Recent Advances in Metal–Organic-Framework-Based Nanocarriers for Controllable Drug Delivery and Release
Abstract
:1. Introduction
2. Zr-Based UiOs
3. Fe-MOFs
4. CD MOFs
5. Other MOFs
6. Challenges and Opportunities
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, S.; Zhong, Q.; Wang, Y.; Hu, P.; Zhong, W.; Huang, C.B.; Yu, Z.Q.; Ding, C.D.; Liu, H.; Fu, J. Chemically engineered mesoporous silica nanoparticles-based intelligent delivery systems for theranostic applications in multiple cancerous/non-cancerous diseases. Coordin. Chem. Rev. 2022, 452, 214309. [Google Scholar] [CrossRef]
- Xue, Y.; Bai, H.; Peng, B.; Fang, B.; Baell, J.; Li, L.; Huang, W.; Voelcker, N.H. Stimulus-cleavable chemistry in the field of controlled drug delivery. Chem. Soc. Rev. 2021, 50, 4872–4931. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Ban, W.; Ling, H.; Yu, X.; He, Z.; Jiang, Q.; Sun, J. Emerging nanomedicine and prodrug delivery strategies for the treatment of inflammatory bowel disease. Chin. Chem. Lett. 2022, 33, 4449–4460. [Google Scholar] [CrossRef]
- Huang, L.; Sun, Z.; Shen, Q.; Huang, Z.; Wang, S.; Yang, N.; Li, G.; Wu, Q.; Wang, W.; Li, L.; et al. Rational design of nanocarriers for mitochondria-targeted drug delivery. Chin. Chem. Lett. 2022, 33, 4146–4156. [Google Scholar] [CrossRef]
- Singh, N.; Son, S.; An, J.; Kim, I.; Choi, M.; Kong, N.; Tao, W.; Kim, J.S. Nanoscale porous organic polymers for drug delivery and advanced cancer theranostics. Chem. Soc. Rev. 2021, 50, 12883–12896. [Google Scholar] [CrossRef]
- Liu, J.; Cui, L.; Losic, D. Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater. 2013, 9, 9243–9257. [Google Scholar] [CrossRef]
- Shabatina, T.; Vernaya, O.; Shumilkin, A.; Semenov, A.; Melnikov, M. Nanoparticles of bioactive metals/metal oxides and their nanocomposites with antibacterial drugs for biomedical applications. Materials 2022, 15, 3602. [Google Scholar] [CrossRef]
- Yang, H.; Xiong, H.; Yu, S. Quantum dots-based drug delivery system. Prog. Chem. 2012, 24, 2234–2246. [Google Scholar]
- Paris, J.L.; Vallet-Regi, M. Mesoporous silica nanoparticles for co-delivery of drugs and nucleic acids in oncology: A review. Pharmaceutics 2020, 12, 526. [Google Scholar] [CrossRef]
- Wu, M.X.; Yang, Y.W. Metal-organic framework (MOF)-based drug/cargo delivery and cancer therapy. Adv. Mater. 2017, 29, 1606134. [Google Scholar] [CrossRef]
- Mallakpour, S.; Nikkhoo, E.; Hussain, C.M. Application of MOF materials as drug delivery systems for cancer therapy and dermal treatment. Coordin. Chem. Rev. 2022, 451, 214262. [Google Scholar] [CrossRef]
- Li, W.; Liu, Z.; Fontana, F.; Ding, Y.; Liu, D.; Hirvonen, J.T.; Santos, H.A. Tailoring porous silicon for biomedical applications: From drug delivery to cancer immunotherapy. Adv. Mater. 2018, 30, 1703740. [Google Scholar] [CrossRef]
- Tang, Y.; Varyambath, A.; Ding, Y.; Chen, B.; Huang, X.; Zhang, Y.; Yu, D.G.; Kim, I.; Song, W. Porous organic polymers for drug delivery: Hierarchical pore structures, variable morphologies, and biological properties. Biomater. Sci. 2012, 10, 5369–5390. [Google Scholar] [CrossRef]
- He, Y.T.; Liang, L.; Zhao, Z.Q.; Hu, L.F.; Fei, W.M.; Chen, B.Z.; Cui, Y.; Guo, X.D. Advances in porous microneedle systems for drug delivery and biomarker detection: A mini review. J. Drug Deliv. Sci. Tec. 2022, 74, 103518. [Google Scholar] [CrossRef]
- Garcia-Fernandez, A.; Aznar, E.; Martinez-Manez, R.; Sancenon, F. New Advances in in vivo applications of gated mesoporous silica as drug delivery nanocarriers. Small 2020, 16, 1902242. [Google Scholar] [CrossRef]
- Fonseca, J.; Gong, T. Fabrication of metal-organic framework architectures with macroscopic size: A review. Coordin. Chem. Rev. 2022, 462, 214520. [Google Scholar] [CrossRef]
- Jiao, L.; Seow, J.Y.R.; Skinner, W.S.; Wang, Z.U.; Jiang, H.L. Metal-organic frameworks: Structures and functional applications. Mater. Today 2019, 27, 43–68. [Google Scholar] [CrossRef]
- He, H.; Wen, H.M.; Li, H.K.; Zhang, H.W. Recent advances in metal-organic frameworks and their derivatives for electrocatalytic nitrogen reduction to ammonia. Coordin. Chem. Rev. 2022, 471, 214761. [Google Scholar] [CrossRef]
- Ghasempour, H.; Wang, K.Y.; Powell, J.A.; ZareKarizi, F.; Lv, X.L.; Morsali, A.; Zhou, H.C. Metal-organic frameworks based on multicarboxylate linkers. Coordin. Chem. Rev. 2021, 426, 213542. [Google Scholar] [CrossRef]
- Chen, J.; Wu, J.; Zhuang, G.; Li, B.; Li, J. Effect of orbital-symmetry matching in a metal-organic framework for highly efficient C2H2/C2H4 and C2H2/CO2 separations. Inorg. Chem. 2022, 61, 10263–10266. [Google Scholar] [CrossRef]
- Jose, R.; Kancharlapalli, S.; Ghanty, T.T.; Pal, S.; Rajaraman, G. The decisive role of spin states and spin coupling in dictating selective O2 adsorption in chromium(II) metal-organic frameworks. Chem. Eur. J. 2022, 28, e202104526. [Google Scholar] [PubMed]
- Wang, J.X.; Liang, C.C.; Gu, X.W.; Wen, H.M.; Jiang, C.; Li, B.; Qian, G.; Chen, B. Recent advances in microporous metal–organic frameworks as promising adsorbents for gas separation. J. Mater. Chem. A 2022, 10, 17878–17916. [Google Scholar] [CrossRef]
- Dunning, S.G.; Gupta, N.K.; Reynolds, J.E.; Sagastuy-Brena, M.; Flores, J.G.; Martinez-Ahumada, E.; Sanchez-Gonzalez, E.; Lynch, V.M.; Gutierrez-Alejandre, A.; Aguilar-Pliego, J.; et al. Mn-CUK-1: A flexible MOF for SO2, H2O, and H2S capture. Inorg. Chem. 2022, 61, 15037–15044. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Xie, L.H.; Li, J.R.; Ma, Y.; Seminario, J.M.; Balbuena, P.B. CO2 capture and separations using MOFs: Computational and experimental studies. Chem. Rev. 2017, 117, 9674–9754. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Li, Y.; Liang, F.L.; Li, L.J.; Lan, Y.W.; Li, Z.Y.; Lu, X.T.; Yang, M.Q.; Ma, D.Y. A microporous 2D cobalt-based MOF with pyridyl sites and open metal sites for selective adsorption of CO2. Micropor. Mesopor. Mat. 2022, 341, 112098. [Google Scholar] [CrossRef]
