Enhanced Micro-Channeling System via Dissolving Microneedle to Improve Transdermal Serum Delivery for Various Clinical Skincare Treatments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of DMCS
2.2. Mechanical Strength Evaluation of DMNs
2.3. In Vitro Skin Insertion Test
2.4. Assessment of Transdermal Delivery through DMCS
2.5. CLSM for Non-Invasive Visualization of Transdermal Delivery
2.6. Randomized Clinical Trial of Serum-Only Application and Combinatorial Application
2.7. Skin Hydration Evaluation
2.8. Evaluation of the Depigmenting Effect on Hyperpigmented Spots
2.9. Evaluation of Skin Wrinkles through Three-Dimensional Visualization
2.10. Skin Elasticity Assessment
2.11. Dermal Density Assessment
2.12. Skin Pore Number and Area Measurement
2.13. Evaluation of Skin Soothing Effect after External Stimulation
2.14. Skin Irritation and Sensitization Assessment
2.15. Statistical Analysis
3. Results and Discussion
3.1. Concept of Serum Infusion after DMCS Application
3.2. Morphology, Skin Penetration, and Serum-Induced Dissolution Analysis of DMNs on DMCS
3.3. Evaluation of Transdermal Serum Delivery Aided by DMCS
3.4. Clinical Assessment: Skin Hydration Evaluation
3.5. Clinical Assessment: Evaluation of the Depigmenting Effect on Hyperpigmented Spots
3.6. Clinical Assessment: Evaluation of Skin Wrinkles through Three-Dimensional Visualization
3.7. Clinical Assessment: Dermal Density Assessment
3.8. Clinical Assessment: Skin Elasticity Assessment
3.9. Clinical Assessment: Skin Pore Number and Area Measurement
3.10. Clinical Assessment: Evaluation of Skin Soothing Effect after External Stimulation
3.11. Clinical Assessment: Skin Irritation and Sensitization Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Naik, A.; Kalia, Y.N.; Guy, R.H. Transdermal drug delivery: Overcoming the skin’s barrier function. Pharm. Sci. Technol. Today 2000, 3, 318–326. [Google Scholar] [CrossRef] [PubMed]
- Sastry, S.V.; Nyshadham, J.R.; Fix, J.A. Recent technological advances in oral drug delivery—A review. Pharm. Sci. Technol. Today 2000, 3, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Thomas, B.J.; Finnin, B.C. The transdermal revolution. Drug Discov. Today 2004, 9, 697–703. [Google Scholar] [CrossRef]
- Forster, M.; Bolzinger, M.A.; Fessi, H.; Briancon, S. Topical delivery of cosmetics and drugs. Molecular aspects of percutaneous absorption and delivery. Eur. J. Dermatol. 2009, 19, 309–323. [Google Scholar] [CrossRef] [PubMed]
- Spada, F.; Barnes, T.M.; Greive, K.A. Skin hydration is significantly increased by a cream formulated to mimic the skin’s own natural moisturizing systems. Clin. Cosmet. Investig. Dermatol. 2018, 11, 491–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abella, M.L. Evaluation of anti-wrinkle efficacy of adenosine-containing products using the FOITS technique. Int. J. Cosmet. Sci. 2006, 28, 447–451. [Google Scholar] [CrossRef]
- AlGhamdi, K.M.; Kumar, A. Depigmentation therapies for normal skin in vitiligo universalis. J. Eur. Acad. Dermatol. Venereol. 2011, 25, 749–757. [Google Scholar] [CrossRef]
- Moser, K.; Kriwet, K.; Naik, A.; Kalia, Y.N.; Guy, R.H. Passive skin penetration enhancement and its quantification in vitro. Eur. J. Pharm. Biopharm. 2001, 52, 103–112. [Google Scholar] [CrossRef]
- Ciurlea, S.A.; Dehelean, C.A.; Ionescu, D.; Berko, S.; Csanyi, E.; Hadaruga, D.I.; Amiji, M.M. A comparative study regarding melanoma activity of betulinic acid on topical ointment vs. systemic nanoemulsion delivery systems. J. Agroaliment. Process Technol. 2010, 16, 420–426. [Google Scholar]
- Ruzicka, T.; Bieber, T.; Schopf, E.; Rubins, A.; Dobozy, A.; Bos, J.D.; Jablonska, S.; Ahmed, I.; Thestrup-Pedersen, K.; Daniel, F.; et al. A short-term trial of tacrolimus ointment for atopic dermatitis. European Tacrolimus Multicenter Atopic Dermatitis Study Group. N. Engl. J. Med. 1997, 337, 816–821. [Google Scholar] [CrossRef] [Green Version]
- Lebwohl, M.; Yoles, A.; Lombardi, K.; Lou, W. Calcipotriene ointment and halobetasol ointment in the long-term treatment of psoriasis: Effects on the duration of improvement. J. Am. Acad. Dermatol. 1998, 39, 447–450. [Google Scholar] [CrossRef] [PubMed]
- Bos, J.D.; Meinardi, M.M. The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp. Dermatol. 2000, 9, 165–169. [Google Scholar] [CrossRef] [PubMed]
- Kalluri, H.; Banga, A.K. Formation and closure of microchannels in skin following microporation. Pharm. Res. 2011, 28, 82–94. [Google Scholar] [CrossRef]
- Prausnitz, M.R. Microneedles for transdermal drug delivery. Adv. Drug Deliv. Rev. 2004, 56, 581–587. [Google Scholar] [CrossRef]
- Dsouza, L.; Ghate, V.M.; Lewis, S.A. Derma rollers in therapy: The transition from cosmetics to transdermal drug delivery. Biomed. Microdevices 2020, 22, 77. [Google Scholar] [CrossRef]
- Evens, T.; Malek, O.; Castagne, S.; Seveno, D.; Van Bael, A. A novel method for producing solid polymer microneedles using laser ablated moulds in an injection moulding process. Manuf. Lett. 2020, 24, 29–32. [Google Scholar] [CrossRef]
- El-Domyati, M.; Barakat, M.; Awad, S.; Medhat, W.; El-Fakahany, H.; Farag, H. Microneedling Therapy for Atrophic Acne Scars: An Objective Evaluation. J. Clin. Aesthet. Dermatol. 2015, 8, 36–42. [Google Scholar] [PubMed]
- Shukla, S.K.; Gold, M.H. Treatment of Acne and Acne Scars with Microneedling. In Microneedling: Global Perspectives in Aesthetic Medicine; Houshmand, E.B., Gold, M.H., Eds.; Wiley: Hoboken, NJ, USA, 2021; pp. 81–97. [Google Scholar] [CrossRef]
- Garland, M.J.; Migalska, K.; Mahmood, T.M.; Singh, T.R.; Woolfson, A.D.; Donnelly, R.F. Microneedle arrays as medical devices for enhanced transdermal drug delivery. Expert Rev. Med. Devices 2011, 8, 459–482. [Google Scholar] [CrossRef]
- Memon, S.; Pathan, D.N.; Ziyaurrrahman, A.R.; Bagwan, A.; Sayed, B. Microneedle as a novel drug delivery system: A review. Int. Res. J. Pharm. 2011, 2, 72–77. [Google Scholar]
- Hegde, N.R.; Kaveri, S.V.; Bayry, J. Recent advances in the administration of vaccines for infectious diseases: Microneedles as painless delivery devices for mass vaccination. Drug Discov. Today 2011, 16, 1061–1068. [Google Scholar] [CrossRef]
- Chu, L.Y.; Choi, S.O.; Prausnitz, M.R. Fabrication of dissolving polymer microneedles for controlled drug encapsulation and delivery: Bubble and pedestal microneedle designs. J. Pharm. Sci. 2010, 99, 4228–4238. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Allen, M.G.; Prausnitz, M.R. Biodegradable polymer microneedles: Fabrication, mechanics and transdermal drug delivery. J. Control. Release 2005, 104, 51–66. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Kim, K.S.; Chung, M.; Sung, J.H.; Kim, B. Fabrication and characterization of dissolving microneedle arrays for improving skin permeability of cosmetic ingredients. J. Ind. Eng. Chem. 2016, 39, 121–126. [Google Scholar] [CrossRef]
- Kang, G.; Tu, T.N.T.; