An Exploratory Study of the Safety and Efficacy of a Trigonella foenum-graecum Seed Extract in Early Glucose Dysregulation: A Double-Blind Randomized Placebo-Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Trial Design
2.2. Investigational Products
2.3. Study Outcome Measures
2.4. Inclusion, Exclusion, and Screening
2.5. Randomisation, Blinding and Study Procedures
2.6. Sample Size and Data Analysis
3. Results
3.1. Demographics
3.2. Effect of Treatment on Glucose Metabolism Markers
3.3. Effect of Treatment on Blood Lipids, C-Reactive Protein and DASS-21
3.4. Safety, Adverse Events and Tolerability
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Diabetes Federation. IDF Diabetes Atlas, 10th ed.; International Diabetes Federation: Brussels, Belgium, 2021. [Google Scholar]
- Cai, X.; Zhang, Y.; Li, M.; Wu, J.; Mai, L.; Li, J.; Yang, Y.; Hu, Y.; Huang, Y. Association between prediabetes and risk of all cause mortality and cardiovascular disease: Updated meta-analysis. BMJ 2020, 370, m2297. [Google Scholar] [CrossRef] [PubMed]
- Kanat, M.; DeFronzo, R.A.; Abdul-Ghani, M.A. Treatment of prediabetes. World J. Diabetes 2015, 6, 1207–1222. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Ata, A.; Kumar, N.V.A.; Sharopov, F.; Ramírez-Alarcón, L.; Ruiz-Ortega, A.; Ayatollahi, S.; Fokou, P.V.T.; Kobarfard, F.; Zakaria, Z.A.; et al. Antidiabetic potential of medicinal plants and their active components. Biomolecules 2019, 9, 551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vuksan, V.; Choleva, L.; Jovanovski, E.; Jenkins, A.L.; Au-Yeung, F.; Dias, A.G.; Ho, H.V.T.; Zurbau, A.; Duvnjak, L. Comparison of flax (Linum usitatissimum) and Salba-chia (Salvia hispanica L.) seeds on postprandial glycemia and satiety in healthy individuals: A randomized, controlled, crossover study. Eur. J. Clin. Nutr. 2017, 71, 234–238. [Google Scholar] [CrossRef] [PubMed]
- Robert, S.D.; Ismail, A.A.; Rosli, W.I. Reduction of postprandial blood glucose in healthy subjects by buns and flatbreads incorporated with fenugreek seed powder. Eur. J. Nutr. 2016, 55, 2275–2280. [Google Scholar] [CrossRef]
- Yadav, U.C.; Baquer, N.Z. Pharmacological effects of Trigonella foenum-graecum L. in health and disease. Pharm. Biol. 2014, 52, 243–254. [Google Scholar] [CrossRef] [Green Version]
- Kassaian, N.; Azadbakht, L.; Forghani, B.; Amini, M. Effect of fenugreek seeds on blood glucose and lipid profiles in type 2 diabetic patients. Int. J. Vitam. Nutr. Res. 2009, 79, 34–39. [Google Scholar] [CrossRef]
- Losso, J.N.; Holliday, D.L.; Finley, J.W.; Martin, R.J.; Rood, J.C.; Yu, Y.; Greenway, F.L. Fenugreek bread: A treatment for diabetes mellitus. J. Med. Food 2009, 12, 1046–1049. [Google Scholar] [CrossRef]