- He, H.; Li, H.K.; Zhu, Q.Q.; Li, C.P.; Zhang, Z.; Du, M. Hydrophobicity modulation on a ferriporphyrin-based metal-organic framework for enhanced ambient electrocatalytic nitrogen fixation. Appl. Catal. B-Environ. 2022, 316, 121673. [Google Scholar] [CrossRef]
- Dhankhar, S.S.; Das, R.; Ugale, B.; Pillai, R.S.; Nagaraja, C.M. Chemical fixation of CO2 under solvent and co-catalyst-free conditions using a highly porous two-fold interpenetrated Cu(II)-metal-organic framework. Cryst. Growth Des. 2021, 21, 1233–1241. [Google Scholar] [CrossRef]
- Garcia-Salcido, V.; Mercado-Oliva, P.; Luis Guzman-Mar, J.; Kharisov, B.; Hinojosa-Reyes, L. MOF-based composites for visible-light-driven heterogeneous photocatalysis: Synthesis, characterization and environmental application studies. J. Solid State Chem. 2022, 307, 122801. [Google Scholar] [CrossRef]
- He, H.; Zhu, Q.Q.; Yan, Y.; Zhang, H.W.; Han, Z.Y.; Sun, H.; Chen, J.; Li, C.P.; Zhang, Z.; Du, M. Metal-organic framework supported Au nanoparticles with organosilicone coating for high-efficiency electrocatalytic N2 reduction to NH3. Appl. Catal. B-Environ. 2022, 302, 120840. [Google Scholar] [CrossRef]
- Tan, L.; Wang, P.; Lu, R.; Feng, S.; Yuan, G.; Wang, C. Design and synthesis of hollow Ce/Zr-UiO-66 nanoreactors for synergistic and efficient catalysis. J. Solid State Chem. 2022, 312, 123306. [Google Scholar] [CrossRef]
- He, H.; Sun, Q.; Gao, W.; Perman, J.A.; Sun, F.; Zhu, G.; Aguila, B.; Forrest, K.; Space, B.; Ma, S. A Stable Metal-Organic Framework Featuring a Local Buffer Environment for Carbon Dioxide Fixation. Angew. Chem. Int. Edit. 2018, 57, 4657–4662. [Google Scholar] [CrossRef] [PubMed]
- Goswami, R.; Pal, T.K.; Neogi, S. Stimuli -triggered fluoro-switching in metal-organic frameworks: Applications and outlook. Dalton Trans. 2021, 50, 4067–4090. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Zhu, Q.Q.; Li, C.P.; Du, M. Design of a highly-stable pillar-layer zinc(II) porous framework for rapid, reversible, and multi-responsive luminescent sensor in water. Cryst. Growth Des. 2019, 19, 694–703. [Google Scholar] [CrossRef]
- Razavi, S.A.A.; Morsali, A.; Piroozzadeh, M. A dihydrotetrazine-functionalized metal-organic framework as a highly selective luminescent host-guest sensor for detection of 2,4,6-trinitrophenol. Inorg. Chem. 2022, 61, 7820–7834. [Google Scholar] [CrossRef] [PubMed]
- Yuan, R.; He, H. State of the art methods and challenges of luminescent metal–organic frameworks for antibiotic detection. Inorg. Chem. Front. 2020, 7, 4293–4319. [Google Scholar] [CrossRef]
- Ma, Y.; Zhu, M.; Zhang, Y.; Sun, Y.; Wu, S. A water-stable Eu-MOF as multi-responsive luminescent sensor for high-efficiency detection of Fe3+, MnO4− ions and nicosulfuron in aqueous solution. J. Solid State Chem. 2022, 316, 123598. [Google Scholar] [CrossRef]
- Zhang, H.W.; Li, H.K.; Han, Z.Y.; Yuan, R.; He, H. Incorporating fullerenes in nanoscale metal–organic matrixes: An ultrasensitive platform for impedimetric aptasensing of tobramycin. ACS Appl. Mater. Interfaces 2022, 14, 7350–7357. [Google Scholar] [CrossRef]
- Mu, Z.; Tian, J.; Wang, J.; Zhou, J.; Bai, L. A new electrochemical aptasensor for ultrasensitive detection of endotoxin using Fe-MOF and AgNPs decorated P-N-CNTs as signal enhanced indicator. Appl. Surf. Sci. 2022, 573, 151601. [Google Scholar] [CrossRef]
- Xue, Y.; Yang, X.; Sun, X.L.; Han, Z.Y.; Sun, J.; He, H. Reversible structural transformation of CuI–TbIII heterometallic MOFs with highly efficient detection capability toward penicillin. Inorg. Chem. 2021, 60, 11081–11089. [Google Scholar] [CrossRef]
- Liu, C.S.; Li, J.; Pang, H. Metal-organic framework-based materials as an emerging platform for advanced electrochemical sensing. Coordin. Chem. Rev. 2020, 410, 213222. [Google Scholar] [CrossRef]
- Zhang, H.W.; Zhu, Q.Q.; Yuan, R.; He, H. Crystal engineering of MOF@COF core-shell composites for ultra-sensitively electrochemical detection. Sensor. Actuat. B-Chem. 2021, 329, 129144. [Google Scholar] [CrossRef]
- Chen, J.Y.; Cheng, F.; Luo, D.W.; Huang, J.F.; Ouyang, J.; Nezamzadeh-Ejhieh, A.; Khan, M.S.; Liu, J.Q.; Peng, Y.Q. Recent advances in Ti-based MOFs in biomedical applications. Dalton Trans. 2022, 51, 14817–14832. [Google Scholar] [CrossRef]
- Li, M.M.; Yin, S.H.; Lin, M.Z.; Chen, X.L.; Pan, Y.; Peng, Y.Q.; Sun, J.B.; Kumar, A.; Liu, J.Q. Current status and prospects of metal-organic frameworks for bone therapy and bone repair. J. Mater. Chem. B 2022, 10, 5105–5128. [Google Scholar] [CrossRef]
- Adegoke, K.A.; Adegoke, O.R.; Adigun, R.A.; Maxakato, N.W.; Bello, O.S. Two-dimensional metal-organic frameworks: From synthesis to biomedical, environmental, and energy conversion applications. Coordin. Chem. Rev. 2022, 473, 214817. [Google Scholar] [CrossRef]
- Fu, D.Y.; Liu, X.; Zheng, X.; Zhou, M.; Wang, W.; Su, G.; Liu, T.; Wang, L.; Xie, Z. Polymer-metal-organic framework hybrids for bioimaging and cancer therapy. Coordin. Chem. Rev. 2022, 456, 214393. [Google Scholar] [CrossRef]
- Wang, L.; Zheng, M.; Xie, Z. Nanoscale metal-organic frameworks for drug delivery: A conventional platform with new promise. J. Mater. Chem. B 2018, 6, 707–717. [Google Scholar] [CrossRef]
