fabrication, and Testing of a Dual-Frequency Transducer for Acoustic Cluster Therapy Activation. In Proceedings of the 2018 IEEE International Ultrasonics Symposium (IUS), Kobe, Japan, 22–25 October 2018; pp. 1–4. [Google Scholar]
- Kotopoulis, S.; Stigen, E.; Popa, M.; Safont, M.M.; Healey, A.; Kvåle, S.; Sontum, P.; Gjertsen, B.T.; Gilja, O.H.; McCormack, E. Sonoporation with Acoustic Cluster Therapy (ACT®) Induces Transient Tumour Volume Reduction in a Subcutaneous Xenograft Model of Pancreatic Ductal Adenocarcinoma. J. Control. Release 2017, 245, 70–80. [Google Scholar] [CrossRef] [PubMed]
- Burgess, M.T.; Porter, T.M. Control of Acoustic Cavitation for Efficient Sonoporation with Phase-Shift Nanoemulsions. Ultrasound Med. Biol. 2019, 45, 846–858. [Google Scholar] [CrossRef]
- Lea-Banks, H.; O’Reilly, M.A.; Hamani, C.; Hynynen, K. Localized Anesthesia of a Specific Brain Region Using Ultrasound-Responsive Barbiturate Nanodroplets. Theranostics 2020, 10, 2849–2858. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.-H.; Lin, Y.-T.; Ho, Y.-J.; Yeh, C.-K. Spatial-Temporal Cellular Bioeffects from Acoustic Droplet Vaporization. Theranostics 2018, 8, 5731–5743. [Google Scholar] [CrossRef]
- Zhang, M.; Fabiilli, M.L.; Haworth, K.J.; Padilla, F.; Swanson, S.D.; Kripfgans, O.D.; Carson, P.L.; Fowlkes, J.B. Acoustic Droplet Vaporization for Enhancement of Thermal Ablation by High Intensity Focused Ultrasound. Acad. Radiol. 2011, 18, 1123–1132. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Porter, T. An in Vitro Study of a Phase-Shift Nanoemulsion: A Potential Nucleation Agent for Bubble-Enhanced HIFU Tumor Ablation. Ultrasound Med. Biol. 2010, 36, 1856–1866. [Google Scholar] [CrossRef]
- Peng, C.; Sun, T.; Vykhodtseva, N.; Power, C.; Zhang, Y.; Mcdannold, N.; Porter, T. Intracranial Nonthermal Ablation Mediated by Transcranial Focused Ultrasound and Phase-Shift Nanoemulsions. Ultrasound Med. Biol. 2019, 45, 2104–2117. [Google Scholar] [CrossRef]
- Pajek, D.; Burgess, A.; Huang, Y.; Hynynen, K. High Intensity Focused Ultrasound Sonothrombolysis: The Use of Perfluorocarbon Droplets to Achieve Clot Lysis at Reduced Acoustic Powers. Ultrasound Med. Biol. 2014, 40, 2151–2161. [Google Scholar] [CrossRef] [Green Version]
- Aydin, O.; Vlaisavljevich, E.; Yuksel Durmaz, Y.; Xu, Z.; ElSayed, M.E.H. Noninvasive Ablation of Prostate Cancer Spheroids Using Acoustically-Activated Nanodroplets. Mol. Pharm. 2016, 13, 4054–4065. [Google Scholar] [CrossRef]
- Dong, X.; Lu, X.; Kingston, K.; Brewer, E.; Juliar, B.A.; Kripfgans, O.D.; Fowlkes, J.B.; Franceschi, R.T.; Putnam, A.J.; Liu, Z.; et al. Controlled Delivery of Basic Fibroblast Growth Factor (BFGF) Using Acoustic Droplet Vaporization Stimulates Endothelial Network Formation. Acta Biomater. 2019, 97, 409–419. [Google Scholar] [CrossRef] [PubMed]