- Bhaktha, G.; Nayak, S.; Shantaram, M. Management of newly diagnosed diabetes by Trigonella foenum-graecum. Int. J. Res. Ayu. Pharm. 2011, 2, 1231–1234. [Google Scholar]
- Rafraf, M.; Malekiyan, M.; Asghari-Jafarabadi, M.; Aliasgarzadeh, A. Effect of fenugreek seeds on serum metabolic factors and adiponectin levels in type 2 diabetic patients. Int. J. Vitam. Nutr. Res. 2014, 84, 196–205. [Google Scholar] [CrossRef]
- Ranade, M.; Mudgalkar, N. A simple dietary addition of fenugreek seed leads to the reduction in blood glucose levels: A parallel group, randomized single-blind trial. Ayu 2017, 38, 24–27. [Google Scholar] [CrossRef]
- Gupta, A.; Gupta, R.; Lal, B. Effect of Trigonella foenum-graecum (fenugreek) seeds on glycaemic control and insulin resistance in type 2 diabetes mellitus: A double blind placebo controlled study. J. Assoc. Physicians India 2001, 49, 1057–1061. [Google Scholar]
- Lu, F.R.; Shen, L.; Qin, Y.; Gao, L.; Li, H.; Dai, Y. Clinical observation on Trigonella foenum-graecum L. total saponins in combination with sulfonylureas in the treatment of type 2 diabetes mellitus. Chin. J. Integr. Med. 2008, 14, 56–60. [Google Scholar] [CrossRef]
- Najdi, R.A.; Hagras, M.M.; Kamel, F.O.; Magadmi, R.M. A randomized controlled clinical trial evaluating the effect of Trigonella foenum-graecum (fenugreek) versus glibenclamide in patients with diabetes. Afr. Health Sci. 2019, 19, 1594–1601. [Google Scholar] [CrossRef] [Green Version]
- Verma, N.; Usman, K.; Awasthi, V.; Goel, P.K.; Lamgora, G. Clinical evaluation fenugreek seed extract in patients with type-2 diabetes: An add-on study in 154 patients. World J. Pharm. Res. 2015, 4, 2266–2279. [Google Scholar]
- Gaddam, A.; Galla, C.; Thummisetti, S.; Marikanty, R.K.; Palanisamy, U.D.; Rao, P.V. Role of fenugreek in the prevention of type 2 diabetes mellitus in prediabetes. J. Diabetes Metab. Disord. 2015, 14, 74. [Google Scholar] [CrossRef] [Green Version]
- Gong, J.; Fang, K.; Dong, H.; Wang, D.; Hu, M.; Lu, F. Effect of fenugreek on hyperglycaemia and hyperlipidemia in diabetes and prediabetes: A meta-analysis. J. Ethnopharmacol. 2016, 194, 260–268. [Google Scholar] [CrossRef]
- Hadi, A.; Arab, A.; Hajianfar, H.; Talaei, B.; Miraghajani, M.; Babajafari, S.; Marx, W.; Tavakoly, R. The effect of fenugreek seed supplementation on serum irisin levels, blood pressure, and liver and kidney function in patients with type 2 diabetes mellitus: A parallel randomized clinical trial. Complement. Ther. Med. 2020, 49, 102315. [Google Scholar] [CrossRef]
- Verma, N.; Usman, K.; Patel, N.; Jain, A.; Dhakre, S.; Swaroop, A.; Bagchi, M.; Kumar, P.; Preuss, H.G.; Bagchi, D. A multicenter clinical study to determine the efficacy of a novel fenugreek seed (Trigonella foenum-graecum) extract (Fenfuro) in patients with type 2 diabetes. Food Nutr. Res. 2016, 60, 32382. [Google Scholar] [CrossRef] [Green Version]
- Ng, F.; Trauer, T.; Dodd, S.; Callaly, T.; Campbell, S.; Berk, M. The validity of the 21-item version of the Depression Anxiety Stress Scales as a routine clinical outcome measure. Acta Neuropsychiatr. 2007, 19, 304–310. [Google Scholar] [CrossRef]
- National Health and Medical Research Council. Guidance: Safety Monitoring and Reporting in Clinical Trials Involving Therapeutic Goods; National Health and Medical Research Council: Canberra, Australia, 2016. [Google Scholar]
- Royal Australian College of General Practitioners and Diabetes Australia. Management of Type 2 Diabetes: A Handbook for General Practice; The Royal Australian College of General Practitioners: Melbourne, Australia, 2021; pp. 1–198. [Google Scholar]
- Karim, A.; Siroosce, C.; Jabrayel, P.J. Antidiabetic effects of exercise and fenugreek supplementation in males with NIDDM. Med. Dello Sport 2009, 62, 315–324. [Google Scholar]
- Villarreal-Renteria, A.I.; Herrera-Echauri, D.D.; Rodríguez-Rocha, N.P.; Zuñiga, L.Y.; Muñoz-Valle, J.F.; García-Arellano, S.; Bernal-Orozco, M.F.; Macedo-Ojeda, G. Effect of flaxseed (Linum usitatissimum) supplementation on glycemic control and insulin resistance in prediabetes and type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. Complement. Ther. Med. 2022, 70, 102852. [Google Scholar] [CrossRef] [PubMed]
- Chakarova, N.; Dimova, R.; Grozeva, G.; Tankova, T. Assessment of glucose variability in subjects with prediabetes. Diabetes Res. Clin. Pract. 2019, 151, 56–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geberemeskel, G.A.; Debebe, Y.G.; Nguse, N.A. Antidiabetic effect of fenugreek seed powder solution (Trigonella foenum-graecum L.) on hyperlipidemia in diabetic patients. J. Diabetes Res. 2019, 2019, 8507453. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.C.; Doss, R.B.; Garg, R.C.; Srivastava, A.; Lall, R.; Sinha, A. Fenugreek: Multiple health benefits. In Nutraceuticals, 2nd ed.; Gupta, R.C., Lall, R., Srivastava, A., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 585–602. [Google Scholar] [CrossRef]
- Tharaheswari, M.; Jayachandra Reddy, N.; Kumar, R.; Varshney, K.C.; Kannan, M.; Sudha Rani, S. Trigonelline and diosgenin attenuate ER stress, oxidative stress-mediated damage in pancreas and enhance adipose tissue PPARγ activity in type 2 diabetic rats. Mol. Cell Biochem. 2014, 396, 161–174. [Google Scholar] [CrossRef]
- Gao, F.; Jian, L.; Zafar, M.I.; Du, W.; Cai, Q.; Shafqat, R.A.; Lu, F. 4-Hydroxyisoleucine improves insulin resistance in HepG2 cells by decreasing TNF-alpha and regulating the expression of insulin signal transduction proteins. Mol. Med. Rep. 2015, 12, 6555–6560. [Google Scholar] [CrossRef] [Green Version]
