Management of Anti-Seizure Medications during Pregnancy: Advancements in The Past Decade
Abstract
:1. Introduction
1.1. Risks of Congenital Disabilities Associated with ASM Use during Pregnancy
1.2. Prescribing Patterns of ASMs during Pregnancy
1.2.1. Pharmacokinetics of AMSs during Pregnancy
Absorption
Distribution
Metabolism
Excretion
1.3. Overview of Older ASMs
1.4. Update on Newer ASMs
1.4.1. Gabapentin
1.4.2. Lacosamide
1.4.3. Lamotrigine
1.4.4. Levetiracetam
1.4.5. Topiramate
1.4.6. Oxcarbazepine
1.4.7. Pregabalin
1.4.8. Zonisamide
1.5. Pharmacokinetics of ASMs Released in the Last Decade
1.6. Management of ASMs during Pregnancy
Parameter | Change in Activity | Theoretical—ASMs Affected | ASMs with Clinical Evidence in Pregnancy | |
---|---|---|---|---|
Metabolism [109,110] | CYP1A2 | Decreased in all trimesters [111,112] | Perampanel [71] | --- |
CYP2D6 | Increased in all trimesters [111] | --- | --- | |
CYP2C9 | Increased in trimesters 2 and 3 [113] | phenobarbital, primidone, valproate [114] | ||
CYP2C19 | Decreased [115,116] | phenytoin [117,118], lacosamide | Phenytoin [119] | |
CYP3A4 | Increased in the third trimester [111,112] | Carbamazepine [120], zonisamide [121], lacosamide, perampanel [122] | Carbamazepine [120] | |
UGT1A4 | Increased in trimesters 2 and 3 | lamotrigine [79], eslicarbazepine [123] | Lamotrigine [74,75,76] | |
UGT1A1/9 | --- | Ezogabine [124] | --- | |
Excretion | Renal blood flow | Increased | topiramate, levetiracetam, pregabalin | Topiramate [56,92] |
Study | M/P | N | Baseline (PC/PP) | Baseline Apparent CL | Change from Baseline/CL during Pregnancy | Dose at Baseline (mg) | Dose Increase from Baseline/Dose during Pregnancy | Seizure Frequency Change from N.P. Baseline (% of the Population) | Other Findings | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TM1 | TM2 | TM3 | TM1 | TM2 | TM3 | PP | ||||||||||
LEVETIRACETAM | ||||||||||||||||
Reisinger et al. [49] | M | 15 | P.C. | 1.09 a | 98% | 207% | 97% | 2395.8 a | 3% | 29% | 41% | - | 47% | 27% | 27% | Seizure worsens when ASM blood concentrations decrease > 35% P.C. concentrations |
Voinescu et al. [87] | M/P | 16 | PC/PP c | - | 1.71-fold | 1.42-fold | 1.37-fold | - | - | - | - | - | - | - | - | - |
Tomson et al. [88] | M/P | 12 | PP c | 124.7 ± 57.9 L/day a | 427.3 ± 211.3 L/day a | 2000 a | - | - | No increase observed | - | - | 29% d | 71% d | 25% of subjects had an increase in the P.P. dose compared to TM3. | ||
Berlin et al. [125] | - | 59 | PC | 166.48 L/day a | 237.56 L/day a | 236.02 L/day a | 242.56 L/day a | 2051.3 a | 2149 mg | 2538.6 mg | 2770.3 mg | 2703.1 mg e | - | - | - | P.P. apparent CL was 107.8 L/day and was significantly different from the pre-pregnancy value. However, no significant difference in mean apparent CL between trimesters was observed. |
Yin et al. [126] | M/P | 26 (M+P) | PC/PP | 90 L/day a | 200 L/day m | 250 L/day a | 240 L/day m | 1000 mg I,m | 1000 mg l,m | 1500 mg l,m | 1750 mg l,m | - | 53.3% (in monotherapy group) | - | - | Significant differences in the RTC values between patients with and without seizure worsening was not observed |
LAMOTRIGINE | ||||||||||||||||
Reisinger et al. [49] | M | 69 | PC | 0.87 a | 89% | 191% | 140% | 406.5 a | 5% | 39% | 63.5% | - | 38% | 12% | 51% | Maximum apparent CL change from 1st to 2nd pregnancy on 15 subsets of women on LAMOTRIGINE monotherapy ranged from 69% decrease to a 76% increase. |
Reimers et al. [80] | - | 19 | PP | 1.7 ± 0.7 L/h b | - | - | 3.7 ± 1.5 L/h b | 255 ± 144 (at conception) b | - | - | 34% | - | - | - | - | 118% increase in apparent clearance in TM3 as compared to P.P. Increase in LAMOTRIGINE-GLUC/LAMOTRIGINE serum concentration ratio during pregnancy was positively correlated with estradiol concentration and was 164% higher than baseline in the 8th month of gestation. |
Tran et al. [74] | M/P | 12 f | PC | 1.2 L/(kg·day) a | 1.97 L/(kg·day) a | 2.31 L/(kg·day) a | 2.26 L/(kg·day) a | 11 out of 12 pregnancies needed a dose increase | - | - | - | A significant difference in the apparent LAMOTRIGINE CL when TM2 and TM3 values were compared to P.P. and P.C. values. | ||||
Pennell et al. [83] | M/P g | 53 | PC/PP h | Total and free LAMOTRIGINE CL at TM1,2,3 significantly different than N.P. baseline | 94% i/ 89% j | - | 39% | 33% | 28% | The ratio to target concentration <0.65 is a significant predictor of worsening seizures. Total and free LAMOTRIGINE CL at TM 2 and 3 significantly different than TM1 | ||||||
de Haan et al. [127] | M | 12 | PC | - | - | - | - | - | - | - | - | - | 75% | - | - | A decline in the dose-normalized LAMOTRIGINE concentration ratio (40% of baseline) was observed |
Ding et al. [128] | M | 12 | PC | 40.5 ± 12.8 (mg/[mg/L]) b | 82.5% | 203.2% | 197% | 92.8 mg | - | - | - | - | The maximum population (57.1%) experienced an increase in seizure frequency during 5th month of pregnancy | Ratio to target concentration <0.64 is a significant predictor of worsening seizures | ||
Ohman et al. [81] | M/P | 15 k | PP c | 66.5 ± 17.9 L/day b | ~120% | ~230% | 250% | 304.4 mg a | 283.3 mg a | 327.1 mg a | 355.8 mg a | Baseline | 9/17 women experienced seizures during pregnancy. No comparison with baseline reported | lamotrigine-2-N-glucuronide/lamotrigine plasma concentration ratio was 0.349 ± 0.141 (±SD) at NP baseline which increased by 147% in late pregnancy. | ||
Fotopoulou et al. [129] | M | 9 | PC/PP | 39 L/kg l | 197% | 236% | 248% | The average LAMOTRIGINE dose increase was 250% during pregnancy | - | - | - | A 264% increase in median LAMOTRIGINE apparent CL was observed at delivery. | ||||
Yin et al. [126] | M/P | 25 (M+P) | PC/PP | 52.2 L/day a | 150 L/day m | 178.6 L/day a | 175 L/day m | 100 mg I,m | 137.5 mg m | 168.8 mg m | 275 mg m | - | 47.6% (in the monotherapy group) | - | - | Significant differences in the RTC values between patients with and without seizure worsening was not observed |
2. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brodtkorb, E.; Reimers, A. Seizure control and pharmacokinetics of antiepileptic drugs in pregnant women with epilepsy. Seizure 2008, 17, 160–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pennell, P.B. Antiepileptic drug pharmacokinetics during pregnancy and lactation. Neurology 2003, 61, S35–S42. [Google Scholar] [CrossRef] [PubMed]
- Understand the needs of women with epilepsy, or risk OC failure. Contracept. Technol. Update 1998, 19, 109–111.
- Practice parameter: Management issues for women with epilepsy (summary statement). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 1998, 51, 944–948. [CrossRef] [Green Version]
- Voinescu, P.E.; Pennell, P.B. Delivery of a Personalized Treatment Approach to Women with Epilepsy. Semin. Neurol. 2017, 37, 611–623. [Google Scholar] [CrossRef]
- French, J.A.; Gazzola, D.M. New generation antiepileptic drugs: What do they offer in terms of improved tolerability and safety? Ther. Adv. Drug Saf. 2011, 2, 141–158. [Google Scholar] [CrossRef]
- Zupanc, M.L. Antiepileptic drugs and hormonal contraceptives in adolescent women with epilepsy. Neurology 2006, 66, S37–S45. [Google Scholar] [CrossRef]
- O’Connor, S.E.; Zupanc, M.L. Women and epilepsy. J. Pediatr. Pharmacol. Ther. 2009, 14, 212–220. [Google Scholar] [CrossRef]
- Fiest, K.M.; Sauro, K.M.; Wiebe, S.; Patten, S.B.; Kwon, C.S.; Dykeman, J.; Pringsheim, T.; Lorenzetti, D.L.; Jette, N. Prevalence and incidence of epilepsy: A systematic review and meta-analysis of international studies. Neurology 2017, 88, 296–303. [Google Scholar] [CrossRef]
- Sazgar, M. Treatment of Women With Epilepsy. Continuum Lifelong Learn. Neurol. 2019, 25, 408–430. [Google Scholar] [CrossRef]
- Watila, M.M.; Beida, O.; Kwari, S.; Nyandaiti, N.W.; Nyandaiti, Y.W. Seizure occurrence, pregnancy outcome among women with active convulsive epilepsy: One year prospective study. Seizure 2015, 26, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Olafsson, E.; Hallgrimsson, J.T.; Hauser, W.A.; Ludvigsson, P.; Gudmundsson, G. Pregnancies of women with epilepsy: A population-based study in Iceland. Epilepsia 1998, 39, 887–892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giussani, G.; Cricelli, C.; Mazzoleni, F.; Cricelli, I.; Pasqua, A.; Pecchioli, S.; Lapi, F.; Beghi, E. Prevalence and incidence of epilepsy in Italy based on a nationwide database. Neuroepidemiology 2014, 43, 228–232. [Google Scholar] [CrossRef]
- Pennell, P.B. Use of Antiepileptic Drugs During Pregnancy: Evolving Concepts. Neurotherapeutics 2016, 13, 811–820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomson, T. Epilepsy and Pregnancy Registries. Epigraph 2008, 10. [Google Scholar]
- Hernandez-Diaz, S.; Smith, C.R.; Shen, A.; Mittendorf, R.; Hauser, W.A.; Yerby, M.; Holmes, L.B.; North American AED Pregnancy Registry. Comparative safety of antiepileptic drugs during pregnancy. Neurology 2012, 78, 1692–1699. [Google Scholar] [CrossRef]
- Vossler, D.G. Comparative Risk of Major Congenital Malformations With 8 Different Antiepileptic Drugs: A Prospective Cohort Study of the EURAP Registry. Epilepsy Curr. 2019, 19, 83–85. [Google Scholar] [CrossRef] [Green Version]
- Tomson, T.; Battino, D.; Bonizzoni, E.; Craig, J.; Lindhout, D.; Perucca, E.; Sabers, A.; Thomas, S.V.; Vajda, F.; Group, E.S. Declining malformation rates with changed antiepileptic drug prescribing: An observational study. Neurology 2019, 93, e831–e840. [Google Scholar] [CrossRef]
- Tomson, T.; Battino, D.; Perucca, E. Teratogenicity of antiepileptic drugs. Curr. Opin. Neurol. 2019, 32, 246–252. [Google Scholar] [CrossRef]
- Veroniki, A.A.; Rios, P.; Cogo, E.; Straus, S.E.; Finkelstein, Y.; Kealey, R.; Reynen, E.; Soobiah, C.; Thavorn, K.; Hutton, B.; et al. Comparative safety of antiepileptic drugs for neurological development in children exposed during pregnancy and breast feeding: A systematic review and network meta-analysis. BMJ Open 2017, 7, e017248. [Google Scholar] [CrossRef] [Green Version]
- Tomson, T.; Battino, D.; Bonizzoni, E.; Craig, J.; Lindhout, D.; Sabers, A.; Perucca, E.; Vajda, F.; EURAP Study Group. Dose-dependent risk of malformations with antiepileptic drugs: An analysis of data from the EURAP epilepsy and pregnancy registry. Lancet Neurol. 2011, 10, 609–617. [Google Scholar] [CrossRef] [PubMed]
- Meador, K.J.; Baker, G.A.; Browning, N.; Clayton-Smith, J.; Combs-Cantrell, D.T.; Cohen, M.; Kalayjian, L.A.; Kanner, A.; Liporace, J.D.; Pennell, P.B.; et al. Cognitive function at 3 years of age after fetal exposure to antiepileptic drugs. N. Engl. J. Med. 2009, 360, 1597–1605. [Google Scholar] [CrossRef] [PubMed]
- Meador, K.J.; Baker, G.A.; Browning, N.; Cohen, M.J.; Bromley, R.L.; Clayton-Smith, J.; Kalayjian, L.A.; Kanner, A.; Liporace, J.D.; Pennell, P.B.; et al. Fetal antiepileptic drug exposure and cognitive outcomes at age 6 years (NEAD study): A prospective observational study. Lancet Neurol. 2013, 12, 244–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- U.S. Food and Drug Administration. FDA Drug Safety Communication: Valproate Anti-Seizure Products Contraindicated for Migraine Prevention in Pregnant Women due to Decreased IQ Scores in Exposed Children; FDA: Silver Spring, MD, USA, 2013.