- Zhou, X.; Vázquez-González, M.; Willner, I. Stimuli-responsive metal–organic framework nanoparticles for controlled drug delivery and medical applications. Chem. Soc. Rev. 2021, 50, 4541–4563. [Google Scholar] [CrossRef]
- Liu, Q.; Zhan, C.; Kohane, D.S. Phototriggered drug delivery using inorganic nanomaterials. Bioconjug. Chem. 2017, 28, 98–104. [Google Scholar] [CrossRef] [Green Version]
- Shim, G.; Ko, S.; Kim, D.; Le, Q.V.; Park, G.T.; Lee, J.; Kwon, T.; Choi, H.G.; Kim, Y.B.; Oh, Y.K. Light-switchable systems for remotely controlled drug delivery. J. Control. Release 2017, 267, 67–79. [Google Scholar] [CrossRef]
- Fan, N.C.; Cheng, F.Y.; Ho, J.A.A.; Yeh, C.S. Photocontrolled targeted drug delivery: Photocaged biologically active folic acid as a light-responsive tumor-targeting molecule. Angew. Chem. Int. Edit. 2012, 51, 8806–8810. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, F. pH-Responsive drug-delivery systems. Chem. Asian J. 2015, 10, 284–305. [Google Scholar] [CrossRef] [PubMed]
- Song, S.W.; Hidajat, K.; Kawi, S. pH-controllable drug release using hydrogel encapsulated mesoporous silica. Chem. Commun. 2007, 42, 4396–4398. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Tai, C.W.; Su, J.; Zou, X.; Gao, F. Ultra-small mesoporous silica nanoparticles as efficient carriers for pH responsive releases of anti-cancer drugs. Dalton Trans. 2015, 44, 20186–20192. [Google Scholar] [CrossRef] [PubMed]
- Ruan, L.; Zhou, M.; Chen, J.; Huang, H.; Zhang, J.; Sun, H.; Chai, Z.; Hu, Y. Thermoresponsive drug delivery to mitochondria in vivo. Chem. Commun. 2019, 55, 14645–14648. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Kim, J.; Yu, S.; Hong, S. pH- and temperature-responsive radially porous silica nanoparticles with high-capacity drug loading for controlled drug delivery. Nanotechnology 2020, 31, 335103. [Google Scholar] [CrossRef]
- Karimi, M.; Zangabad, P.S.; Ghasemi, A.; Amiri, M.; Bahrami, M.; Malekzad, H.; Asl, H.G.; Mandieh, Z.; Bozorgomid, M.; Ghasemi, A.; et al. Temperature-responsive smart nanocarriers for delivery of therapeutic agents: Applications and recent advances. ACS Appl. Mater. Interfaces 2016, 8, 21107–21133. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Liu, J.; Gong, P.; Li, Z.; Ke, C.; Qian, Y.; Luo, H.; Xiao, L.; Zhou, F.; Liu, W. Construction of core-shell nanoMOFs@microgel for aqueous lubrication and thermal-responsive drug release. Small 2022, 18, 2202510. [Google Scholar] [CrossRef]
- Cai, M.; Chen, G.; Qin, L.; Qu, C.; Dong, X.; Ni, J.; Yin, X. Metal organic frameworks as drug targeting delivery vehicles in the treatment of cancer. Pharmaceutics 2020, 12, 232. [Google Scholar] [CrossRef] [Green Version]
- Ke, F.; Yuan, Y.P.; Qiu, L.G.; Shen, Y.H.; Xie, A.J.; Zhu, J.F.; Tian, X.Y.; Zhang, L.D. Facile fabrication of magnetic metal-organic framework nanocomposites for potential targeted drug delivery. J. Mater. Chem. 2011, 21, 3843–3848. [Google Scholar] [CrossRef]
- AL Haydar, M.; Abid, H.R.; Sunderland, B.; Wang, S. Metal organic frameworks as a drug delivery system for flurbiprofen. Drug Des. Dev. Ther. 2017, 11, 2685–2695. [Google Scholar] [CrossRef] [Green Version]
- Cai, M.; Zeng, Y.; Liu, M.; You, L.; Huang, H.; Hao, Y.; Yin, X.; Qu, C.; Ni, J.; Dong, X. Construction of a multifunctional nano-scale metal-organic framework-based drug delivery system for targeted cancer therapy. Pharmaceutics 2021, 13, 1945. [Google Scholar] [CrossRef]
- Lawson, H.D.; Walton, S.P.; Chan, C. Metal-organic frameworks for drug delivery: A design perspective. ACS Appl. Mater. Interfaces 2021, 13, 7004–7020. [Google Scholar] [CrossRef]
- An, J.; Geib, S.J.; Rosi, N.L. Cation-triggered drug release from a porous zinc-adeninate metal-organic framework. J. Am. Chem. Soc. 2009, 131, 8376–8377. [Google Scholar] [CrossRef]
- Su, H.; Sun, F.; Jia, J.; He, H.; Wang, A.; Zhu, G. A highly porous medical metal-organic framework constructed from bioactive curcumin. Chem. Commun. 2015, 51, 5774–5777. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, Y.; Liu, L.; Wan, W.; Guo, P.; Nyström, A.M.; Zou, X. One-pot synthesis of metal-organic frameworks with encapsulated target molecules and their applications for controlled drug delivery. J. Am. Chem. Soc. 2016, 138, 962–968. [Google Scholar] [CrossRef]
- Teplensky, M.H.; Fantham, M.; Li, P.; Wang, T.C.; Mehta, J.P.; Young, L.J.; Moghadam, P.Z.; Hupp, J.T.; Farha, O.K.; Kaminski, C.F.; et al. Temperature treatment of highly porous zirconium-containing metal-organic frameworks extends drug delivery release. J. Am. Chem. Soc. 2017, 139, 7522–7532. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.Y.; Qin, C.; Wang, C.G.; Su, Z.M.; Wang, S.; Wang, X.L.; Yang, G.S.; Shao, K.Z.; Lan, Y.Q.; Wang, E.B. Chiral nanoporous metal-organic frameworks with high porosity as materials for drug delivery. Adv. Mater. 2011, 23, 5629–5632. [Google Scholar] [CrossRef]
- Lázaro, I.A.; Lázaro, S.A.; Forgan, R.S. Enhancing anticancer cytotoxicity through bimodal drug delivery from ultrasmall Zr MOF nanoparticles. Chem. Commun. 2018, 54, 2792–2795. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.L.; Yeh, H.; Li, B.H.; Lin, C.H.; Hsiao, T.C.; Tsai, D.H. Zirconium-based metal-organic framework nanocarrier for the controlled release of ibuprofen. ACS Appl. Nano Mater. 2019, 2, 3329–3334. [Google Scholar] [CrossRef]
- Chen, D.T.; Bi, J.; Wu, J.; Kumar, A. Zirconium based nano metal-organic framework UiO-67-NH2 with high drug loading for controlled release of camptothecin. J. Inorg. Organomet. Polym. Mater. 2020, 30, 573–579. [Google Scholar] [CrossRef]
