Sequential Delivery of Novel Triple Drug Combination via Crosslinked Alginate/Lactoferrin Nanohybrids for Enhanced Breast Cancer Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Crosslinked HK-Loaded PMT–ALG/LF–RST NHs F10
2.2.1. Preparation of Alginate/Lactoferrin Nanohybrids (ALG/LF NHs) F1
2.2.2. Preparation of Lactoferrin–Rosuvastatin Conjugate (LF–RST) F2
2.2.3. Preparation of Alginate/Lactoferrin–Rosuvastatin Nanohybrids Loaded with Honokiol (HK-Loaded ALG/LF–RST NHs) F4
2.2.4. Preparation of Pemetrexed–Alginate Conjugate (PMT–ALG) F5
2.2.5. Preparation of Pemetrexed–Alginate/Lactoferrin Nanohybrids Loaded with Honokiol (HK-Loaded PMT–ALG/LF NHs) F7
2.2.6. Preparation of Pemetrexed–Alginate/Lactoferrin–Rosuvastatin Nanohybrids (PMT–ALG/LF–RST NHs) F8
2.2.7. Physical Loading of HK within PMT–ALG-LF–RST Nanohybrids (HK-Loaded PMT–ALG/LF–RST NHs) F9
2.2.8. Crosslinking of HK-Loaded PMT–ALG/LF–RST Nanohybrids (Crosslinked HK-Loaded PMT–ALG/LF–RST NHs) F10
2.3. Physicochemical Characterization of Crosslinked HK-Loaded PMT–ALG/LF–RST NHs
2.4. In Vitro Cytotoxicity and Cellular Uptake Study
2.5. In Vivo Antitumor Efficacy
3. Results
3.1. Synthesis of PMT–ALG/LF–RST NHs F8
3.2. Development of Crosslinked HK-Loaded PMT–ALG/LF–RST NHs
3.3. Solid-State Characterization
3.4. Morphological Analysis, Physical Stability and Redispersibility
3.5. In Vitro Drug Release
3.6. Hemocompatibility and Serum Stability
3.7. In Vitro Cytotoxicity
3.8. In Vitro Cellular Uptake of Nanohybrids
3.9. In Vivo Antitumor Efficacy
3.9.1. Tumor Growth
3.9.2. Biomarkers of Tumor Growth
3.9.3. Biocompatibility and Biosafety
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sabra, S.A.; Elzoghby, A.O.; Sheweita, S.A.; Haroun, M.; Helmy, M.W.; Eldemellawy, M.A.; Xia, Y.; Goodale, D.; Allan, A.L.; Rohani, S. Self-assembled amphiphilic zein-lactoferrin micelles for tumor targeted co-delivery of rapamycin and wogonin to breast cancer. Eur. J. Pharm. Biopharm. 2018, 128, 156–169. [Google Scholar] [CrossRef] [PubMed]
- Tao, Z.; Shi, A.; Lu, C.; Song, T.; Zhang, Z.; Zhao, J. Breast Cancer: Epidemiology and Etiology. Cell Biochem. Biophys. 2015, 72, 333–338. [Google Scholar] [CrossRef]
- Nurgali, K.; Jagoe, R.; Abalo, R. Editorial: Adverse Effects of Cancer Chemotherapy: Anything New to Improve Tolerance and Reduce Sequelae? Front. Pharmacol. 2018, 9, 245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shabbits, J.A.; Hu, Y.; Mayer, L.D. Tumor chemosensitization strategies based on apoptosis manipulations. Mol. Cancer Ther. 2003, 2, 805–813. [Google Scholar] [PubMed]
- Hu, C.M.; Zhang, L. Nanoparticle-based combination therapy toward overcoming drug resistance in cancer. Biochem. Pharmacol. 2012, 83, 1104–1111. [Google Scholar] [CrossRef]
- Zhou, L.-Y.; Shi, Y.-H.; Jia, Y.-S.; Tong, Z.-S. Potential role of pemetrexed in metastatic breast cancer patients pre-treated with anthracycline or taxane. Chronic Dis. Transl. Med. 2015, 1, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Yang, L.; Xia, Y.; Cheng, L.; Zhang, J.; Meng, F.; Yuan, J.; Zhong, Z. Lung cancer specific and reduction-responsive chimaeric polymersomes for highly efficient loading of pemetrexed and targeted suppression of lung tumor in vivo. Acta Biomater. 2018, 70, 177–185. [Google Scholar] [CrossRef]
- Duan, W.; Liu, Y. Targeted and synergistic therapy for hepatocellular carcinoma: Monosaccharide modified lipid nanoparticles for the co-delivery of doxorubicin and sorafenib. Drug Des. Dev. Ther. 2018, 12, 2149–2161. [Google Scholar] [CrossRef] [Green Version]