- Pennell, P.B.; Klein, A.M.; Browning, N.; Baker, G.A.; Clayton-Smith, J.; Kalayjian, L.A.; Liporace, J.D.; Privitera, M.; Crawford, T.; Loring, D.W.; et al. Differential effects of antiepileptic drugs on neonatal outcomes. Epilepsy Behav. 2012, 24, 449–456. [Google Scholar] [CrossRef] [Green Version]
- New Measures to Avoid Valproate Exposure in Pregnancy Endorsed. European Medicines Agency Website. 23 March 2018. Press Release. Available online: https://www.ema.europa.eu/en/news/new-measures-avoid-valproate-exposure-pregnancy-endorsed#:~:text=The%20new%20measures%20include%20a,no%20other%20effective%20treatment%20available (accessed on 1 October 2022).
- Winterfeld, U.; Merlob, P.; Baud, D.; Rousson, V.; Panchaud, A.; Rothuizen, L.E.; Bernard, N.; Vial, T.; Yates, L.M.; Pistelli, A.; et al. Pregnancy outcome following maternal exposure to pregabalin may call for concern. Neurology 2016, 86, 2251–2257. [Google Scholar] [CrossRef]
- Patorno, E.; Bateman, B.T.; Huybrechts, K.F.; MacDonald, S.C.; Cohen, J.M.; Desai, R.J.; Panchaud, A.; Mogun, H.; Pennell, P.B.; Hernandez-Diaz, S. Pregabalin use early in pregnancy and the risk of major congenital malformations. Neurology 2017, 88, 2020–2025. [Google Scholar] [CrossRef] [Green Version]
- Morse, D.C.; Henck, J.W.; Bailey, S.A. Developmental Toxicity Studies with Pregabalin in Rats: Significance of Alterations in Skull Bone Morphology. Birth Defects Res. B Dev. Reprod. Toxicol. 2016, 107, 94–107. [Google Scholar] [CrossRef] [Green Version]
- Singh, K.P.; Gupta, K. Teratogenic Effects of Third-Generation Antiepileptic Drug, Pregabalin: An In vivo Study. Curr. Drug Saf. 2018, 13, 113–121. [Google Scholar] [CrossRef]
- Mete, M.; Gurcu, B.; Collu, F.; Unsal, U.U.; Duransoy, Y.K.; Tuglu, M.I.; Selcuki, M. Effects of lacosamide "a novel antiepileptic drug" in the early stages of chicken embryo development. Childs Nerv. Syst. 2016, 32, 1715–1719. [Google Scholar] [CrossRef]
- Lopez-Escobar, B.; Fernandez-Torres, R.; Vargas-Lopez, V.; Villar-Navarro, M.; Rybkina, T.; Rivas-Infante, E.; Hernandez-Vinas, A.; Alvarez Del Vayo, C.; Caro-Vega, J.; Sanchez-Alcazar, J.A.; et al. Lacosamide intake during pregnancy increases the incidence of foetal malformations and symptoms associated with schizophrenia in the offspring of mice. Sci. Rep. 2020, 10, 7615. [Google Scholar] [CrossRef]
- Zutshi, D.; Millis, S.R.; Basha, M.M.; Daimee, M.A.; Srinivas, M. Lacosamide serum concentrations during pregnancy. Epilepsy Behav. 2021, 123, 108253. [Google Scholar] [CrossRef] [PubMed]
- McCluskey, G.; Kinney, M.O.; Russell, A.; Smithson, W.H.; Parsons, L.; Morrison, P.J.; Bromley, R.; MacKillop, L.; Heath, C.; Liggan, B.; et al. Zonisamide safety in pregnancy: Data from the UK and Ireland epilepsy and pregnancy register. Seizure 2021, 91, 311–315. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Diaz, S.; Mittendorf, R.; Smith, C.R.; Hauser, W.A.; Yerby, M.; Holmes, L.B.; North American Antiepileptic Drug Pregnancy, R. Association between topiramate and zonisamide use during pregnancy and low birth weight. Obstet. Gynecol. 2014, 123, 21–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stephen, L.J.; Brodie, M.J. Brivaracetam: A novel antiepileptic drug for focal-onset seizures. Ther. Adv. Neurol. Disord. 2018, 11, 1756285617742081. [Google Scholar] [CrossRef]
- Hurault-Delarue, C.; Morris, J.K.; Charlton, R.; Gini, R.; Loane, M.; Pierini, A.; Puccini, A.; Neville, A.; Snowball, J.; Damase-Michel, C.; et al. Prescription of antiepileptic medicines including valproate in pregnant women: A study in three European countries. Pharmacoepidemiol. Drug Saf. 2019, 28, 1510–1518. [Google Scholar] [CrossRef]
- Meador, K.J.; Pennell, P.B.; May, R.C.; Gerard, E.; Kalayjian, L.; Velez-Ruiz, N.; Penovich, P.; Cavitt, J.; French, J.; Hwang, S.; et al. Changes in antiepileptic drug-prescribing patterns in pregnant women with epilepsy. Epilepsy Behav. 2018, 84, 10–14. [Google Scholar] [CrossRef]
- Yeh, C.C.; Lussier, E.C.; Sun, Y.T.; Lan, T.Y.; Yu, H.Y.; Chang, T.Y. Antiepileptic drug use among women from the Taiwanese Registry of Epilepsy and Pregnancy: Obstetric complications and fetal malformation outcomes. PLoS ONE 2017, 12, e0189497. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J.M.; Cesta, C.E.; Furu, K.; Einarsdottir, K.; Gissler, M.; Havard, A.; Hernandez-Diaz, S.; Huybrechts, K.F.; Kieler, H.; Leinonen, M.K.; et al. Prevalence trends and individual patterns of antiepileptic drug use in pregnancy 2006-2016: A study in the five Nordic countries, United States, and Australia. Pharmacoepidemiol. Drug Saf. 2020, 29, 913–922. [Google Scholar] [CrossRef]