- Rabiee, N.; Bagherzadeh, M.; Haris, M.H.; Ghadiri, A.M.; Moghaddam, F.M.; Fatahi, Y.; Dinarvand, R.; Jarahiyan, A.; Ahmadi, S.; Shokouhimehr, M. Polymer-coated NH2-UiO-66 for the codelivery of DOX/pCRISPR. ACS Appl. Mater. Interfaces 2021, 13, 10796–10811. [Google Scholar] [CrossRef] [PubMed]
- Duman, F.D.; Monaco, A.; Foulkes, R.; Becer, C.R.; Forgan, R.S. Glycopolymer-functionalized MOF-808 nanoparticles as a cancer-targeted dual drug delivery system for carboplatin and floxuridine. ACS Appl. Nano Mater. 2022, 5, 13862–13873. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Gong, C.S.; Dai, Y.; Yang, Z.; Yu, G.; Liu, Y.; Zhang, M.; Lin, L.; Tang, W.; Zhou, Z.; et al. In situ polymerization on nanoscale metal-organic frameworks for enhanced physiological stability and stimulus-responsive intracellular drug delivery. Biomaterials 2019, 218, 119365. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; He, H.; Zhang, Y.; Xu, M.; Tian, F.; Li, L.; Wang, Y. Acetaldehyde-modified-cystine functionalized Zr-MOFs for pH/GSH dual-responsive drug delivery and selective visualization of GSH in living cells. RSC Adv. 2020, 10, 3084–3091. [Google Scholar] [CrossRef] [PubMed]
- Cui, R.; Zhao, P.; Yan, Y.; Bao, G.; Damirin, A.; Liu, Z. Outstanding drug-loading/release capacity of hollow Fe-metal-organic framework-based microcapsules: A potential multifunctional drug-delivery platform. Inorg. Chem. 2021, 60, 1664–1671. [Google Scholar] [CrossRef]
- Leng, X.; Dong, X.; Wang, W.; Sai, N.; Yang, C.; You, L.; Huang, H.; Yin, X.; Ni, J. Biocompatible Fe-based micropore metal-organic frameworks as sustained-release anticancer drug carriers. Molecules 2018, 23, 2490. [Google Scholar] [CrossRef] [Green Version]
- Golmohamadpour, A.; Bahramian, B.; Shafiee, A.; Mámani, L. Slow released delivery of alendronate using β-cyclodextrine modified Fe-MOF encapsulated porous hydroxyapatite. J. Inorg. Organomet. P 2018, 28, 1991–2000. [Google Scholar] [CrossRef]
- Gao, X.; Cui, R.; Song, L.; Liu, Z. Hollow structural metal-organic frameworks exhibit high drug loading capacity, targeted delivery and magnetic resonance/optical multimodal imaging. Dalton Trans. 2019, 48, 17291–17297. [Google Scholar] [CrossRef]
- Yao, X.; Chen, D.; Zhao, B.; Yang, B.; Jin, Z.; Fan, M.; Tao, G.; Qin, S.; Yang, W.; He, Q. Acid-degradable hydrogen-generating metal-organic framework for overcoming cancer resistance/metastasis and off-target side effects. Adv. Sci. 2022, 9, 2101965. [Google Scholar] [CrossRef]
- Zhou, Y.; Luo, S.; Niu, B.; Wu, B.; Fu, J.; Zhao, Y.; Singh, V.; Lu, C.; Quan, G.; Pan, X.; et al. Ultramild one-step encapsulating method as a modular strategy for protecting humidity-susceptible metal-organic frameworks achieving tunable drug release profiles. ACS Biomater. Sci. Eng. 2019, 5, 5180–5188. [Google Scholar] [CrossRef]
- Singh, P.; Feng, J.; Golla, V.K.; Lotfi, A.; Tyagi, D. Crosslinked and biofunctionalized γ-cyclodextrin metal organic framework to enhance cellular binding efficiency. Mater. Chem. Phys. 2022, 289, 126496. [Google Scholar] [CrossRef]
- Bello, M.G.; Yang, Y.; Wang, C.; Wu, L.; Zhou, P.; Ding, H.; Ge, X.; Guo, T.; Wei, L.; Zhang, J. Facile synthesis and size control of 2D cyclodextrin-based metal-organic frameworks nanosheet for topical drug delivery. Part. Part. Syst. Charact. 2020, 37, 2000147. [Google Scholar] [CrossRef]
- Jia, Q.; Li, Z.; Guo, C.; Huang, X.; Song, Y.; Zhou, N.; Wang, M.; Zhang, Z.; He, L.; Du, M. A γ-cyclodextrin-based metal–organic framework embedded with graphene quantum dots and modified with PEGMA via SI-ATRP for anticancer drug delivery and therapy. Nanoscale 2019, 11, 20956–20967. [Google Scholar] [CrossRef]
- Suresh, K.; Matzger, A.J. Enhanced drug delivery by dissolution of amorphous drug encapsulated in a water unstable metal-organic framework (MOF). Angew. Chem. Int. Ed. 2019, 58, 16790–16794. [Google Scholar] [CrossRef]
- Song, Y.; Yang, J.; Wang, L.; Xie, Z. Metal-organic sheets for efficient drug delivery and bioimaging. ChemMedChem 2020, 15, 416–419. [Google Scholar] [CrossRef]
- Dong, J.; Ma, K.; Pei, Y.; Pei, Z. Core-shell metal-organic frameworks with pH/GSH dual-responsiveness for combined chemo-chemodynamic therapy. Chem. Commun. 2022, 58, 12341–12344. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, H.; Yang, T.; Zhou, G.; Chen, Y.; Wang, J.; Mao, C.; Yang, M. Biomimetic nucleation of metal-organic frameworks on silk fibroin nanoparticles for designing core-shell-structured pH responsive anticancer drug carriers. ACS Appl. Mater. Interfaces 2021, 13, 47371–47381. [Google Scholar] [CrossRef]
- Ren, S.Z.; Zhu, D.; Zhu, X.H.; Wang, B.; Yang, Y.S.; Sun, W.X.; Wang, X.M.; Lv, P.C.; Wang, Z.C.; Zhu, H.L. Nanoscale metal-organic-frameworks coated by biodegradable organosilica for pH and redox dual responsive drug release and high-performance anticancer therapy. ACS Appl. Mater. Interfaces 2019, 11, 20678–20688. [Google Scholar] [CrossRef]
- Shen, Y.; Lv, Y. Dual targeted zeolitic imidazolate framework nanoparticles for treating metastatic breast cancer and inhibiting bone destruction. Colloid. Surface B 2022, 219, 112826. [Google Scholar] [CrossRef]
- Huang, Y.L.; Ping, L.J.; Wu, J.; Li, Y.Y.; Zhou, X.P. Increasing the stability of metal-organic frameworks by coating with poly(tetrafluoroethylene). Inorg. Chem. 2022, 61, 5092–5098. [Google Scholar] [CrossRef]
- Li, N.; Xu, J.; Feng, R.; Hu, T.L.; Bu, X.H. Governing metal-organic frameworks towards high stability. Chem. Commun. 2016, 52, 8501–8513. [Google Scholar] [CrossRef] [PubMed]