- Cao, H.; Wang, Y.; He, X.; Zhang, Z.; Yin, Q.; Chen, Y.; Yu, H.; Huang, Y.; Chen, L.; Xu, M.; et al. Codelivery of sorafenib and curcumin by directed self-assembled nanoparticles enhances therapeutic effect on hepatocellular carcinoma. Mol. Pharm. 2015, 12, 922–931. [Google Scholar] [CrossRef]
- Cova, E.; Pandolfi, L.; Colombo, M.; Frangipane, V.; Inghilleri, S.; Morosini, M.; Mrakic-Sposta, S.; Moretti, S.; Monti, M.; Pignochino, Y.; et al. Pemetrexed-loaded nanoparticles targeted to malignant pleural mesothelioma cells: An in vitro study. Int. J. Nanomed. 2019, 14, 773–785. [Google Scholar] [CrossRef]
- Gabr, M.M.; Mortada, S.M.; Sallam, M.A. Carboxylate cross-linked cyclodextrin: A nanoporous scaffold for enhancement of rosuvastatin oral bioavailability. Eur. J. Pharm. Sci. 2018, 111, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Gabr, M.M.; Mortada, S.M.; Sallam, M.A. Hexagonal Liquid Crystalline Nanodispersions Proven Superiority for Enhanced Oral Delivery of Rosuvastatin: In Vitro Characterization and In Vivo Pharmacokinetic Study. J. Pharm. Sci. 2017, 106, 3103–3112. [Google Scholar] [CrossRef] [PubMed]
- El Sayed, I.; Helmy, M.W.; El-Abhar, H.S. Inhibition of SRC/FAK cue: A novel pathway for the synergistic effect of rosuvastatin on the anti-cancer effect of dasatinib in hepatocellular carcinoma. Life Sci. 2018, 213, 248–257. [Google Scholar] [CrossRef] [PubMed]
- Pandyra, A.A.; Mullen, P.J.; Kalkat, M.; Yu, R.; Pong, J.T.; Li, Z.-h.; Trudel, S.; Lang, K.S.; Minden, M.D.; Schimmer, A.D.; et al. Immediate utility of two approved agents to target both the metabolic mevalonate pathway and its restorative feedback loop. Cancer Res. 2014, 74, 4772–4782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holstein, S.A.; Hohl, R.J. Synergistic interaction of lovastatin and paclitaxel in human cancer cells. Mol. Cancer Ther. 2001, 1, 141–149. [Google Scholar]
- Arora, S.; Singh, S.; Piazza, G.A.; Contreras, C.M.; Panyam, J.; Singh, A.P. Honokiol: A novel natural agent for cancer prevention and therapy. Curr. Mol. Med. 2012, 12, 1244–1252. [Google Scholar] [CrossRef]
- Khafaga, A.; Shamma, R.; Abdeen, A.; Barakat, A.; Noreldin, A.; Elzoghby, A.; Sallam, M. Celecoxib repurposing in cancer therapy: Molecular mechanisms and nanomedicine-based delivery technologies. Nanomedicine 2021, 16, 1691–1712. [Google Scholar] [CrossRef]
- Helal, H.M.; Samy, W.M.; El-Fakharany, E.M.; Kamoun, E.A.; Mortada, S.M.; Sallam, M.A. Maltodextrin-α-tocopherol conjugates of vitamin E: Influence of degree of derivatization on physicochemical properties and biological evaluation. J. Drug. Deliv. Sci. Technol. 2020, 60, 102097. [Google Scholar] [CrossRef]
- Sallam, M.A.; Wyatt Shields, C.; Prakash, S.; Kim, J.; Pan, D.C.; Mitragotri, S. A dual macrophage polarizer conjugate for synergistic melanoma therapy. J. Control. Release 2021, 335, 333–344. [Google Scholar] [CrossRef]
- Sallam, M.A.; Prakash, S.; Krishnan, V.; Todorova, K.A.; Mandinova, A.; Mitragotri, S. Hyaluronic Acid Conjugates of Vorinostat and Bexarotene for Treatment of Cutaneous Malignancies. Adv. Ther. 2020, 3, 2000116. [Google Scholar] [CrossRef]
- Dolz-Pérez, I.; Sallam, M.A.; Masiá, E.; Morelló-Bolumar, D.; Pérez del Caz, M.D.; Graff, P.; Abdelmonsif, D.; Hedtrich, S.; Nebot, V.J.; Vicent, M.J. Polypeptide-corticosteroid conjugates as a topical treatment approach to psoriasis. J. Control. Release 2020, 318, 210–222. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Yao, P.; He, F.; Yu, C.-Q.; Huang, C. Nanoparticles with dextran/chitosan shell and BSA/chitosan core--doxorubicin loading and delivery. Int. J. Pharm. 2010, 393, 176–184. [Google Scholar] [CrossRef] [PubMed]
- Peng, P.; Yang, K.; Tong, G.; Ma, L. Polysaccharide Nanoparticles for Targeted Cancer Therapies. Curr. Drug Metab. 2018, 19, 781–792. [Google Scholar] [CrossRef] [PubMed]
- Abdelmoneem, M.A.; Abd Elwakil, M.M.; Khattab, S.N.; Helmy, M.W.; Bekhit, A.A.; Abdulkader, M.A.; Zaky, A.Z.; Teleb, M.A.M.; Elkhodairy, K.A.; Albericio, F.; et al. Lactoferrin-dual drug nanoconjugate: Synergistic anti-tumor efficacy of docetaxel and the NF-κB inhibitor celastrol. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 118, 111422. [Google Scholar] [CrossRef] [PubMed]
- Cherkupally, P.; Acosta, G.; Nieto-Rodriguez, L.; Spengler, J.; Rodríguez, H.M.; Khattab, S.N.; El-Faham, A.; Shamis, M.; Luxembourg, Y.; Prohens, R.; et al. K-Oxyma: A Strong Acylation-Promoting, 2-CTC Resin-Friendly Coupling Additive. Eur. J. Org. Chem. 2013, 2013, 6372–6378. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef]
- Mitachi, K.; Kurosu, Y.E.; Hazlett, B.T.; Kurosu, M. Oxyma-based phosphates for racemization-free peptide segment couplings. J. Pept. Sci. 2016, 22, 186–191. [Google Scholar] [CrossRef] [Green Version]
- El-Faham, A.; Khattab, S.N.; Abdul-Ghani, M.; Albericio, F. Design and Synthesis of New Immonium-Type Coupling Reagents. Eur. J. Org. Chem. 2006, 2006, 1563–1573. [Google Scholar] [CrossRef]
- Khattab, S.N. Ethyl 2-Cyano-2-(hydroxyimino)acetate (Oxyma): An Efficient and Convenient Additive Used with Tetramethylfluoroformamidinium Hexafluorophosphate (TFFH) to Replace 1-Hydroxybenzotriazole (HOBt) and 1-Hydroxy-7-azabenzotriazole (HOAt) during Peptide Synthesis. Bull. Chem. Soc. Jpn. 2010, 83, 1374–1379. [Google Scholar]
- Khattab, S.N. Sulfonate Esters of 1-Hydroxypyridin-2(1H)-one and Ethyl 2-Cyano-2-(hydroxyimino)acetate (Oxy-ma) as Effective Peptide Coupling Reagents to Replace 1-Hydroxybenzotriazole and 1-Hydroxy-7-azabenzotriazole. Chem. Pharm. Bull. 2010, 58, 501–506. [Google Scholar] [CrossRef] [Green Version]
- Jad, Y.E.; Khattab, S.N.; Torre, B.G.; Govender, T.; Kruger, H.G.; El-Faham, A.; Albericio, F. EDC·HCl and Potassium Salts of Oxyma and Oxyma-B as Superior Coupling Cocktails for Peptide Synthesis. Eur. J. Org. Chem. 2015, 2015, 3116–3120. [Google Scholar] [CrossRef]
- Zhou, C.; Gao, W.; Lu, G.; Ding, J.; Wu, X.; Huang, X.; Chen, J.; Liu, M.-C.; Jiang, J.; Wu, H.-Y. Preparation, characterization and in vitro release of microparticles based on dextran-rosuvastatin conjugate. Carbohydr. Polym. 2013, 96, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Dey, S.; Sreenivasan, K.S. Conjugation of curcumin onto alginate enhances aqueous solubility and stability of curcumin. Carbohydr. Polym. 2014, 99, 499–507. [Google Scholar] [CrossRef] [PubMed]
- Martínez, A.M.; Iglesias, I.; Lozano, R.; Teijón, J.M.; Blanco, M.D. Synthesis and characterization of thiolated alginate-albumin nanoparticles stabilized by disulfide bonds. Evaluation as drug delivery systems. Carbohydr. Polym. 2011, 83, 1311–1321. [Google Scholar] [CrossRef]
- Anwar, D.M.; Khattab, S.N.; Helmy, M.W.; Kamal, M.K.; Bekhit, A.A.; Elkhodairy, K.A.; Elzoghby, A.O. Lactobionic/Folate Dual-Targeted Amphiphilic Maltodextrin-Based Micelles for Targeted Codelivery of Sulfasalazine and Resveratrol to Hepatocellular Carcinoma. Bioconjug. Chem. 2018, 29, 3026–3041. [Google Scholar] [CrossRef]