- Aliabouzar, M.; Lu, X.; Kripfgans, O.D.; Fowlkes, J.B.; Fabiilli, M.L. Acoustic Droplet Vaporization in Acoustically Responsive Scaffolds: Effects of Frequency of Excitation, Volume Fraction and Threshold Determination Method. Ultrasound Med. Biol. 2019, 45, 3246–3260. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Dong, X.; Natla, S.; Kripfgans, O.D.; Fowlkes, J.B.; Wang, X.; Franceschi, R.; Putnam, A.J.; Fabiilli, M.L. Parametric Study of Acoustic Droplet Vaporization Thresholds and Payload Release from Acoustically-Responsive Scaffolds. Ultrasound Med. Biol. 2019, 45, 2471–2484. [Google Scholar] [CrossRef]
- Fischesser, D.M.; Bo, B.; Benton, R.P.; Su, H.; Jahanpanah, N.; Haworth, K.J. Controlling Reperfusion Injury With Controlled Reperfusion: Historical Perspectives and New Paradigms. J. Cardiovasc. Pharmacol. Ther. 2021, 26, 504–523. [Google Scholar] [CrossRef]
- Mercado-Shekhar, K.P.; Su, H.; Kalaikadal, D.S.; Lorenz, J.N.; Manglik, R.M.; Holland, C.K.; Redington, A.N.; Haworth, K.J. Acoustic Droplet Vaporization-Mediated Dissolved Oxygen Scavenging in Blood-Mimicking Fluids, Plasma, and Blood. Ultrason. Sonochem. 2019, 56, 114–124. [Google Scholar] [CrossRef]
- Kripfgans, O.D.; Fowlkes, J.B.; Miller, D.L.; Eldevik, O.P.; Carson, P.L. Acoustic Droplet Vaporization for Therapeutic and Diagnostic Applications. Ultrasound Med. Biol. 2000, 26, 1177–1189. [Google Scholar] [CrossRef]
- Sheeran, P.S.; Wong, V.P.; Luois, S.; McFarland, R.J.; Ross, W.D.; Feingold, S.; Matsunaga, T.O.; Dayton, P.A. Decafluorobutane as a Phase-Change Contrast Agent for Low-Energy Extravascular Ultrasonic Imaging. Ultrasound Med. Biol. 2011, 37, 1518–1530. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.-T.; Huang, Y.-L.; Yeh, C.-K. Characterization of Acoustic Droplet Vaporization for Control of Bubble Generation under Flow Conditions. Ultrasound Med. Biol. 2014, 40, 551–561. [Google Scholar] [CrossRef]
- Radhakrishnan, K.; Holland, C.K.; Haworth, K.J. Scavenging Dissolved Oxygen via Acoustic Droplet Vaporization. Ultrason. Sonochem. 2016, 31, 394–403. [Google Scholar] [CrossRef] [Green Version]
- Fabiilli, M.L.; Haworth, K.J.; Sebastian, I.E.; Kripfgans, O.D.; Carson, P.L.; Fowlkes, J.B. Delivery of Chlorambucil Using an Acoustically-Triggered Perfluoropentane Emulsion. Ultrasound Med. Biol. 2010, 36, 1364–1375. [Google Scholar] [CrossRef]
- Mercado, K.P.; Radhakrishnan, K.; Stewart, K.; Snider, L.; Ryan, D.; Haworth, K.J. Size-Isolation of Ultrasound-Mediated Phase Change Perfluorocarbon Droplets Using Differential Centrifugation. J. Acoust. Soc. Am. 2016, 139, EL142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schad, K.C.; Hynynen, K. In Vitro Characterization of Perfluorocarbon Droplets for Focused Ultrasound Therapy. Phys. Med. Biol. 2010, 55, 4933–4947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lo, A.H.; Kripfgans, O.D.; Carson, P.L.; Rothman, E.D.; Fowlkes, J.B. Acoustic Droplet Vaporization Threshold: Effects of Pulse Duration and Contrast Agent. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2007, 54, 933–946. [Google Scholar] [CrossRef] [PubMed]
- Healey, A.J.; Sontum, P.C.; Kvåle, S.; Eriksen, M.; Bendiksen, R.; Tornes, A.; Østensen, J. Acoustic Cluster Therapy: In Vitro and Ex Vivo Measurement of Activated Bubble Size Distribution and Temporal Dynamics. Ultrasound Med. Biol. 2016, 42, 1145–1166. [Google Scholar] [CrossRef] [PubMed]
- Sontum, P.; Kvåle, S.; Healey, A.J.; Skurtveit, R.; Watanabe, R.; Matsumura, M.; Østensen, J. Acoustic Cluster Therapy (ACT)—A Novel Concept for Ultrasound Mediated, Targeted Drug Delivery. Int. J. Pharm. 2015, 495, 1019–1027. [Google Scholar] [CrossRef]
- Haworth, K.J.; Goldstein, B.H.; Mercado-Shekhar, K.P.; Srivastava, R.; Arunkumar, P.; Su, H.; Privitera, E.M.; Holland, C.K.; Redington, A.N. Dissolved Oxygen Scavenging by Acoustic Droplet Vaporization Using Intravascular Ultrasound. In Proceedings of the 2017 IEEE International Ultrasonics Symposium (IUS), Washington, DC, USA, 6–9 September 2017; Volume 2017. [Google Scholar] [CrossRef]
- Moncion, A.; Lin, M.; O’Neill, E.G.; Franceschi, R.T.; Kripfgans, O.D.; Putnam, A.J.; Fabiilli, M.L. Controlled Release of Basic Fibroblast Growth Factor for Angiogenesis Using Acoustically-Responsive Scaffolds. Biomaterials 2017, 140, 26–36. [Google Scholar] [CrossRef]
- Houk, L.R.; Challa, S.R.; Grayson, B.; Fanson, P.; Datye, A.K. The Definition of “Critical Radius” for a Collection of Nanoparticles Undergoing Ostwald Ripening. Langmuir 2009, 25, 11225–11227. [Google Scholar] [CrossRef]
- Taylor, P. Ostwald Ripening in Emulsions: Estimation of Solution Thermodynamics of the Disperse Phase. Adv. Colloid Interface Sci. 2003, 106, 261–285. [Google Scholar] [CrossRef]
- Bell, R.M.; Mocanu, M.M.; Yellon, D.M. Retrograde Heart Perfusion: The Langendorff Technique of Isolated Heart Perfusion. J. Mol. Cell. Cardiol. 2011, 50, 940–950. [Google Scholar] [CrossRef]
- Lafond, M.; Salido, N.G.; Haworth, K.J.; Hannah, A.S.; Macke, G.P.; Genstler, C.; Holland, C.K. Cavitation Emissions Nucleated by Definity Infused through an EkoSonic Catheter in a Flow Phantom. Ultrasound Med. Biol. 2021, 47, 693–709. [Google Scholar] [CrossRef]
- Fasciolo, J.C.; Chiodi, H. Arterial Oxygen Pressure during Pure O2 Breathing. Am. J. Physiol. 1946, 147, 54–65. [Google Scholar] [CrossRef] [PubMed]
- Christoforides, C.; Laasberg, L.H.; Hedley-Whyte, J. Effect of Temperature on Solubility of O2 in Human Plasma. J. Appl. Physiol. 1969, 26, 56–60. [Google Scholar] [CrossRef] [PubMed]
- McGraw, K.O. “Forming Inferences about Some Intraclass Correlations Coefficients”: Correction. Psychol. Methods 1996, 1, 390. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, D.; Zhang, Q.; Guo, X.; Raymond, J.L.; Roy, R.A.; Zhang, D.; Tu, J. The Influence of Droplet Concentration on Phase Change and Inertial Cavitation Thresholds Associated with Acoustic Droplet Vaporization. J. Acoust. Soc. Am. 2020, 148, EL375. [Google Scholar] [CrossRef]