- Broca, C.; Gross, R.; Petit, P.; Sauvaire, Y.; Manteghetti, M.; Tournier, M.; Masiello, P.; Gomis, R.; Ribes, G. 4-Hydroxyisoleucine: Experimental evidence of its insulinotropic and antidiabetic properties. Am. J. Physiol. 1999, 277, E617–E623. [Google Scholar] [CrossRef]
- Naidu, P.B.; Ponmurugan, P.; Begum, M.S.; Mohan, K.; Meriga, B.; RavindarNaik, R.; Saravanan, G. Diosgenin reorganises hyperglycaemia and distorted tissue lipid profile in high-fat diet–streptozotocin-induced diabetic rats. J. Sci. Food Agri. 2015, 95, 3177–3182. [Google Scholar] [CrossRef]
- Ghosh, S.; More, P.; Derle, A.; Patil, A.B.; Markad, P.; Asok, A.; Kumbhar, N.; Shaikh, M.L.; Ramanamurthy, B.; Shinde, V.S.; et al. Diosgenin from Dioscorea bulbifera: Novel hit for treatment of type II diabetes mellitus with inhibitory activity against α-amylase and α-glucosidase. PLoS ONE 2014, 9, e106039. [Google Scholar] [CrossRef] [Green Version]
- Fang, K.; Dong, H.; Jiang, S.; Li, F.; Wang, D.; Yang, D.; Gong, J.; Huang, W.; Lu, F. Diosgenin and 5-methoxypsoralen ameliorate insulin resistance through ER-α/PI3K/Akt-signaling pathways in HepG2 cells. Evid-Based Comp. Alt. Med. 2016, 2016, 7493694. [Google Scholar] [CrossRef] [Green Version]
- Elsaadany, M.A.; AlTwejry, H.M.; Zabran, R.A.; AlShuraim, S.A.; AlShaia, W.A.; Abuzaid, O.I.; AlBaker, W.I. Antihyperglycemic effect of fenugreek and ginger in patients with type 2 diabetes: A double-blind, placebo-controlled study. Curr. Nutr. Food Sci. 2022, 18, 231–237. [Google Scholar] [CrossRef]
Active Treatment Group | Placebo Group | |||||
---|---|---|---|---|---|---|
Total | Men | Women | Total | Men | Women | |
Participant No. | 25 | 16 | 9 | 23 | 12 | 11 |
Age (average) | 58.2 | 58.5 | 54.9 | 59.7 | 61.8 | 65.8 |
BMI (average) | 30.9 | 31.2 | 30.4 | 32.5 | 33.8 | 31.2 |
Previously diagnosed as pre-diabetic (n) | 14 | 10 | 4 | 8 | 4 | 4 |
Diagnosed as pre-diabetic at screening (n) | 11 | 6 | 5 | 15 | 8 | 7 |
Taking medication for hypertension (n) | 8 | 5 | 3 | 5 | 5 | 0 |
Blood pressure -Systolic/Diastolic | 129/88 | 130/89 | 128/87 | 128/86 | 129/88 | 126/84 |
Known family history of T2DM (n) | 15 | 9 | 6 | 16 | 8 | 8 |
Drink alcohol regularly (n) | 14 | 11 | 3 | 11 | 6 | 5 |
Sedentary lifestyle (n) | 18 | 11 | 7 | 15 | 7 | 8 |
Exercise regularly (n) | 8 | 5 | 3 | 8 | 5 | 3 |
Test * | Time Point | Group | Mean ± SD | Change from Baseline | p Value # | Effect Size | 95% CI |
---|---|---|---|---|---|---|---|
Fasting Glucose (<5.5 mmol/L) | Baseline | Active Placebo | 6.95 ± 1.80 5.99 ± 0.91 | - | 0.052 | - | - |
- | |||||||
Week 6 Week 12 | Active Placebo Active Placebo | 6.81 ± 1.74 6.13 ± 0.92 6.52 ± 1.42 6.34 ± 1.12 | −0.10 ± 0.72 0.13 ± 0.38 −0.43 ± 0.88 0.35 ± 0.46 | 0.200 <0.001 | 0.382 1.108 | −0.225–0.984 0.493–1.713 | |