- Helal, H.M.; Samy, W.M.; Kamoun, E.A.; El-Fakharany, E.M.; Abdelmonsif, D.A.; Aly, R.G.; Mortada, S.M.; Sallam, M.A. Potential Privilege of Maltodextrin-α-Tocopherol Nano-Micelles in Seizing Tacrolimus Renal Toxicity, Managing Rheumatoid Arthritis and Accelerating Bone Regeneration. Int. J. Nanomed. 2021, 16, 4781–4803. [Google Scholar] [CrossRef]
- Kapure, V.J.; Pande, V.V.; Deshmukh, P.K. Dissolution Enhancement of Rosuvastatin Calcium by Liquisolid Compact Technique. Int. J. Pharm. 2013, 2013, 315902. [Google Scholar] [CrossRef]
- Zayed, D.G.; Ebrahim, S.M.; Helmy, M.W.; Khattab, S.N.; Bahey-El-Din, M.; Fang, J.Y.; Elkhodairy, K.A.; Elzoghby, A.O. Combining hydrophilic chemotherapy and hydrophobic phytotherapy via tumor-targeted albumin-QDs nano-hybrids: Covalent coupling and phospholipid complexation approaches. J. Nanobiotechnol. 2019, 17, 7. [Google Scholar] [CrossRef]
- Metawea, O.R.M.; Abdelmoneem, M.A.; Haiba, N.S.; Khalil, H.H.; Teleb, M.; Elzoghby, A.O.; Khafaga, A.F.; Noreldin, A.E.; Albericio, F.; Khattab, S.N. A novel ‘smart’ PNIPAM-based copolymer for breast cancer targeted therapy: Synthesis, and characterization of dual pH/temperature-responsive lactoferrin-targeted PNIPAM-co-AA. Colloids Surf. B Biointerfaces 2021, 202, 111694. [Google Scholar] [CrossRef]
- O’Riordan, N.; Kane, M.; Joshi, L.; Hickey, R.M. Structural and functional characteristics of bovine milk protein glycosylation. Glycobiology 2014, 24, 220–236. [Google Scholar] [CrossRef] [Green Version]
- Elgindy, N.; Elkhodairy, K.; Molokhia, A.; Elzoghby, A. Lyophilization monophase solution technique for preparation of amorphous flutamide dispersions. Drug Dev. Ind. Pharm. 2011, 37, 754–764. [Google Scholar] [CrossRef] [PubMed]
- Date, P.V.; Samad, A.; Devarajan, P.V. Freeze Thaw: A Simple Approach for Prediction of Optimal Cryoprotectant for Freeze Drying. AAPS PharmSciTech 2010, 11, 304–313. [Google Scholar] [CrossRef] [PubMed]
- Müller-Goymann, C.C. Physicochemical characterization of colloidal drug delivery systems such as reverse micelles, vesicles, liquid crystals and nanoparticles for topical administration. Eur. J. Pharm. Biopharm. 2004, 58, 343–356. [Google Scholar] [CrossRef] [PubMed]
- Nahar, M.; Mishra, D.; Dubey, V.; Jain, N.K. Development, characterization, and toxicity evaluation of amphotericin B-loaded gelatin nanoparticles. Nanomedicine 2008, 4, 252–261. [Google Scholar] [CrossRef]
- Karymov, M.A.; Procházka, K.; Mendenhall, J.M.; Martin, T.J.; Munk, P.; Webber, S.E. Chemical Attachment of Polystyrene-block-poly(methacrylic acid) Micelles on a Silicon Nitride Surface. Langmuir 1996, 12, 4748–4753. [Google Scholar] [CrossRef]
- Martinez, A.W.; Caves, J.M.; Ravi, S.; Li, W.; Chaikof, E.L. Effects of crosslinking on the mechanical properties, drug release and cytocompatibility of protein polymers. Acta Biomater. 2014, 10, 26–33. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Wang, Y.; Zhang, J.; Li, M.; Liu, Y.; Zhang, N. Pluronic P123-Docetaxel Conjugate Micelles: Synthesis, Characterization, and Antitumor Activity. J. Biomed. Nanotechnol. 2013, 9, 2007–2016. [Google Scholar] [CrossRef]
- Markovsky, E.; Baabur-Cohen, H.; Satchi-Fainaro, R. Anticancer polymeric nanomedicine bearing synergistic drug combination is superior to a mixture of individually-conjugated drugs. J. Control. Release 2014, 187, 145–157. [Google Scholar] [CrossRef]