- Ding, M.; Cai, X.; Jiang, H.L. Improving MOF stability: Approaches and applications. Chem. Sci. 2019, 10, 10209–10230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, H.; Peng, F.; Hong, A.N.; Wang, Y.; Bu, X.; Feng, P. Ultrastable high-connected chromium metal-organic frameworks. J. Am. Chem. Soc. 2021, 143, 14470–14474. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.L.; Yuan, S.; Xie, L.H.; Darke, H.F.; Chen, Y.; He, T.; Dong, C.; Wang, B.; Zhang, Y.Z.; Li, J.R.; et al. Ligand rigidification for enhancing the stability of metal-organic frameworks. J. Am. Chem. Soc. 2019, 141, 10283–10293. [Google Scholar] [CrossRef] [PubMed]
- Gadipelli, S.; Guo, Z. Postsynthesis annealing of MOF-5 remarkably enhances the framework structural stability and CO2 uptake. Chem. Mater. 2014, 26, 6333–6338. [Google Scholar] [CrossRef]
- Cavka, J.H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K.P. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 2008, 130, 13850–13851. [Google Scholar] [CrossRef]
- Vahabi, A.H.; Norouzi, F.; Sheibani, E.; Rahimi-Nasrabadi, M. Functionalized Zr-UiO-67 metal-organic frameworks: Structural landscape and application. Coordin. Chem. Rev. 2021, 445, 214050. [Google Scholar] [CrossRef]
- Jia, C.; He, T.; Wang, G.M. Zirconium-based metal-organic frameworks for fluorescent sensing. Coordin. Chem. Rev. 2023, 476, 214930. [Google Scholar] [CrossRef]
- Li, H.K.; Ye, H.L.; Zhao, X.X.; Sun, X.L.; Zhu, Q.Q.; Han, Z.Y.; Yuan, R.R.; He, H. Artful union of a zirconium-porphyrin MOF/GO composite for fabricating an aptamer-based electrochemical sensor with superb detecting performance. Chin. Chem. Lett. 2021, 32, 2851–2855. [Google Scholar] [CrossRef]
- Cmarik, G.E.; Kim, M.; Cohen, S.M.; Walton, K.S. Tuning the adsorption properties of UiO-66 via ligand functionalization. Langmuir 2012, 28, 15606–15613. [Google Scholar] [CrossRef]
- Deng, X.; Zheng, S.L.; Zhong, Y.H.; Hu, J.; Chung, L.H.; He, J. Conductive MOFs based on thiol-functionalized linkers: Challenges, opportunities, and recent advances. Coordin. Chem. Rev. 2022, 450, 214235. [Google Scholar] [CrossRef]
- Phang, W.J.; Jo, H.; Lee, W.R.; Song, J.H.; Yoo, K.; Kim, B.; Hong, C.S. Superprotonic conductivity of a UiO-66 framework functionalized with sulfonic acid groups by facile postsynthetic oxidation. Angew. Chem. Int. Ed. Engl. 2015, 54, 5142–5146. [Google Scholar] [CrossRef]
- Schaate, A.; Roy, P.; Godt, A.; Lippke, J.; Waltz, F.; Wiebcke, M.; Behrens, P. Modulated synthesis of Zr-based metal-organic frameworks: From nano to single crystals. Chem. Eur. J. 2011, 17, 6643–6651. [Google Scholar] [CrossRef]
- Chen, X.; Li, Y.; Fu, Q.; Qin, H.; Lv, J.; Yang, K.; Zhang, Q.; Zhang, H.; Wang, M. An efficient modulated synthesis of zirconium metal-organic framework UiO-66. RSC Adv. 2022, 12, 6083–6092. [Google Scholar] [CrossRef]
- Pander, M.; Żelichowska, A.; Bury, W. Probing mesoporous Zr-MOF as drug delivery system for carboxylate functionalized molecules. Polyhedron 2018, 156, 131–137. [Google Scholar] [CrossRef]
- Sarker, M.; Jhung, S.H. Zr-MOF with free carboxylic acid for storage and controlled release of caffeine. J. Mol. Liq. 2019, 296, 112060. [Google Scholar] [CrossRef]
- El-Mehalmey, W.A.; Latif, N.; Ibrahim, A.H.; Haikal, R.R.; Mierzejewska, P.; Smolenski, R.T.; Yacoub, M.H.; Alkordi, M.H. Nine days extended release of adenosine from biocompatible MOFs under biologically relevant conditions. Biomater. Sci. 2022, 10, 1342–1351. [Google Scholar] [CrossRef]
- Yang, J.; Wang, H.; Liu, J.; Ding, M.; Xie, X.; Yang, X.; Peng, Y.; Zhou, S.; Ouyang, R.; Miao, Y. Recent advances in nanosized metal organic frameworks for drug delivery and tumor therapy. RSC Adv. 2021, 11, 3241–3263. [Google Scholar] [CrossRef]
- Parsaei, M.; Akhbari, K. MOF-801 as a nanoporous water-based carrier system for in situ encapsulation and sustained release of 5-FU for effective cancer therapy. Inorg. Chem. 2022, 61, 5912–5925. [Google Scholar] [CrossRef]
- Ding, Q.J.; Xu, Z.J.; Zhou, L.Y.; Rao, C.Y.; Li, W.M.; Muddassir, M.; Sakiyama, H.; Ouyang, B.L.Q.; Liu, J.Q. A multimodal metal-organic framework based on unsaturated metal site for enhancing antitumor cytotoxicity through chemo-photodynamictherapy. J. Colloid. Interf. Sci. 2022, 621, 180–194. [Google Scholar] [CrossRef]
- Lázaro, I.A.; Wells, C.J.R.; Forgan, R.S. Multivariate modulation of the Zr MOF UiO-66 for defect-controlled combination anticancer drug delivery. Angew. Chem. Int. Ed. 2020, 59, 5211–5217. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yan, J.; Wen, N.; Xiong, H.; Cai, S.; He, Q.; Hu, Y.; Peng, D.; Liu, Z.; Liu, Y. Metal-organic frameworks for stimuli-responsive drug delivery. Biomaterials 2020, 230, 119619. [Google Scholar] [CrossRef] [PubMed]
- Jarai, B.M.; Stillman, Z.; Attia, L.; Decker, G.E.; Bloch, E.D.; Fromen, C.A. Evaluating UiO-66 metal-organic framework nanoparticles as acid-sensitive carriers for pulmonary drug delivery applications. ACS Appl. Mater. Interfaces 2020, 12, 38989–39004. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Jiang, L.; Yang, S.; Li, Z.; Soh, W.M.W.; Zheng, L.; Loh, X.J.; Wu, Y.L. Light-induced redox-responsive smart drug delivery system by using selenium-containing polymer@MOF shell/core nanocomposite. Adv. Healthc. Mater. 2019, 8, 1900406. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Liu, X.; Tan, L.; Cui, Z.; Yang, X.; Yeung, K.W.K.; Pan, H.; Wu, S. Porous iron-carboxylate metal-organic framework: A novel bioplatform with sustained antibacterial efficacy and nontoxicity. ACS Appl. Mater. Interfaces 2017, 9, 19248–19257. [Google Scholar] [CrossRef]
- Liu, X.; Liang, T.; Zhang, R.; Ding, Q.; Wu, S.; Li, C.; Lin, Y.; Ye, Y.; Zhong, Z.; Zhou, M. Iron-based metal-organic frameworks in drug delivery and biomedicine. ACS Appl. Mater. Interfaces 2021, 13, 9643–9655. [Google Scholar] [CrossRef]