- Clavenna, A.; Campi, R.; Putignano, D.; Fortino, I.; Bonati, M. Changes in antiepileptic drug prescriptions over a decade in childbearing women in Lombardy region, Italy. Br. J. Clin. Pharmacol. 2021, 88, 1152–1158. [Google Scholar] [CrossRef]
- Bansal, R.; Suri, V.; Chopra, S.; Aggarwal, N.; Sikka, P.; Saha, S.C.; Kharbanda, P.S.; Kumar, P. Change in antiepileptic drug prescription patterns for pregnant women with epilepsy over the years: Impact on pregnancy and fetal outcomes. Indian J. Pharmacol. 2019, 51, 93–97. [Google Scholar] [CrossRef]
- Ishikawa, T.; Obara, T.; Jin, K.; Nishigori, H.; Miyakoda, K.; Suzuka, M.; Ikeda-Sakai, Y.; Akazawa, M.; Nakasato, N.; Yaegashi, N.; et al. Examination of the prescription of antiepileptic drugs to prenatal and post-partum women in Japan from a health administrative database. Pharmacoepidemiol. Drug Saf. 2019, 28, 804–811. [Google Scholar] [CrossRef] [PubMed]
- Vajda, F.J.; Hollingworth, S.; Graham, J.; Hitchcock, A.A.; O’Brien, T.J.; Lander, C.M.; Eadie, M.J. Changing patterns of antiepileptic drug use in pregnant Australian women. Acta Neurol. Scand. 2010, 121, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Vajda, F.J.; O’Brien, T.; Lander, C.; Graham, J.; Eadie, M. The efficacy of the newer antiepileptic drugs in controlling seizures in pregnancy. Epilepsia 2014, 55, 1229–1234. [Google Scholar] [CrossRef] [PubMed]
- Vajda, F.J.E.; Graham, J.E.; Hitchcock, A.A.; Lander, C.M.; O’Brien, T.J.; Eadie, M.J. Antiepileptic drugs and foetal malformation: Analysis of 20 years of data in a pregnancy register. Seizure 2019, 65, 6–11. [Google Scholar] [CrossRef] [Green Version]
- Kikuchi, D.; Obara, T.; Miura, R.; Suzuki, N.; Josaka, R.; Tokunaga, M.; Ouchi, R.; Usui, K.; Okada, K. Trends in the prescription of anti-seizure medicines for pregnant women outpatients with epilepsy during 2016-2020 in Japan. Seizure 2022, 98, 101–104. [Google Scholar] [CrossRef]
- Eadie, M.J. Therapeutic drug monitoring--antiepileptic drugs. Br. J. Clin. Pharmacol. 1998, 46, 185–193. [Google Scholar] [CrossRef] [Green Version]
- Reisinger, T.L.; Newman, M.; Loring, D.W.; Pennell, P.B.; Meador, K.J. Antiepileptic drug clearance and seizure frequency during pregnancy in women with epilepsy. Epilepsy Behav. 2013, 29, 13–18. [Google Scholar] [CrossRef] [Green Version]
- Soma-Pillay, P.; Nelson-Piercy, C.; Tolppanen, H.; Mebazaa, A. Physiological changes in pregnancy. Cardiovasc. J. Afr. 2016, 27, 89–94. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.S.; Perucca, E.; Lee, J.N.; Richens, A. Serum protein binding and free concentration of phenytoin and phenobarbitone in pregnancy. Br. J. Clin. Pharmacol. 1982, 13, 547–552. [Google Scholar] [CrossRef] [Green Version]
- Nau, H.; Krauer, B. Serum protein binding of valproic acid in fetus-mother pairs throughout pregnancy: Correlation with oxytocin administration and albumin and free fatty acid concentrations. J. Clin. Pharmacol. 1986, 26, 215–221. [Google Scholar] [CrossRef]
- Bardy, A.H.; Hiilesmaa, V.K.; Teramo, K.; Neuvonen, P.J. Protein binding of antiepileptic drugs during pregnancy, labor, and puerperium. Ther. Drug Monit. 1990, 12, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Yerby, M.S. Problems and management of the pregnant woman with epilepsy. Epilepsia 1987, 28 (Suppl. 3), S29–S36. [Google Scholar] [CrossRef]
- Cheung, K.L.; Lafayette, R.A. Renal physiology of pregnancy. Adv. Chronic. Kidney Dis. 2013, 20, 209–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westin, A.A.; Nakken, K.O.; Johannessen, S.I.; Reimers, A.; Lillestolen, K.M.; Brodtkorb, E. Serum concentration/dose ratio of topiramate during pregnancy. Epilepsia 2009, 50, 480–485. [Google Scholar] [CrossRef] [PubMed]
- Rating, D.; Nau, H.; Jager-Roman, E.; Gopfert-Geyer, I.; Koch, S.; Beck-Mannagetta, G.; Schmidt, D.; Helge, H. Teratogenic and pharmacokinetic studies of primidone during pregnancy and in the offspring of epileptic women. Acta Paediatr. Scand. 1982, 71, 301–311. [Google Scholar] [CrossRef] [PubMed]
- Luoma, P.V.; Heikkinen, J.E.; Ylostalo, P.R. Phenobarbital pharmacokinetics and salivary and serum concentrations in pregnancy. Ther. Drug Monit. 1982, 4, 65–68. [Google Scholar] [CrossRef]
- Lander, C.M.; Smith, M.T.; Chalk, J.B.; de Wytt, C.; Symoniw, P.; Livingstone, I.; Eadie, M.J. Bioavailability and pharmacokinetics of phenytoin during pregnancy. Eur. J. Clin. Pharmacol. 1984, 27, 105–110. [Google Scholar] [CrossRef]
- Albani, F.; Riva, R.; Baruzzi, A. Carbamazepine clinical pharmacology: A review. Pharmacopsychiatry 1995, 28, 235–244. [Google Scholar] [CrossRef]
- Johnson, E.L.; Stowe, Z.N.; Ritchie, J.C.; Newport, D.J.; Newman, M.L.; Knight, B.; Pennell, P.B. Carbamazepine clearance and seizure stability during pregnancy. Epilepsy Behav. 2014, 33, 49–53. [Google Scholar] [CrossRef] [Green Version]
- Battino, D.; Tomson, T.; Bonizzoni, E.; Craig, J.; Lindhout, D.; Sabers, A.; Perucca, E.; Vajda, F.; Group, E.S. Seizure control and treatment changes in pregnancy: Observations from the EURAP epilepsy pregnancy registry. Epilepsia 2013, 54, 1621–1627. [Google Scholar] [CrossRef]
- Harden, C.L.; Pennell, P.B.; Koppel, B.S.; Hovinga, C.A.; Gidal, B.; Meador, K.J.; Hopp, J.; Ting, T.Y.; Hauser, W.A.; Thurman, D.; et al. Practice parameter update: Management issues for women with epilepsy--focus on pregnancy (an evidence-based review): Vitamin K, folic acid, blood levels, and breastfeeding: Report of the Quality Standards Subcommittee and Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology and American Epilepsy Society. Neurology 2009, 73, 142–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomson, T.; Battino, D.; Bromley, R.; Kochen, S.; Meador, K.; Pennell, P.; Thomas, S.V. Management of epilepsy in pregnancy: A report from the International League Against Epilepsy Task Force on Women and Pregnancy. Epileptic. Disord. 2019, 21, 497–517. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Faught, E.; Thurman, D.J.; Fishman, J.; Kalilani, L. Antiepileptic Drug Treatment Patterns in Women of Childbearing Age with Epilepsy. JAMA Neurol. 2019, 76, 783–790. [Google Scholar] [CrossRef] [PubMed]
- Birnbaum, A.K.; Meador, K.J.; Karanam, A.; Brown, C.; May, R.C.; Gerard, E.E.; Gedzelman, E.R.; Penovich, P.E.; Kalayjian, L.A.; Cavitt, J.; et al. Antiepileptic Drug Exposure in Infants of Breastfeeding Mothers With Epilepsy. JAMA Neurol. 2020, 77, 441–450. [Google Scholar] [CrossRef] [PubMed]
- Gidal, B.E.; DeCerce, J.; Bockbrader, H.N.; Gonzalez, J.; Kruger, S.; Pitterle, M.E.; Rutecki, P.; Ramsay, R.E. Gabapentin bioavailability: Effect of dose and frequency of administration in adult patients with epilepsy. Epilepsy Res. 1998, 31, 91–99. [Google Scholar] [CrossRef]
- McLean, M.J. Clinical pharmacokinetics of gabapentin. Neurology 1994, 44, S17–S22; discussion S31–S32. [Google Scholar]
- Ohman, I.; Vitols, S.; Tomson, T. Pharmacokinetics of gabapentin during delivery, in the neonatal period, and lactation: Does a fetal accumulation occur during pregnancy? Epilepsia 2005, 46, 1621–1624. [Google Scholar] [CrossRef]
- Bockbrader, H.N.; Wesche, D.; Miller, R.; Chapel, S.; Janiczek, N.; Burger, P. A comparison of the pharmacokinetics and pharmacodynamics of pregabalin and gabapentin. Clin. Pharmacokinet. 2010, 49, 661–669. [Google Scholar] [CrossRef]
- Landmark, C.J.; Rektorli, L.; Burns, M.L.; Revdal, E.; Johannessen, S.I.; Brodtkorb, E. Pharmacokinetic data on brivaracetam, lacosamide and perampanel during pregnancy and lactation. Epileptic. Disord. 2021, 23, 426–431. [Google Scholar] [CrossRef]
- Pennell, P.B.; Karanam, A.; Meador, K.J.; Gerard, E.; Kalayjian, L.; Penovich, P.; Matthews, A.; McElrath, T.M.; Birnbaum, A.K.; Group, M.S. Antiseizure Medication Concentrations During Pregnancy: Results From the Maternal Outcomes and Neurodevelopmental Effects of Antiepileptic Drugs (MONEAD) Study. JAMA Neurol. 2022, 79, 370. [Google Scholar] [CrossRef]
- Fukushima, Y.; Yamamoto, Y.; Yamazaki, E.; Imai, K.; Kagawa, Y.; Takahashi, Y. Change in the pharmacokinetics of lacosamide before, during, and after pregnancy. Seizure 2021, 88, 12–14. [Google Scholar] [CrossRef]
- Tran, T.A.; Leppik, I.E.; Blesi, K.; Sathanandan, S.T.; Remmel, R. Lamotrigine clearance during pregnancy. Neurology 2002, 59, 251–255. [Google Scholar] [CrossRef] [PubMed]
- Ohman, I.; Vitols, S.; Tomson, T. Lamotrigine in pregnancy: Pharmacokinetics during delivery, in the neonate, and during lactation. Epilepsia 2000, 41, 709–713. [Google Scholar] [CrossRef] [PubMed]
- Petrenaite, V.; Sabers, A.; Hansen-Schwartz, J. Individual changes in lamotrigine plasma concentrations during pregnancy. Epilepsy Res. 2005, 65, 185–188. [Google Scholar] [CrossRef] [PubMed]