- Xu, Q.; Yuan, X.; Chang, J. Self-aggregates of cholic acid hydrazide–dextran conjugates as drug carriers. J. Appl. Polym. Sci. 2005, 95, 487–493. [Google Scholar] [CrossRef]
- Kwon, G.S.; Forrest, M.L. Amphiphilic block copolymer micelles for nanoscale drug delivery. Drug Dev. Res. 2006, 67, 15–22. [Google Scholar] [CrossRef]
- Göppert, T.M.; Müller, R.H. Adsorption kinetics of plasma proteins on solid lipid nanoparticles for drug targeting. Int. J. Pharm. 2005, 302, 172–186. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Zhang, B.; Gong, X.; Wang, T.; Liu, Y.; Zhang, N. In vivo biodistribution, biocompatibility, and efficacy of sorafenib-loaded lipid-based nanosuspensions evaluated experimentally in cancer. Int. J. Nanomed. 2016, 11, 2329. [Google Scholar]
- Brash, J.L. Blood compatibility of nanomaterials. In Drug Delivery Nanosystems for Biomedical Applications; Sharma, C.P., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 13–31. [Google Scholar]
- Chou, T.-C. Drug combinations: From laboratory to practice. J. Lab. Clin. Med. 1998, 132, 6–8. [Google Scholar] [CrossRef]
- Chou, T.; Talalay, P. Applications of the median-effect principle for the assessment of low-dose risk of carcinogens and for the quantitation of synergism and antagonism of chemotherapeutic agents. New Ave. Dev. Cancer Chemother. 1987, 8, 37–64. [Google Scholar]
- Chou, T.-C.; Talaly, P. A simple generalized equation for the analysis of multiple inhibitions of Michaelis-Menten kinetic systems. J. Biol. Chem. 1977, 252, 6438–6442. [Google Scholar] [CrossRef]
- Salatin, S.; Yari Khosroushahi, A. Overviews on the cellular uptake mechanism of polysaccharide colloidal nanoparticles. J. Cell Mol. Med. 2017, 21, 1668–1686. [Google Scholar] [CrossRef] [Green Version]
- Atallah, M.; Sallam, M.; Abdelmoneem, M.; Teleb, M.; Elkhodairy, K.; Bekhit, A.; Khafaga, A.; Noreldin, A.; Elzoghby, A.; Khattab, S.N. Green self-assembled lactoferrin carboxymethyl cellulose nanogels for synergistic chemo/herbal breast cancer therapy. Colloids Surf. B Biointerfaces 2022, 217, 112657. [Google Scholar] [CrossRef]
- Donahue, N.D.; Acar, H.; Wilhelm, S. Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Adv. Drug Deliv. Rev. 2019, 143, 68–96. [Google Scholar] [CrossRef]
- Rafiee, A.; Alimohammadian, M.H.; Gazori, T.; Riazi-rad, F.; Fatemi, S.M.R.; Parizadeh, A.; Haririan, I.; Havaskary, M. Comparison of chitosan, alginate and chitosan/alginate nanoparticles with respect to their size, stability, toxicity and transfection. Asian Pac. J. Trop. Med. 2014, 4, 372–377. [Google Scholar] [CrossRef]
- Maharjan, R.; Pangeni, R.; Jha, S.K.; Choi, J.U.; Chang, K.-Y.; Choi, Y.K.; Park, J.W.; Byun, Y. Anti-Angiogenic Effect of Orally Available Pemetrexed for Metronomic Chemotherapy. Pharmaceutics 2019, 11, 332. [Google Scholar] [CrossRef] [Green Version]
- Semenova, A.E.; Sergienko, I.V.; Masenko, V.P.; Ezhov, M.V.; Gabrusenko, S.A.; Kuharchuk, V.V.; Belenkov, Y.N. The influence of rosuvastatin therapy and percutaneous coronary intervention on angiogenic growth factors in coronary artery disease patients. Acta Cardiol. 2009, 64, 405–409. [Google Scholar] [CrossRef] [PubMed]