- Hu, J.; Chen, Y.; Zhang, H.; Chen, Z. Controlled syntheses of Mg-MOF-74 nanorods for drug delivery. J. Solid State Chem. 2021, 294, 121853. [Google Scholar] [CrossRef]
- Bernini, M.C.; Fairen-Jimenez, D.; Pasinetti, M.; Ramirez-Pastor, A.J.; Snurr, R.Q. Screening of bio-compatible metal-organic frameworks as potential drug carriers using Monte Carlo simulations. J. Mater. Chem. B 2014, 2, 766–774. [Google Scholar] [CrossRef]
- Ye, G.; Chen, C.; Lin, J.; Peng, X.; Kumar, A.; Liu, D.; Liu, J. Alkali/alkaline earth-based metal-organic frameworks for biomedical applications. Dalton Trans. 2021, 50, 17438–17454. [Google Scholar] [CrossRef]
- Alavijeh, R.; Akhbari, K.; Bernini, M.C.; Blanco, A.A.G.; White, J.M. Design of calcium-based metal-organic frameworks by the solvent effect and computational investigation of their potential as drug carriers. Cryst. Growth Des. 2022, 22, 3154–3162. [Google Scholar] [CrossRef]
- Pinna, A.; Ricco’, R.; Migheli, R.; Rocchitta, G.; Serra, P.A.; Falcaro, P.; Malfatti, L.; Innocenzi, P. A MOF-based carrier for in situ dopamine delivery. RSC Adv. 2018, 8, 25664–25672. [Google Scholar] [CrossRef]
- Yang, Y.; Xia, F.; Yang, Y.; Gong, B.; Xie, A.; Shen, Y.; Zhu, M. Litchi-like Fe3O4@Fe-MOF capped with HAp gatekeepers for pH-triggered drug release and anticancer effect. J. Mater. Chem. B 2017, 5, 8600–8606. [Google Scholar] [CrossRef]
- Wang, S.; Wu, H.; Sun, K.; Hu, J.; Chen, F.; Liu, W.; Chen, J.; Sun, B.; Hossain, A.M.S. A novel pH-responsive Fe-MOF system for enhanced cancer treatment mediated by the Fenton reaction. New J. Chem. 2021, 45, 3271–3279. [Google Scholar] [CrossRef]
- Sirajunnisa, P.; George, L.H.; Manoj, N.; Prathapan, S.; Sailaja, G.S. Lawsone derived Zn(II) and Fe(III) metal organic frameworks with pH dependent emission for controlled drug delivery. New J. Chem. 2021, 45, 14589–14597. [Google Scholar] [CrossRef]
- Gao, H.; Zhang, Y.; Chi, B.; Lin, C.; Tian, F.; Xu, M.; Wang, Y.; Xu, Z.; Li, L.; Wang, J. Synthesis of ‘dual-key-and-lock’ drug carriers for imaging and improved drug release. Nanotechnology 2020, 31, 445102. [Google Scholar] [CrossRef]
- Fang, G.; Yang, X.; Chen, S.; Wang, Q.; Zhang, A.; Tang, B. Cyclodextrin-based host-guest supramolecular hydrogels for local drug delivery. Coordin. Chem. Rev. 2022, 454, 214352. [Google Scholar] [CrossRef]
- Asim, M.H.; Ijaz, M.; Rösch, A.C.; Bernkop-Schnürch, A. Thiolated cyclodextrins: New perspectives for old excipients. Coordin. Chem. Rev. 2020, 420, 213433. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, A.; Zhu, L.; Yang, X.; Fang, G.; Tang, B. Cyclodextrin-based ocular drug delivery systems: A comprehensive review. Coordin. Chem. Rev. 2023, 476, 214919. [Google Scholar] [CrossRef]
- Bakshi, P.R.; Londhe, V.Y. Widespread applications of host-guest interactive cyclodextrin functionalized polymer nanocomposites: Its meta-analysis and review. Carbohyd. Polym. 2020, 242, 116430. [Google Scholar] [CrossRef]
- Kritskiy, I.; Volkova, T.; Surov, A.; Terekhova, I. γ-Cyclodextrin-metal organic frameworks as efficient microcontainers for encapsulation of leflunomide and acceleration of its transformation into teriflunomide. Carbohyd. Polym. 2019, 216, 224–230. [Google Scholar] [CrossRef]
- Qiu, C.; McClements, D.J.; Jin, Z.; Wang, C.; Qin, Y.; Xu, X.; Wang, J. Development of nanoscale bioactive delivery systems using sonication: Glycyrrhizic acid-loaded cyclodextrin metal-organic frameworks. J. Colloid Interf. Sci. 2019, 553, 549–556. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Zhang, W.; Guo, T.; Zhang, G.; Qin, W.; Zhang, L.; Wang, C.; Zhu, W.; Yang, M.; Hu, X.; et al. Drug nanoclusters formed in confined nano-cages of CD-MOF: Dramatic enhancement of solubility and bioavailability of azilsartan. Acta Pharm. Sin. B 2019, 9, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Kritskiy, I.; Volkova, T.; Sapozhnikova, T.; Mazur, A.; Tolstoy, P.; Terekhova, I. Methotrexate-loaded metal-organic frameworks on the basis of γ-cyclodextrin: Design, characterization, in vitro and in vivo investigation. Mater. Sci. Eng. C 2020, 111, 110774. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Tai, K.; Ma, P.; Su, J.; Dong, W.; Gao, Y.; Mao, L.; Liu, J.; Yuan, F. Novel γ-cyclodextrin-metal-organic frameworks for encapsulation of curcumin with improved loading capacity, physicochemical stability and controlled release properties. Food Chem. 2021, 347, 128978. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Chen, C.; Wei, Y.; Tan, M.; Zhai, S.; Zhao, J.; Wang, L.; Dai, T. Cyclodextrin metal-organic framework as vaccine adjuvants enhances immune responses. Drug Deliv. 2021, 28, 2594–2602. [Google Scholar] [CrossRef]
- Li, Y.; Huang, H.; Ding, C.; Zhou, X.; Li, H. β-Cyclodextrin-based metal-organic framework as a carrier for zero-order drug delivery. Mater. Lett. 2021, 300, 129766. [Google Scholar] [CrossRef]
- Wang, S.; Yang, X.; Lu, W.; Jiang, N.; Zhang, G.; Cheng, Z.; Liu, W. Spray drying encapsulation of CD-MOF nanocrystals into Eudragit® RS microspheres for sustained drug delivery. J. Drug Deliv. Sci. Tec. 2021, 64, 102593. [Google Scholar] [CrossRef]
- Li, Z.; Yang, G.; Wang, R.; Wang, Y.; Wang, J.; Yang, M.; Gong, C.; Yuan, Y. γ-Cyclodextrin metal-organic framework as a carrier to deliver triptolide for the treatment of hepatocellular carcinoma. Drug Deliv. Transl. Res. 2022, 12, 1096–1104. [Google Scholar] [CrossRef]