1 h post-prandial glucose (<11.1 mmol/L) | Baseline Week 6 Week 12 | Active Placebo Active Placebo Active Placebo | 12.32 ± 3.52 11.86 ± 2.90 11.88 ± 3.54 11.90 ± 3.32 11.59 ± 3.42 11.97 ± 3.25 | - - −0.37 ± 1.59 −0.03 ± 1.97 −0.74 ± 2.21 0.11 ± 2.30 | 0.310 0.540 0.200 | - 0.193 0.377 | - −0.408–0.793 −0.197–0.946 |
2 h post-prandial glucose (<7.8 mmol/L) | Baseline Week 6 Week 12 | Active Placebo Active Placebo Active Placebo | 9.15 ± 4.78 8.11 ± 3.97 8.76 ± 4.35 8.92 ± 3.27 8.37 ± 3.83 9.32 ± 3.82 | - - −0.18 ± 1.84 0.59 ± 2.13 −0.78 ± 2.74 1.21 ± 2.12 | 0.210 0.220 0.007 | - 0.388 0.806 | - −0.220–0.990 0.212–1.392 |
Fasting Insulin (6–22 mU/L) | Baseline Week 6 Week 12 | Active Placebo Active Placebo Active Placebo | 18.60 ± 9.69 14.52 ± 6.41 15.80 ± 9.90 12.55 ± 5.94 15.36 ± 7.68 13.74 ± 6.61 | - - −2.52 ± 4.50 −1.90 ± 3.22 −3.24 ± 7.38 −0.78 ± 3.42 | 0.200 0.600 0.140 | - 0.157 0.421 | - −0.444–0.756 −0.154–0.992 |
1 h post-prandial insulin (40–90 mU/L) |
Baseline Week 6 Week 12 | Active Placebo Active Placebo Active Placebo | 101.48 ± 55.49 113.00 ± 67.88 112.32 ± 75.45 128.25 ± 127.04 122.32 ± 92.23 117.41 ± 115.31 | - - 5.95 ± 50.67 −1.17 ± 58.02 13.26 ± 59.48 −16.00 ± 42.17 | 0.270 0.690 0.690 | - −0.131 −0.563 | - −0.761–0.500 −1.164–0.044 |
2 h post-prandial insulin (15–65 mU/L) | Baseline Week 6 Week 12 | Active Placebo Active Placebo Active Placebo | 101.76 ± 89.67 76.91 ± 57.67 93.12 ± 97.09 75.10 ± 60.08 91.08 ± 87.91 82.23 ± 49.76 | - - −7.43 ± 64.00 −4.42 ± 71.27 −9.54 ± 58.87 3.09 ± 58.71 | 0.130 0.890 0.470 | - 0.215 0.215 | - −0.563–0.652 −0.367–0.794 |
Test * | Group | Baseline Mean ± SD | p Value | Week 12 Mean ± SD | p Value | Effect Size | 95% CI |
---|---|---|---|---|---|---|---|
HbA1c % (<6.0%) | Active Placebo | 6.03 ± 0.75 5.83 ± 0.58 | 0.150 | 5.93 ± 0.78 5.75 ± 0.69 | 0.410 | −0.250 | −0.850–0.343 |
HbA1c mmol/L (<42 mmol/mol) | Active Placebo | 42.48 ± 8.13 40.00 ± 6.35 | 0.130 | 41.70 ± 8.33 39.60 ± 7.72 | 0.370 | −0.260 | −0.861–0.343 |
C-peptide (0.8–1.9 µg/L) | Active Placebo | 0.92 ± 0.36 0.79 ± 0.27 | 0.075 | 0.78 ± 0.25 0.81 ± 0.30 | 0.792 | 0.082 | −0.518–0.681 |
Cholesterol (3.6–6.9 mmol/L) | Active Placebo | 5.31 ± 1.15 5.51 ± 1.29 | 0.564 | 5.21 ± 1.02 5.15 ± 1.53 | 0.875 | −0.047 | −0.613–0.520 |
High Density Lipoprotein (HDL) (>0.9 mmol/L) | Active Placebo | 1.31 ± 0.31 1.21 ± 0.28 | 0.241 | 1.30 ± 0.36 1.18 ± 0.36 | 0.172 | −0.394 | −0.964–0.180 |
Low Density Lipoprotein (LDL) (<2.0 mmol/L) | Active Placebo | 3.14 ± 1.17 3.31 ± 1.29 | 0.643 | 3.08 ± 1.10 3.11 ± 1.15 | 0.917 | 0.030 | −0.536–0.597 |
Total/HDL ratio | Active Placebo | 4.28 ± 1.14 4.60 ± 0.90 | 0.284 | 4.32 ± 1.13 4.46 ± 0.89 | 0.633 | 0.138 | −0.430–0.704 |
Triglycerides (0.3–4.0 mmol/L) | Active Placebo | 1.62 ± 0.88 1.97 ± 1.15 | 0.238 | 1.58 ± 0.76 2.28 ± 1.28 | 0.030 | 0.667 | 0.081–1.246 |