- Polepally, A.R.; Pennell, P.B.; Brundage, R.C.; Stowe, Z.N.; Newport, D.J.; Viguera, A.C.; Ritchie, J.C.; Birnbaum, A.K. Model-Based Lamotrigine Clearance Changes during Pregnancy: Clinical Implication. Ann. Clin. Transl. Neurol. 2014, 1, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Karanam, A.; Pennell, P.B.; French, J.A.; Harden, C.L.; Allien, S.; Lau, C.; Barnard, S.; Callisto, S.P.; Birnbaum, A.K. Lamotrigine clearance increases by 5 weeks gestational age: Relationship to estradiol concentrations and gestational age. Ann. Neurol. 2018, 84, 556–563. [Google Scholar] [CrossRef]
- Chen, H.; Yang, K.; Choi, S.; Fischer, J.H.; Jeong, H. Up-regulation of UDP-glucuronosyltransferase (UGT) 1A4 by 17beta-estradiol: A potential mechanism of increased lamotrigine elimination in pregnancy. Drug Metab. Dispos. 2009, 37, 1841–1847. [Google Scholar] [CrossRef] [Green Version]
- Reimers, A.; Helde, G.; Brathen, G.; Brodtkorb, E. Lamotrigine and its N2-glucuronide during pregnancy: The significance of renal clearance and estradiol. Epilepsy Res. 2011, 94, 198–205. [Google Scholar] [CrossRef]
- Ohman, I.; Beck, O.; Vitols, S.; Tomson, T. Plasma concentrations of lamotrigine and its 2-N-glucuronide metabolite during pregnancy in women with epilepsy. Epilepsia 2008, 49, 1075–1080. [Google Scholar] [CrossRef]
- Petrenaite, V.; Ohman, I.; Ekstrom, L.; Saebye, D.; Hansen, T.F.; Tomson, T.; Sabers, A. UGT polymorphisms and lamotrigine clearance during pregnancy. Epilepsy Res. 2018, 140, 199–208. [Google Scholar] [CrossRef]
- Pennell, P.B.; Peng, L.; Newport, D.J.; Ritchie, J.C.; Koganti, A.; Holley, D.K.; Newman, M.; Stowe, Z.N. Lamotrigine in pregnancy: Clearance, therapeutic drug monitoring, and seizure frequency. Neurology 2008, 70, 2130–2136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pennell, P.B.; French, J.A.; May, R.C.; Gerard, E.; Kalayjian, L.; Penovich, P.; Gedzelman, E.; Cavitt, J.; Hwang, S.; Pack, A.M.; et al. Changes in Seizure Frequency and Antiepileptic Therapy during Pregnancy. N. Engl. J. Med. 2020, 383, 2547–2556. [Google Scholar] [CrossRef]
- Allegaert, K.; Lewi, L.; Naulaers, G.; Lagae, L. Levetiracetam pharmacokinetics in neonates at birth. Epilepsia 2006, 47, 1068–1069. [Google Scholar] [CrossRef] [PubMed]
- Long, L. Levetiracetam monotherapy during pregnancy: A case series. Epilepsy Behav. 2003, 4, 447–448. [Google Scholar] [CrossRef] [PubMed]
- Voinescu, P.E.; Park, S.; Chen, L.Q.; Stowe, Z.N.; Newport, D.J.; Ritchie, J.C.; Pennell, P.B. Antiepileptic drug clearances during pregnancy and clinical implications for women with epilepsy. Neurology 2018, 91, e1228–e1236. [Google Scholar] [CrossRef] [PubMed]
- Tomson, T.; Palm, R.; Kallen, K.; Ben-Menachem, E.; Soderfeldt, B.; Danielsson, B.; Johansson, R.; Luef, G.; Ohman, I. Pharmacokinetics of levetiracetam during pregnancy, delivery, in the neonatal period, and lactation. Epilepsia 2007, 48, 1111–1116. [Google Scholar] [CrossRef]
- Westin, A.A.; Reimers, A.; Helde, G.; Nakken, K.O.; Brodtkorb, E. Serum concentration/dose ratio of levetiracetam before, during and after pregnancy. Seizure 2008, 17, 192–198. [Google Scholar] [CrossRef] [Green Version]
- Pennell, P.; Koganti, A.; Helmers, S. The impact of pregnancy and childbirth on the elimination of levetiracetam (abstract). Epilepsia 2005, 46, 89. [Google Scholar]
- Longo, B.; Forinash, A.B.; Murphy, J.A. Levetiracetam use in pregnancy. Ann. Pharmacother. 2009, 43, 1692–1695. [Google Scholar] [CrossRef]
- Ohman, I.; Sabers, A.; de Flon, P.; Luef, G.; Tomson, T. Pharmacokinetics of topiramate during pregnancy. Epilepsy Res. 2009, 87, 124–129. [Google Scholar] [CrossRef]
- Mazzucchelli, I.; Onat, F.Y.; Ozkara, C.; Atakli, D.; Specchio, L.M.; Neve, A.L.; Gatti, G.; Perucca, E. Changes in the disposition of oxcarbazepine and its metabolites during pregnancy and the puerperium. Epilepsia 2006, 47, 504–509. [Google Scholar] [CrossRef]
- Christensen, J.; Sabers, A.; Sidenius, P. Oxcarbazepine concentrations during pregnancy: A retrospective study in patients with epilepsy. Neurology 2006, 67, 1497–1499. [Google Scholar] [CrossRef]
- Wegner, I.; Edelbroek, P.; de Haan, G.J.; Lindhout, D.; Sander, J.W. Drug monitoring of lamotrigine and oxcarbazepine combination during pregnancy. Epilepsia 2010, 51, 2500–2502. [Google Scholar] [CrossRef] [PubMed]
- Petrenaite, V.; Sabers, A.; Hansen-Schwartz, J. Seizure deterioration in women treated with oxcarbazepine during pregnancy. Epilepsy Res. 2009, 84, 245–249. [Google Scholar] [CrossRef] [PubMed]