- Li, H.; Lv, N.; Li, X.; Liu, B.; Feng, J.; Ren, X.; Guo, T.; Chen, D.; Stoddart, J.F.; Gref, R.; et al. Composite CD-MOF nanocrystals-containing microspheres for sustained drug delivery. Nanoscale 2017, 9, 7454–7463. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Hu, Y.; Kang, M.; Ding, H.; Gong, Y.; Yin, X.; Sun, R.; Qin, Y.; Wei, Y.; Huang, D. Gelatin-glucosamine hydrochloride/crosslinked-cyclodextrin metal-organic frameworks@IBU composite hydrogel long-term sustained drug delivery system for osteoarthritis treatment. Biomed. Mater. 2022, 17, 035003. [Google Scholar] [CrossRef]
- Liu, W.; Zhong, Y.; Wang, X.; Zhuang, C.; Chen, J.; Liu, D.; Xiao, W.; Pan, Y.; Huang, J.; Liu, J. A porous Cu(II)-based metal-organic framework carrier for pH-controlled anticancer drug delivery. Inorg. Chem. Commun. 2020, 111, 107675. [Google Scholar] [CrossRef]
- Nabipour, H.; Hu, Y. Development of fully bio-based pectin/curcumin@bio-MOF-11 for colon specific drug delivery. Chem. Pap. 2022, 76, 2969–2979. [Google Scholar] [CrossRef]
- Raju, P.; Balakrishnan, K.; Mishra, M.; Ramasamy, T.; Natarajan, S. Fabrication of pH responsive FU@Eu-MOF nanoscale metal organic frameworks for lung cancer therapy. J. Drug Deliv. Sci. Technol. 2022, 70, 103223. [Google Scholar] [CrossRef]
- Souza, B.E.; Donà, L.; Titov, K.; Bruzzese, P.; Zeng, Z.; Zhang, Y.; Babal, A.S.; Möslein, A.F.; Frogley, M.D.; Wolna, M.; et al. Elucidating the drug release from metal-organic framework nanocomposites via in situ synchrotron microspectroscopy and theoretical modeling. ACS Appl. Mater. Interfaces 2020, 12, 5147–5156. [Google Scholar] [CrossRef]
- Ma, X.; Lepoitevin, M.; Serre, C. Metal–organic frameworks towards bio-medical applications. Mater. Chem. Front. 2021, 5, 5573–5594. [Google Scholar] [CrossRef]
- De, D.; Sahoo, P. The impact of MOFs in pH-dependent drug delivery systems: Progress in the last decade. Dalton Trans. 2022, 51, 9950–9965. [Google Scholar] [CrossRef]
- Xiao, Y.; Liu, D.; Liu, C.; Wang, Y.; Wang, C. α-lipoic acid (α-lip) modification on surface of nano-scaled zeolitic imidazole Framework-8 for enhanced drug delivery. J. Solid State Chem. 2020, 292, 121685. [Google Scholar] [CrossRef]
- Cai, M.; Qin, L.; Pang, L.; Ma, B.; Bai, J.; Liu, J.; Dong, X.; Yin, X.; Ni, J. Amino-functionalized Zn metal organic frameworks as antitumor drug curcumin carriers. New J. Chem. 2020, 44, 17693–17704. [Google Scholar] [CrossRef]
- Zhao, H.; Zhao, Y.; Liu, D. pH and H2S dual-responsive magnetic metal-organic frameworks for controlling the release of 5-fluorouracil. ACS Appl. Bio Mater. 2021, 4, 7103–7110. [Google Scholar] [CrossRef]
- Alves, R.; Schulte, Z.M.; Luiz, M.T.; da Silva, P.B.; Frem, R.C.G.; Rosi, N.; Chorilli, M. Breast cancer targeting of a drug delivery system through postsynthetic modification of curcumin@N3-bio-MOF-100 via click chemistry. Inorg. Chem. 2021, 60, 11739–11744. [Google Scholar] [CrossRef]
- Lawson, S.; Newport, K.; Pederniera, N.; Rownaghi, A.A.; Rezaei, F. Curcumin delivery on metal-organic frameworks: The effect of the metal center on pharmacokinetics within the M-MOF-74 family. ACS Appl. Bio Mater. 2021, 4, 3423–3432. [Google Scholar] [CrossRef] [PubMed]
- Arabbaghi, E.K.; Mokhtari, J.; Naimi-Jamal, M.R.; Khosravi, A. Zn-MOF: An efficient drug delivery platform for the encapsulation and releasing of Imatinib Mesylate. J. Porous Mat. 2021, 28, 641–649. [Google Scholar] [CrossRef]
- Cui, R.; Sun, W.; Liu, M.; Shi, J.; Liu, Z. Near-infrared emissive lanthanide metal-organic frameworks for targeted biological imaging and pH-controlled chemotherapy. ACS Appl. Mater. Interfaces 2021, 13, 59164–59173. [Google Scholar] [CrossRef] [PubMed]
- Ali, R.S.; Meng, H.; Li, Z. Zinc-based metal-organic frameworks in drug delivery, cell imaging, and sensing. Molecules 2022, 27, 100. [Google Scholar]
- Gwon, K.; Han, I.; Lee, S.; Kim, Y.; Lee, D.N. Novel metal-organic framework-based photocrosslinked hydrogel system for efficient antibacterial applications. ACS Appl. Mater. Interfaces 2020, 12, 20234–20242. [Google Scholar] [CrossRef]
- ParinazNezhad-Mokhtari, P.; Arsalani, N.; Javanbakht, S.; Shaabani, A. Development of gelatin microsphere encapsulated Cu-based metal-organic framework nanohybrid for the methotrexate delivery. J. Drug Deliv. Sci. Tec. 2019, 50, 174–180. [Google Scholar] [CrossRef]
- Orellana-Tavra, C.; Köppen, M.; Li, A.; Stock, N.; Fairen-Jimenez, D. Biocompatible, crystalline, and amorphous bismuth-based metal-organic frameworks for drug delivery. ACS Appl. Mater. Interfaces 2020, 12, 5633–5641. [Google Scholar] [CrossRef]
- Qin, L.; Liang, F.L.; Li, Y.; Wu, J.N.; Guan, S.Y.; Wu, M.Y.; Xie, S.L.; Luo, M.S.; Ma, D.Y. A 2D porous zinc-organic framework platform for loading of 5-fluorouracil. Inorganics 2022, 10, 202. [Google Scholar] [CrossRef]
- Chen, X.; Tong, R.; Shi, Z.; Yang, B.; Liu, H.; Ding, S.; Wang, X.; Lei, Q.; Wu, J.; Fang, W. MOF nanoparticles with encapsulated autophagy inhibitor in controlled drug delivery system for antitumor. ACS Appl. Mater. Interfaces 2018, 10, 2328–2337. [Google Scholar] [CrossRef]
- Chen, H.; Yang, J.; Sun, L.; Zhang, H.; Guo, Y.; Qu, J.; Jiang, W.; Chen, W.; Ji, J.; Yang, Y.W.; et al. Synergistic chemotherapy and photodynamic therapy of endophthalmitis mediated by zeolitic imidazolate framework-based drug delivery systems. Small 2019, 15, 1903880. [Google Scholar] [CrossRef]
- Shi, Z.; Chen, X.; Zhang, L.; Ding, S.; Wang, X.; Lei, Q.; Fang, W. FA-PEG decorated MOF nanoparticles as a targeted drug delivery system for controlled release of an autophagy inhibitor. Biomater. Sci. 2018, 6, 2582–2590. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.; Liang, X.; Liang, J.; Zhang, C.; Yang, J.; Wang, C.; Kong, D.; Sun, H. ROS-responsive capsules engineered from green tea polyphenol–metal networks for anticancer drug delivery. J. Mater. Chem. B 2018, 6, 1000–1010. [Google Scholar] [CrossRef]
- Lei, Z.; Tang, Q.; Ju, Y.; Lin, Y.; Bai, X.; Luo, H.; Tong, Z. Block copolymer@ZIF-8 nanocomposites as a pH-responsive multi-steps release system for controlled drug delivery. J. Biomat. Sci.-Polym. E. 2020, 31, 695–711. [Google Scholar] [CrossRef]
- Ettlinger, R.; Moreno, N.; Volkmer, D.; Kerl, K.; Bunzen, H. Zeolitic imidazolate framework-8 as pH-sensitive anocarrier for “arsenic trioxide” drug delivery. Chem. Eur. J. 2019, 25, 13189–13196. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.N.; Wang, C.J.; Xiao, Y.M.; Liu, C.; Luo, D.; Zhu, Z.X.; Chen, S.; Wang, Y.Y. Synthesis of ZIF-8-based multifunctional shell and sustained release of drugs. Inorg. Chem. Commun. 2020, 114, 107773. [Google Scholar] [CrossRef]
- Soltani, B.; Nabipour, H.; Nasab, N.A. Efficient storage of gentamicin in nanoscale zeolitic imidazolate framework-8 nanocarrier for pH-responsive drug release. J. Inorg. Organomet. P 2018, 28, 1090–1097. [Google Scholar] [CrossRef]
- Jia, X.; Yang, Z.; Wang, Y.; Chen, Y.; Yuan, H.; Chen, H.; Xu, X.; Gao, X.; Liang, Z.; Sun, Y.; et al. Hollow mesoporous silica@metal–organic framework and applications for pH-responsive drug delivery. ChemMedChem 2018, 13, 400–405. [Google Scholar] [CrossRef]
- Chen, L.; Liu, Z.; Zhao, X.; Liu, L.; Xin, X.; Liang, H. Self-assembled pH-responsive metal-organic frameworks for enhancing the encapsulation and anti-oxidation and melanogenesis inhibition activities of glabridin. Molecules 2022, 27, 3908. [Google Scholar] [CrossRef]
- Ferraz, L.R.M.; Tabosa, A.É.G.A.; Nascimento, D.D.S.S.; Ferreira, A.S.; Sales, V.A.W.; Silva, J.Y.R.; Júnior, S.A.; Rolim, L.A.; Pereira, J.J.S.; Rolim-Neto, P.J. ZIF-8 as a promising drug delivery system for benznidazole: Development, characterization, in vitro dialysis release and cytotoxicity. Sci. Rep. 2020, 10, 16815. [Google Scholar] [CrossRef]
- Sethuraman, V.; Kishore, N.; Saliq, A.M.; Loganathan, G.; Kandasamy, R. pH responsive metformin loaded zeolitic imidazolate framework (ZIF-8) for the treatment of lung cancer. Mater. Technol. 2022, 37, 926–934. [Google Scholar] [CrossRef]
- Adhikari, C.; Das, A.; Chakraborty, A. Zeolitic imidazole framework (ZIF) nanospheres for easy encapsulation and controlled release of an anticancer drug doxorubicin under different external stimuli: A way toward smart drug delivery system. Mol. Pharmaceut. 2015, 12, 3158–3166. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Wu, J.; Qiao, X.; Ha, Y.; Li, Y.; Peng, C.; Wu, R. In situ biomimetic mineralization on ZIF-8 for smart drug delivery. ACS Biomater. Sci. Eng. 2020, 6, 4595–4603. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, Q.; Deng, M.; Chen, K.; Wang, J. Self-assembled metal-organic frameworks nanocrystals synthesis and application for plumbagin drug delivery in acute lung injury therapy. Chin. Chem. Lett. 2022, 33, 324–327. [Google Scholar] [CrossRef]
Entry | MOF | Metal | Organic Ligand | Drug | Ref. |
---|---|---|---|---|---|
1 | Zr-MOFs (L1–6) | Zr | 2,6-napthalenedicarboxylate, 4,4′-biphenyldicarboxylate, 1,4-benzenedicarboxylate and its derivatives (-Br, -NO2, and -NH2) | 5-fluorouracil | [68] |
2 | UiO-66-NH2 | Zr | 2-aminoterephthalic acid | ibuprofen | [69] |
3 | UiO-67-NH2 | Zr | 2-amino-4,4′-biphenyl dicarboxylic acid | camptothecin | [70] |
4 | NH2-UiO-66 | Zr | 2-aminoterephthalic acid | doxorubicin | [71] |
5 | MOF-808 | Zr | 1,3,5-benzenetricarboxylate | floxuridine and carboplatin | [72] |
6 | UiO-66 | Zr | 1,4-benzenedicarboxylate | camptothecin and doxorubicin | [73] |
7 | UiO-66-NH2 | Zr | 2-aminoterephthalic acid | methotrexate | [74] |
8 | MBM-12 h | Fe | 1,3,5-benzenetricarboxylate | 5-fluorouracil | [75] |
9 | MIL-88A(Fe) | Fe | 1,4-benzendicarboxylate | oridonin | [76] |
10 | Fe-MIL-88B | Fe | 2-aminoterephthalic acid | alendronate | [77] |
11 | Fe-MOF-5-NH2 | Fe | 2-aminoterephthalic acid | 5-fluorouracil | [78] |
12 | FeCl3-MOF | Fe | 5,10,15,20-tetrakis(4-pyridyl)-21H,23H-porphine | doxorubicin | [79] |
13 | CD-MOFs | K | γ-CD | ketoprofen | [80] |
14 | γ-CD-MOF | K | γ-CD | doxorubicin | [81] |
15 | γ-CD-MOF | K | γ-CD | dexamethasone | [82] |
16 | γ-CD-MOF | K | γ-CD | doxorubicin | [83] |
17 | MOF | Zn | 1,4-benzenedicarboxylate | curcumin, sulindac, and triamterene | [84] |
18 | ZIF-L | Zn | 2-methylimidazole | doxorubicin | [85] |
19 | Cu-MOF | Cu | 3-amino-1,2,4-triazole | doxorubicin | [86] |
20 | ZIF-8 | Zn | 2-methylimidazole | doxorubicin | [87] |
21 | ZIF-8 | Zn | 2-methylimidazole | doxorubicin | [88] |
22 | ZIF-8 | Zn | 2-methylimidazole | curcumin | [89] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zong, Z.; Tian, G.; Wang, J.; Fan, C.; Yang, F.; Guo, F. Recent Advances in Metal–Organic-Framework-Based Nanocarriers for Controllable Drug Delivery and Release. Pharmaceutics 2022, 14, 2790. https://doi.org/10.3390/pharmaceutics14122790
Zong Z, Tian G, Wang J, Fan C, Yang F, Guo F. Recent Advances in Metal–Organic-Framework-Based Nanocarriers for Controllable Drug Delivery and Release. Pharmaceutics. 2022; 14(12):2790. https://doi.org/10.3390/pharmaceutics14122790
Chicago/Turabian StyleZong, Ziao, Guanghui Tian, Junli Wang, Chuanbin Fan, Fenglian Yang, and Feng Guo. 2022. "Recent Advances in Metal–Organic-Framework-Based Nanocarriers for Controllable Drug Delivery and Release" Pharmaceutics 14, no. 12: 2790. https://doi.org/10.3390/pharmaceutics14122790
APA StyleZong, Z., Tian, G., Wang, J., Fan, C., Yang, F., & Guo, F. (2022). Recent Advances in Metal–Organic-Framework-Based Nanocarriers for Controllable Drug Delivery and Release. Pharmaceutics, 14(12), 2790. https://doi.org/10.3390/pharmaceutics14122790