C-reactive protein (CRP) (<5 mmol/L) | Active Placebo | 5.56 ± 4.14 5.24 ± 4.41 | 0.797 | 5.34 ± 4.11 5.00 ± 4.59 | 0.789 | −0.078 | −0.644–0.489 |
Test * | Baseline | Week 12 | ||||
---|---|---|---|---|---|---|
Active # | Placebo # | p-Value | Active # | Placebo # | p-Value | |
Haemoglobin (115–160 g/L) | 146 ± 11 (128–165) | 145 ± 12 (124–167) | 0.807 | 145 ± 13 (123–166) | 141 ± 9 (130–175) | 0.225 |
Red Cell Count (3.6–5.2 × 1012/L) | 4.9 ± 0.5 (4.4–6.2) | 4.9 ± 0.5 (4.2–6.2) | 0.717 | 4.9 ± 0.5 (3.8–5.6) | 4.7 ± 0.4 (3.9–5.8) | 0.204 |
Haematocrit (0.33–0.46) | 0.45 ± 0.03 (0.39–0.51) | 0.44 ± 0.04 (0.38–0.51) | 0.645 | 0.44 ± 0.03 (0.36–0.51) | 0.43 ± 0.03 (0.39–0.51) | 0.251 |
Mean Cell Volume (80–98 fL) | 91 ± 4.3 (82–100) | 91 ± 3.4 (82–97) | 0.889 | 91 ± 4 (86–100) | 92 ± 4 (86–102) | 0.430 |
Mean Cell Haemoglobin (27–35 pg) | 29.9 ± 1.5 (26–32) | 30.1 ± 1.5 (27–33) | 0.699 | 30 ± 2 (28–34) | 30.2 ± 1.7 (28–34) | 0.515 |
Platelet Count (150–450 × 109/L) | 266 ± 56 (171–385) | 260 ± 48 (156–371) | 0.697 | 271 ± 57 (131–326) | 253 ± 48 (154–344) | 0.264 |
White Blood Cells (4.0–11.0 × 109/L) | 6.6 ± 1.4 (4.4–8.9) | 7.2 ± 1.8 (4.1–10.8) | 0.230 | 6.8 ± 1.9 (4.3–9.7) | 7.1 ± 1.3 (3.8–12) | 0.593 |
Neutrophils (2.0–7.5 × 109/L) | 3.6 ± 0.9 (2.10–5.2) | 4.1 ± 1.1 (2.3–8.5) | 0.070 | 3.8 ± 1.7 (2.1–5.8) | 4.0 ± 1.0 (1.7–5.6) | 0.625 |
Lymphocytes (1.1–4.0 × 109/L) | 2.2 ± 0.6 (1–3.4) | 2.3 ± 0.9 (1.1–3.8) | 0.674 | 2.2 ± 0.6 (1.1–3.9) | 2.2 ± 0.7 (1.3–5.5) | 0.893 |
Monocytes (0.2–1.0 × 109/L) | 0.58 ± 0.14 (0.4–0.8) | 0.58 ± 0.24 (0.3–1.4) | 0.916 | 0.66 ± 0.27 (0.4–1.6) | 0.59 ± 0.56 (0.3–1.4) | 0.363 |
Eosinophils (0.04–0.40 × 109/L) | 0.24 ± 0.17 (0.0–0.7) | 0.20 ± 0.17 (0.0–0.7) | 0.459 | 0.24 ± 0.17 (0.07–0.36) | 0.18 ± 0.07 (0.0–0.8) | 0.143 |
Basophils (<0.21 × 109/L) | 0.06 ± 0.02 (0.01–0.09) | 0.11 ± 0.22 (0.0–0.08) | 0.248 | 0.06 ± 0.03 (0.0–0.12) | 0.06 ± 0.03 (0.0–0.8) | 0.481 |
Sodium (137–147 × mmol/L) | 140 ± 2 (135–145) | 139 ± 2 (136–146) | 0.253 | 140 ± 3 (135–146) | 140 ± 2 (137–144) | 0.643 |
Potassium (3.5–5.0 × mmol/L) | 4.5 ± 0.3 (3.5–5.0) | 4.3 ± 0.4 (3.6–5.4) | 0.120 | 4.4 ± 0.3 (3.8–5.0) | 4.4 ± 0.3 (4.0–4.8) | 0.687 |
Chloride (96–109 × mmol/L) | 105 ± 2 (100–110) | 104 ± 2 (99–109) | 0.439 | 105 ± 2 (101–108) | 105 ± 3 (101–111) | 0.785 |
Bicarbonate (25–33 × mmol/L) | 28 ± 2 (24–32) | 28 ± 2 (24–32) | 0.489 | 28 ± 2 (25–31) | 27 ± 2 (23–30) | 0.420 |
Creatinine (40–110 × umol/L) | 74 ± 11 (51–93) | 74 ± 13 (52–93) | 0.911 | 75 ± 12 (47–95) | 71 ± 14 (44–95) | 0.419 |
eGFR (>59 mL/min) | 81 ± 5 (59–90) | 76 ± 7 (65–90) | 0.400 | 81 ± 7 (66–89) | 78 ± 8 (63–90) | 0.305 |
Urea (3.0–8.5 mmol/L) | 5.92 ± 1.35 (4.5–9.4) | 6.18 ± 1.73 (3.5–11.0) | 0.560 | 5.85 ± 1.59 (4.2–9.0) | 6.01 ± 1.37 (3.40–9.10) | 0.721 |