- Reimers, A.; Helde, G.; Becser Andersen, N.; Aurlien, D.; Surlien Navjord, E.; Haggag, K.; Christensen, J.; Lillestolen, K.M.; Nakken, K.O.; Brodtkorb, E. Zonisamide serum concentrations during pregnancy. Epilepsy Res. 2018, 144, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Oles, K.S.; Bell, W.L. Zonisamide concentrations during pregnancy. Ann. Pharmacother. 2008, 42, 1139–1141. [Google Scholar] [CrossRef]
- Costa, R.; Magalhaes, L.M.; Graca, J.; Vieira, M.; Gama, H.; Moreira, J.; Rocha, J.F.; Soares-da-Silva, P. Eslicarbazepine acetate exposure in pregnant women with epilepsy. Seizure 2018, 58, 72–74. [Google Scholar] [CrossRef] [Green Version]
- Vazquez, B.; Tomson, T.; Dobrinsky, C.; Schuck, E.; O’Brien, T.J. Perampanel and pregnancy. Epilepsia 2021, 62, 698–708. [Google Scholar] [CrossRef]
- Sarrafpour, S.; Urits, I.; Powell, J.; Nguyen, D.; Callan, J.; Orhurhu, V.; Simopoulos, T.; Viswanath, O.; Kaye, A.D.; Kaye, R.J.; et al. Considerations and Implications of Cannabidiol Use During Pregnancy. Curr. Pain Headache Rep. 2020, 24, 38. [Google Scholar] [CrossRef]
- Stott, C.; White, L.; Wright, S.; Wilbraham, D.; Guy, G. A Phase I, open-label, randomized, crossover study in three parallel groups to evaluate the effect of Rifampicin, Ketoconazole, and Omeprazole on the pharmacokinetics of THC/CBD oromucosal spray in healthy volunteers. Springerplus 2013, 2, 236. [Google Scholar] [CrossRef] [Green Version]
- Herzog, A.G.; Mandle, H.B.; Cahill, K.E.; Fowler, K.M.; Hauser, W.A. Predictors of unintended pregnancy in women with epilepsy. Neurology 2017, 88, 728–733. [Google Scholar] [CrossRef] [PubMed]
- Reimers, A.; Brodtkorb, E.; Sabers, A. Interactions between hormonal contraception and antiepileptic drugs: Clinical and mechanistic considerations. Seizure 2015, 28, 66–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fairgrieve, S.D.; Jackson, M.; Jonas, P.; Walshaw, D.; White, K.; Montgomery, T.L.; Burn, J.; Lynch, S.A. Population based, prospective study of the care of women with epilepsy in pregnancy. BMJ 2000, 321, 674–675. [Google Scholar] [CrossRef] [Green Version]
- Reimers, A.; Brodtkorb, E. Second-generation antiepileptic drugs and pregnancy: A guide for clinicians. Expert Rev. Neurother. 2012, 12, 707–717. [Google Scholar] [CrossRef] [PubMed]
- Voinescu, P.E.; Pennell, P.B. Management of epilepsy during pregnancy. Expert Rev. Neurother. 2015, 15, 1171–1187. [Google Scholar] [CrossRef] [PubMed]
- Tomson, T.; Battino, D. Pharmacokinetics and therapeutic drug monitoring of newer antiepileptic drugs during pregnancy and the puerperium. Clin. Pharmacokinet. 2007, 46, 209–219. [Google Scholar] [CrossRef] [PubMed]
- Anderson, G.D. Pregnancy-induced changes in pharmacokinetics: A mechanistic-based approach. Clin. Pharmacokinet. 2005, 44, 989–1008. [Google Scholar] [CrossRef]
- Isoherranen, N.; Thummel, K.E. Drug metabolism and transport during pregnancy: How does drug disposition change during pregnancy and what are the mechanisms that cause such changes? Drug Metab. Dispos. 2013, 41, 256–262. [Google Scholar] [CrossRef] [Green Version]
- Tracy, T.S.; Venkataramanan, R.; Glover, D.D.; Caritis, S.N.; National Institute for Child Health and Human Development Network of Maternal-Fetal-Medicine Units. Temporal changes in drug metabolism (CYP1A2, CYP2D6 and CYP3A Activity) during pregnancy. Am. J. Obstet. Gynecol. 2005, 192, 633–639. [Google Scholar] [CrossRef]
- Tsutsumi, K.; Kotegawa, T.; Matsuki, S.; Tanaka, Y.; Ishii, Y.; Kodama, Y.; Kuranari, M.; Miyakawa, I.; Nakano, S. The effect of pregnancy on cytochrome P4501A2, xanthine oxidase, and N-acetyltransferase activities in humans. Clin. Pharmacol. Ther. 2001, 70, 121–125. [Google Scholar] [CrossRef]
- Zhao, Y.; Alshabi, A.M.; Caritis, S.; Venkataramanan, R. Impact of 17-alpha-hydroxyprogesterone caproate on cytochrome P450s in primary cultures of human hepatocytes. Am. J. Obstet. Gynecol. 2014, 211, 412.e1–412.e6. [Google Scholar] [CrossRef] [PubMed]
- Monostory, K.; Nagy, A.; Toth, K.; Budi, T.; Kiss, A.; Deri, M.; Csukly, G. Relevance of CYP2C9 Function in Valproate Therapy. Curr. Neuropharmacol. 2019, 17, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Helsby, N.A.; Ward, S.A.; Howells, R.E.; Breckenridge, A.M. In vitro metabolism of the biguanide antimalarials in human liver microsomes: Evidence for a role of the mephenytoin hydroxylase (P450 MP) enzyme. Br. J. Clin. Pharmacol. 1990, 30, 287–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helsby, N.A.; Ward, S.A.; Edwards, G.; Howells, R.E.; Breckenridge, A.M. The pharmacokinetics and activation of proguanil in man: Consequences of variability in drug metabolism. Br. J. Clin. Pharmacol. 1990, 30, 593–598. [Google Scholar] [CrossRef]