- Haggag, Y.A.; Ibrahim, R.R.; Hafiz, A.A. Design, Formulation and in vivo Evaluation of Novel Honokiol-Loaded PEGylated PLGA Nanocapsules for Treatment of Breast Cancer. Int. J. Nanomed. 2020, 15, 1625–1642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagalingam, A.; Arbiser, J.L.; Bonner, M.Y.; Saxena, N.K.; Sharma, D. Honokiol activates AMP-activated protein kinase in breast cancer cells via an LKB1-dependent pathway and inhibits breast carcinogenesis. Breast Cancer Res. 2012, 14, R35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Zang, C.; Emde, A.; Planas-Silva, M.D.; Rosche, M.; Kühnl, A.; Schulz, C.-O.; Elstner, E.; Possinger, K.; Eucker, J. Anti-tumor effect of honokiol alone and in combination with other anti-cancer agents in breast cancer. Eur. J. Pharmacol. 2008, 591, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.-C.; Yang, T.-Y.; Wu, C.-C.; Cheng, C.-C.; Hsu, S.-L.; Hung, H.-W.; Chen, J.-W.; Chang, G.-C. Pemetrexed Induces S-Phase Arrest and Apoptosis via a Deregulated Activation of Akt Signaling Pathway. PLoS ONE 2014, 9, e97888. [Google Scholar] [CrossRef]
- Tian, W.; Xu, D.; Deng, Y.-C. Honokiol, a multifunctional tumor cell death inducer. J. Pharm. Sci. 2012, 67, 811–816. [Google Scholar]
- Li, X.; Song, H.; Kong, F.; Guo, Y.; Chen, Y.; Zhang, L.; Gao, D.; Zhao, X.; Zhang, H. Pemetrexed exerts anticancer effects by inducing G(0)/G(1)-phase cell cycle arrest and activating the NOXA/Mcl-1 axis in human esophageal squamous cell carcinoma cells. Oncol. Lett. 2019, 17, 1851–1858. [Google Scholar] [CrossRef]
- Cui, J.; Zhang, Y.; Su, D.; Li, T.; Li, Y. Efficacy of combined icotinib and pemetrexed in EGFR mutant lung adenocarcinoma cell line xenografts. Thorac. Cancer 2018, 9, 1156–1165. [Google Scholar] [CrossRef] [Green Version]
- Bjarnadottir, O.; Romero, Q.; Bendahl, P.O.; Jirström, K.; Rydén, L.; Loman, N.; Uhlén, M.; Johannesson, H.; Rose, C.; Grabau, D.; et al. Targeting HMG-CoA reductase with statins in a window-of-opportunity breast cancer trial. Breast Cancer Res. Treat. 2013, 138, 499–508. [Google Scholar] [CrossRef]
- Elzoghby, A.O.; Helmy, M.W.; Samy, W.M.; Elgindy, N.A. Micellar Delivery of Flutamide Via Milk Protein Nanovehicles Enhances its Anti-Tumor Efficacy in Androgen-Dependent Prostate Cancer Rat Model. Pharm. Res. 2013, 30, 2654–2663. [Google Scholar] [CrossRef]
- Abdelmoneem, M.A.; Mahmoud, M.; Zaky, A.; Helmy, M.W.; Sallam, M.; Fang, J.-Y.; Elkhodairy, K.A.; Elzoghby, A.O. Decorating protein nanospheres with lactoferrin enhances oral COX-2 inhibitor/herbal therapy of hepatocellular carcinoma. Nanomedicine 2018, 13, 2377–2395. [Google Scholar] [CrossRef] [PubMed]
- Elzoghby, A.O.; Vranic, B.Z.; Samy, M.W.; Elgindy, N.A. Swellable floating tablet based on spray-dried casein nanoparticles: Near-infrared spectral characterization and floating matrix evaluation. Int. J. Pharm. 2015, 491, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Elzoghby, A.O.; Saad, N.I.; Helmy, M.W.; Samy, W.M.; Elgindy, N.A. Ionically-crosslinked milk protein nanoparticles as flutamide carriers for effective anticancer activity in prostate cancer-bearing rats. Eur. J. Pharm. Biopharm. 2013, 85, 444–451. [Google Scholar] [CrossRef] [PubMed]
- Fang, M.; Jin, Y.; Bao, W.; Gao, H.; Xu, M.; Wang, D.; Yao, P.; Liu, L. In vitro characterization and in vivo evaluation of nanostructured lipid curcumin carriers for intragastric administration. Int. J. Nanomed. 2012, 7, 5395–5404. [Google Scholar] [CrossRef] [Green Version]
- Elgindy, N.; Elkhodairy, K.; Molokhia, A.; Elzoghby, A. Biopolymeric Nanoparticles for Oral Protein Delivery: Design and In Vitro Evaluation. J. Nanomed. Nanotechnol. 2011, 2. [Google Scholar] [CrossRef]