Total Bilirubin (2–20 × umol/L) | 11 ± 6 (4–28) | 10 ± 4 (4–20) | 0.415 | 12 ± 7 (5–36) | 10 ± 4 (4–19) | 0.125 |
Alk Phosphatase (ALP) (30–115 × U/L) | 73 ± 18 (36–107) | 78 ± 18 (43–115) | 0.368 | 71 ± 18 (31–112) | 75 ± 19 (37–108) | 0.506 |
Gamma-glutamyl transferase (GGT) (0–45 U/L) | 37 ± 23 (11–119) | 49 ± 51 (10–262) | 0.313 | 33 ± 16 (10–68) | 43 ± 44 (14–208) | 0.303 |
Alanine aminotransferase (ALT) (0–45 U/L) | 40 ± 21 (17–110) | 35 ± 16 (16–74) | 0.437 | 36 ± 14 (13–68) | 29 ± 12 (14–57) | 0.083 |
Aspartate aminotransferase (AST) (0–41 U/L) | 30 ± 9 (18–66) | 26 ± 7 (15–40) | 0.117 | 30 ± 8 (19–45) | 23 ± 7 (12–40) | 0.007 ^ |
Lactate Dehydrogenase (LD) (120–250 U/L) | 199 ± 31 (159–269) | 183 ± 32 (114–227) | 0.081 | 195 ± 25 (161–254) | 170 ± 23 (100–200) | 0.001 ^ |
Calcium (2.25–2.65 × mmol/L) | 2.37 ± 0.065 (2.26–2.53) | 2.34 ± 0.09 (2.15–2.51) | 0.140 | 2.37 ± 0.07 (2.18–2.48) | 2.34 ± 0.07 (2.23–2.49) | 0.218 |
Phosphate (0.8–1.5 × mmol/L) | 1.14 ± 0.16 (0.7–1.4) | 1.09 ± 0.20 (0.8–1.5) | 0.358 | 1.11 ± 0.14 (0.8–1.3) | 1.17 ± 0.22 (0.7–1.5) | 0.252 |
Total Protein (60–82 × g/L) | 71 ± 4 (64–79) | 70 ± 4 (66–78) | 0.632 | 70 ± 3 (62–76) | 69 ± 3 (63–76) | 0.128 |
Albumin (35–50 × g/L) | 42 ± 2 (39–47) | 42 ± 2 (38–47) | 0.640 | 42 ± 2 (38–47) | 42 ± 2 (37–45) | 0.439 |
Globulin (20–40 × g/L) | 28 ± 5 (21–36) | 28 ± 3 (23–32) | 0.634 | 28 ± 3 (20–34) | 26 ± 5 (5–31) | 0.144 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pickering, E.; Steels, E.; Rao, A.; Steadman, K.J. An Exploratory Study of the Safety and Efficacy of a Trigonella foenum-graecum Seed Extract in Early Glucose Dysregulation: A Double-Blind Randomized Placebo-Controlled Trial. Pharmaceutics 2022, 14, 2453. https://doi.org/10.3390/pharmaceutics14112453
Pickering E, Steels E, Rao A, Steadman KJ. An Exploratory Study of the Safety and Efficacy of a Trigonella foenum-graecum Seed Extract in Early Glucose Dysregulation: A Double-Blind Randomized Placebo-Controlled Trial. Pharmaceutics. 2022; 14(11):2453. https://doi.org/10.3390/pharmaceutics14112453
Chicago/Turabian StylePickering, Emily, Elizabeth Steels, Amanda Rao, and Kathryn J. Steadman. 2022. "An Exploratory Study of the Safety and Efficacy of a Trigonella foenum-graecum Seed Extract in Early Glucose Dysregulation: A Double-Blind Randomized Placebo-Controlled Trial" Pharmaceutics 14, no. 11: 2453. https://doi.org/10.3390/pharmaceutics14112453
APA StylePickering, E., Steels, E., Rao, A., & Steadman, K. J. (2022). An Exploratory Study of the Safety and Efficacy of a Trigonella foenum-graecum Seed Extract in Early Glucose Dysregulation: A Double-Blind Randomized Placebo-Controlled Trial. Pharmaceutics, 14(11), 2453. https://doi.org/10.3390/pharmaceutics14112453