- Burgess, M.T.; Aliabouzar, M.; Aguilar, C.; Fabiilli, M.L.; Ketterling, J.A. Slow-Flow Ultrasound Localization Microscopy Using Recondensation of Perfluoropentane Nanodroplets. Ultrasound Med. Biol. 2022, 48, 743–759. [Google Scholar] [CrossRef]
- Filipe, V.; Hawe, A.; Jiskoot, W. Critical Evaluation of Nanoparticle Tracking Analysis (NTA) by NanoSight for the Measurement of Nanoparticles and Protein Aggregates. Pharm. Res. 2010, 27, 796–810. [Google Scholar] [CrossRef] [Green Version]
- Aliabouzar, M.; Kripfgans, O.D.; Wang, W.Y.; Baker, B.M.; Brian Fowlkes, J.; Fabiilli, M.L. Stable and Transient Bubble Formation in Acoustically-Responsive Scaffolds by Acoustic Droplet Vaporization: Theory and Application in Sequential Release. Ultrason. Sonochem. 2021, 72, 105430. [Google Scholar] [CrossRef]
Nominal Droplet Diameter (µm) | Polymer Flow Rate (µL/min) | PFP Flow Rate (µL/min) | Polymer Concentration (mg/mL) | Polymer Kinematic Viscosity (cp) | Measured Production Rate (droplets/sec) | Anticipated Production Rate (droplets/sec) |
---|---|---|---|---|---|---|
1 | 8.33 | 0.1 | 45 | 2.23 ± 0.02 | 1.69 × 106 | 2.53 × 106 |
3 | 5 | 0.3 | 45 | 2.23 ± 0.02 | 6.15 × 105 | 4.69 × 105 |
5 | 11.67 | 0.8 | 105 | 4.79 ± 0.01 | 1.21 × 105 | 1.94 × 105 |
7 | 11.67 | 1.2 | 105 | 4.79 ± 0.01 | 1.01 × 105 | 1.00 × 105 |
9 | 8.33 | 1.7 | 125 | 5.05 ± 0.05 | 5.88 × 104 | 6.63 × 104 |
12 | 6.67 | 3.4 | 125 | 5.05 ± 0.05 | 1.22 × 105 | 6.92 × 104 |
Nominal Size (µm) | D0 Modal Diameter (µm) | D33 Modal Diameter (µm) | D0 PDI | D33 PDI |
---|---|---|---|---|
1 | 1.34 | 1.34 | 0.068 | 0.0812 |
3 | 2.73 | 2.73 | 0.081 | 0.188 |
5 | 4.99 | 4.91 | 0.109 | 0.291 |
7 | 6.47 | 6.47 | 0.185 | 0.342 |
9 | 8.47 | 8.47 | 0.5324 | 0.5581 |
12 | 12.39 | 12.39 | 0.0967 | 0.2224 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benton, R.P.; Al Rifai, N.; Stone, K.; Clark, A.; Zhang, B.; Haworth, K.J. Impact of Perfluoropentane Microdroplets Diameter and Concentration on Acoustic Droplet Vaporization Transition Efficiency and Oxygen Scavenging. Pharmaceutics 2022, 14, 2392. https://doi.org/10.3390/pharmaceutics14112392
Benton RP, Al Rifai N, Stone K, Clark A, Zhang B, Haworth KJ. Impact of Perfluoropentane Microdroplets Diameter and Concentration on Acoustic Droplet Vaporization Transition Efficiency and Oxygen Scavenging. Pharmaceutics. 2022; 14(11):2392. https://doi.org/10.3390/pharmaceutics14112392
Chicago/Turabian StyleBenton, Rachel P., Nour Al Rifai, Kateryna Stone, Abigail Clark, Bin Zhang, and Kevin J. Haworth. 2022. "Impact of Perfluoropentane Microdroplets Diameter and Concentration on Acoustic Droplet Vaporization Transition Efficiency and Oxygen Scavenging" Pharmaceutics 14, no. 11: 2392. https://doi.org/10.3390/pharmaceutics14112392
APA StyleBenton, R. P., Al Rifai, N., Stone, K., Clark, A., Zhang, B., & Haworth, K. J. (2022). Impact of Perfluoropentane Microdroplets Diameter and Concentration on Acoustic Droplet Vaporization Transition Efficiency and Oxygen Scavenging. Pharmaceutics, 14(11), 2392. https://doi.org/10.3390/pharmaceutics14112392