- Cuttle, L.; Munns, A.J.; Hogg, N.A.; Scott, J.R.; Hooper, W.D.; Dickinson, R.G.; Gillam, E.M. Phenytoin metabolism by human cytochrome P450: Involvement of P450 3A and 2C forms in secondary metabolism and drug-protein adduct formation. Drug Metab. Dispos. 2000, 28, 945–950. [Google Scholar] [PubMed]
- Thorn, C.F.; Whirl-Carrillo, M.; Leeder, J.S.; Klein, T.E.; Altman, R.B. PharmGKB summary: Phenytoin pathway. Pharm. Genom. 2012, 22, 466–470. [Google Scholar] [CrossRef] [PubMed]
- Tomson, T.; Lindbom, U.; Ekqvist, B.; Sundqvist, A. Disposition of carbamazepine and phenytoin in pregnancy. Epilepsia 1994, 35, 131–135. [Google Scholar] [CrossRef] [PubMed]
- Spina, E.; Pisani, F.; Perucca, E. Clinically significant pharmacokinetic drug interactions with carbamazepine. An update. Clin. Pharm. 1996, 31, 198–214. [Google Scholar] [CrossRef]
- Nakasa, H.; Nakamura, H.; Ono, S.; Tsutsui, M.; Kiuchi, M.; Ohmori, S.; Kitada, M. Prediction of drug-drug interactions of zonisamide metabolism in humans from in vitro data. Eur. J. Clin. Pharmacol. 1998, 54, 177–183. [Google Scholar] [CrossRef]
- Patsalos, P.N. The clinical pharmacology profile of the new antiepileptic drug perampanel: A novel noncompetitive AMPA receptor antagonist. Epilepsia 2015, 56, 12–27. [Google Scholar] [CrossRef]
- Loureiro, A.I.; Fernandes-Lopes, C.; Bonifacio, M.J.; Wright, L.C.; Soares-da-Silva, P. Hepatic UDP-glucuronosyltransferase is responsible for eslicarbazepine glucuronidation. Drug Metab. Dispos. 2011, 39, 1486–1494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hiller, A.; Nguyen, N.; Strassburg, C.P.; Li, Q.; Jainta, H.; Pechstein, B.; Ruus, P.; Engel, J.; Tukey, R.H.; Kronbach, T. Retigabine N-glucuronidation and its potential role in enterohepatic circulation. Drug Metab. Dispos. 1999, 27, 605–612. [Google Scholar] [PubMed]
- Berlin, M.; Barchel, D.; Gandelman-Marton, R.; Brandriss, N.; Blatt, I.; Ziv-Baran, T.; Neufeld, M.Y.; Dinavitser, N.; Kohn, E.; Shaniv, D.; et al. Therapeutic levetiracetam monitoring during pregnancy: "mind the gap". Ther. Adv. Chronic Dis. 2019, 10, 2040622319851652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, X.; Liu, Y.; Guo, Y.; Zhao, L.; Li, G.; Tan, X. Pharmacokinetic changes for newer antiepileptic drugs and seizure control during pregnancy. CNS Neurosci. Ther. 2022, 28, 658–666. [Google Scholar] [CrossRef] [PubMed]
- de Haan, G.J.; Edelbroek, P.; Segers, J.; Engelsman, M.; Lindhout, D.; Devile-Notschaele, M.; Augustijn, P. Gestation-induced changes in lamotrigine pharmacokinetics: A monotherapy study. Neurology 2004, 63, 571–573. [Google Scholar] [CrossRef]
- Ding, Y.; Tan, X.; Zhang, S.; Guo, Y. Pharmacokinetic changes and therapeutic drug monitoring of lamotrigine during pregnancy. Brain Behav. 2019, 9, e01315. [Google Scholar] [CrossRef]
- Fotopoulou, C.; Kretz, R.; Bauer, S.; Schefold, J.C.; Schmitz, B.; Dudenhausen, J.W.; Henrich, W. Prospectively assessed changes in lamotrigine-concentration in women with epilepsy during pregnancy, lactation and the neonatal period. Epilepsy Res. 2009, 85, 60–64. [Google Scholar] [CrossRef]
Older (before 1993) | Newer (after 1993) |
---|---|
phenobarbital | gabapentin |
phenytoin | lamotrigine |
carbamazepine | topiramate |
primidone | oxcarbazepine |
valproate | levetiracetam |
zonisamide | |
pregabalin | |
lacosamide | |
perampanel | |
brivaracetam |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avachat, C.; Barry, J.M.; Lyu, X.; Sherwin, C.M.; Birnbaum, A.K. Management of Anti-Seizure Medications during Pregnancy: Advancements in The Past Decade. Pharmaceutics 2022, 14, 2733. https://doi.org/10.3390/pharmaceutics14122733
Avachat C, Barry JM, Lyu X, Sherwin CM, Birnbaum AK. Management of Anti-Seizure Medications during Pregnancy: Advancements in The Past Decade. Pharmaceutics. 2022; 14(12):2733. https://doi.org/10.3390/pharmaceutics14122733
Chicago/Turabian StyleAvachat, Charul, Jessica M. Barry, Xintian Lyu, Catherine M. Sherwin, and Angela K. Birnbaum. 2022. "Management of Anti-Seizure Medications during Pregnancy: Advancements in The Past Decade" Pharmaceutics 14, no. 12: 2733. https://doi.org/10.3390/pharmaceutics14122733
APA StyleAvachat, C., Barry, J. M., Lyu, X., Sherwin, C. M., & Birnbaum, A. K. (2022). Management of Anti-Seizure Medications during Pregnancy: Advancements in The Past Decade. Pharmaceutics, 14(12), 2733. https://doi.org/10.3390/pharmaceutics14122733