- Shim, M.S.; Lee, H.T.; Shim, W.S.; Park, I.; Lee, H.; Chang, T.; Kim, S.W.; Lee, D.S. Poly(D,L-lactic acid-co-glycolic acid)-b-poly(ethylene glycol)-b-poly (D,L-lactic acid-co-glycolic acid) triblock copolymer and thermoreversible phase transition in water. J. Biomed. Mater. Res. 2002, 61, 188–196. [Google Scholar] [CrossRef]
- Wolfram, J.; Suri, K.; Huang, Y.; Molinaro, R.; Borsoi, C.; Scott, B.; Boom, K.; Paolino, D.; Fresta, M.; Wang, J.; et al. Evaluation of anticancer activity of celastrol liposomes in prostate cancer cells. J. Microencapsul. 2014, 31, 501–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nie, Y.; Ji, L.; Ding, H.; Xie, L.; Li, L.; He, B.; Wu, Y.; Gu, Z. Cholesterol Derivatives Based Charged Liposomes for Doxorubicin Delivery: Preparation, In Vitro and In Vivo Characterization. Theranostics 2012, 2, 1092–1103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kujala, E.; Toivonen, P. Calculated tumour volume as a prognostic parameter for survival in choroidal melanomas. Eye 2005, 20, 123–124. [Google Scholar] [CrossRef] [PubMed]
- Jensen, M.M.; Jørgensen, J.T.; Binderup, T.; Kjær, A. Tumor volume in subcutaneous mouse xenografts measured by mi-croCT is more accurate and reproducible than determined by 18 F-FDG-microPET or external caliper. BMC Med. Imaging 2008, 8, 16. [Google Scholar] [CrossRef] [Green Version]
- Chiang, C.-K.; Sheu, M.-L.; Hung, K.-Y.; Wu, K.-D.; Liu, S.-H. Honokiol, a small molecular weight natural product, allevi-ates experimental mesangial proliferative glomerulonephritis. Kidney Int 2006, 70, 682–689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radigan, K.A.; Urich, D.; Misharin, A.V.; Chiarella, S.E.; Soberanes, S.; González, A.; Perlman, H.; Wunderink, R.G.; Budinger, G.R.S.; Mutlu, G.M. The Effect of Rosuvastatin in a Murine Model of Influenza A Infection. PLoS ONE 2012, 7, e35788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bancroft, J.D.; Layton, C. The hematoxylin and eosin. In Theory and Practice of Histological Techniques, 7th ed.; Suvarna, S.K., Layton, C., Bancroft, J.D., Eds.; Churchill Livingstone of El Sevier: Philadelphia, PA, USA, 2013; pp. 172–214. [Google Scholar]
- Noreldin, A.E.; Elewa, Y.H.A.; Kon, Y.; Warita, K.; Hosaka, Y.Z. Immunohistochemical localization of osteoblast activating peptide in the mouse kidney. Acta Histochem. 2018, 120, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 Years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
Formula | Particle Size (nm) | PDI | ζ-Potential (mV) | RST | PMT | HK | ||||
---|---|---|---|---|---|---|---|---|---|---|
DL mg/wt.% | %CE | DL mg/wt.% | %CE | DL mg/wt.% | %EE | |||||
F1 | ALG/LF (1:1) | 220.6 ± 1.8 | 0.383 | −47.1 ± 0.41 | - | - | - | - | ||
F1 | ALG/LF (1:2) | 163.9 ± 2.3 | 0.342 | −41.1 ± 0.53 | - | - | - | - | - | - |
F2 | LF–RST | 179.0 ± 1.3 | 0.371 | +14.7 ± 0.91 | 16/13.79 | 64.0 | - | - | - | - |
F3 | ALG/LF–RST | 239.0 ± 1.8 | 0.348 | −43.8 ± 0.27 | 16/9.63 | 64.0 | - | - | - | - |
F4 | HK-loaded ALG/LF RST | 365.2 ± 2.1 | 0.347 | −46.9 ± 0.65 | 16/8.89 | 64.0 | - | - | 14/7.69 | 93.3 |
F5 | ALG–PMT | 267.9 ± 1.2 | 0.458 | −47.1 ± 0.72 | - | - | 12/19.35 | 80.0 | - | - |
F6 | PMT–ALG/LF | 224.8 ± 1.6 | 0.367 | −39.7 ± 0.39 | - | - | 12/7.40 | 80.0 | - | - |
F7 | HK-loaded PMT–ALG/LF | 333.0 ± 1.9 | 0.410 | −41.2 ± 0.83 | - | - | 12/6.81 | 80.0 | 14/7.95 | 93.3 |
F8 | PMT–ALG/LF–RST | 304.9 ± 2.7 | 0.464 | −43.8 ± 0.56 | 16/8.98 | 64.0 | 12/6.67 | 80.0 | - | - |
F9 | Uncrosslinked HK loaded PMT–ALG/LF–RST | 389.7 ± 1.5 | 0.423 | −44.7 ± 0.32 | 16/8.33 | 64.0 | 12/6.18 | 80.0 | 14/7.21 | 93.3 |
F10 | Crosslinked HK-loaded PMT–ALG/LF–RST | 258.7 ± 0.95 | 0.342 | −45.3 ± 0.47 | 16/7.05 | 64.0 | 12/5.24 | 80.0 | 14/6.11 | 93.3 |
F11 | HK-loaded ALG/LF | 278.9 ± 1.7 | 0.367 | −47.4 ± 0.68 | - | - | - | 10/6.25 | 66.7 |
Amount of Genipin (mg) | Genipin:F9 wt. Ratio | Particle Size (nm) | PDI |
---|---|---|---|
10 | 1:19.4 | 389.0 ± 0.30 | 0.450 |
20 | 1:9.7 | 320.0 ± 0.60 | 0.410 |
30 | 1:6.46 | 290.0 ± 0.87 | 0.360 |
35 | 1:5.54 | 258.7 ± 0.95 | 0.342 |
50 | 1:3.88 | 400.0 ± 1.20 | 0.420 |
Formula | Yield (% w/w) | PS (nm) | RI * (Sf/Si) | ζ-Potential (mV) | PDI | |||
---|---|---|---|---|---|---|---|---|
Before | After | Before | After | Before | After | |||
HK-loaded PMT–ALG/LF–RST NHs F9 | 92.3% | 389.7 ± 0.5 | 380.0 ± 1.2 | 0.975 | −44.7 ± 1.3 | −45.0 ± 0.6 | 0.423 | 0.483 |
Crosslinked HK-loaded PMT–ALG/LF–RST NHs F10 | 94.4% | 258.7 ± 0.9 | 250.0 ± 0.8 | 0.966 | −45.3 ± 0.5 | −46.1 ± 0.7 | 0.342 | 0.369 |
Compound | CI Value | Total IC50 of Combination | Dose PMT | Dose RST | Dose HK | DRI of PMT | DRI of RST | DRI of HK |
---|---|---|---|---|---|---|---|---|
HK RST PMT | - | 54.95 | - | - | - | - | - | - |
- | 27.93 | - | - | - | - | - | - | |
- | 19.22 | - | - | - | - | - | - | |
RST/HK PMT/RST | 0.691 | 23.31 | - | 14.52 | 9.08 | - | 1.93 | 5.81 |
0.672 | 16.31 | 5.46 | 10.93 | - | 3.55 | 2.56 | - | |
PMT/HK PMT/RST/HK HK-loaded ALG/LF–RST NHs F4 HK-loaded PMT–ALG/LF NHs F7 | 0.481 | 14.18 | 6.40 | - | 8.00 | 3.03 | - | 6.58 |
0.286 | 7.97 | 1.96 | 3.91 | 2.44 | 9.94 | 7.15 | 21.59 | |
0.142 | 4.90 | - | 2.99 | 1.86 | - | 9.36 | 28.26 | |
0.114 | 3.50 | 1.52 | - | 1.91 | 12.73 | - | 27.66 | |
PMT–ALG/LF–RST NHs F8 HK-loaded PMT–ALG/LF–RST NHs F9 | 0.149 | 3.65 | 1.21 | 2.43 | - | 16.00 | 11.51 | - |
0.055 | 1.63 | 0.38 | 0.76 | 0.47 | 51.22 | 36.86 | 111.30 | |
Crosslinked HK-loaded PMT–ALG/LF–RST NHs F10 | 0.033 | 0.94 | 0.23 | 0.46 | 0.29 | 84.84 | 61.04 | 184.30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salah, M.; Sallam, M.A.; Abdelmoneem, M.A.; Teleb, M.; Elkhodairy, K.A.; Bekhit, A.A.; Khafaga, A.F.; Noreldin, A.E.; Elzoghby, A.O.; Khattab, S.N. Sequential Delivery of Novel Triple Drug Combination via Crosslinked Alginate/Lactoferrin Nanohybrids for Enhanced Breast Cancer Treatment. Pharmaceutics 2022, 14, 2404. https://doi.org/10.3390/pharmaceutics14112404
Salah M, Sallam MA, Abdelmoneem MA, Teleb M, Elkhodairy KA, Bekhit AA, Khafaga AF, Noreldin AE, Elzoghby AO, Khattab SN. Sequential Delivery of Novel Triple Drug Combination via Crosslinked Alginate/Lactoferrin Nanohybrids for Enhanced Breast Cancer Treatment. Pharmaceutics. 2022; 14(11):2404. https://doi.org/10.3390/pharmaceutics14112404
Chicago/Turabian StyleSalah, Mai, Marwa A. Sallam, Mona A. Abdelmoneem, Mohamed Teleb, Kadria A. Elkhodairy, Adnan A. Bekhit, Asmaa F. Khafaga, Ahmed E. Noreldin, Ahmed O. Elzoghby, and Sherine N. Khattab. 2022. "Sequential Delivery of Novel Triple Drug Combination via Crosslinked Alginate/Lactoferrin Nanohybrids for Enhanced Breast Cancer Treatment" Pharmaceutics 14, no. 11: 2404. https://doi.org/10.3390/pharmaceutics14112404
APA StyleSalah, M., Sallam, M. A., Abdelmoneem, M. A., Teleb, M., Elkhodairy, K. A., Bekhit, A. A., Khafaga, A. F., Noreldin, A. E., Elzoghby, A. O., & Khattab, S. N. (2022). Sequential Delivery of Novel Triple Drug Combination via Crosslinked Alginate/Lactoferrin Nanohybrids for Enhanced Breast Cancer Treatment. Pharmaceutics, 14(11), 2404. https://doi.org/10.3390/pharmaceutics14112404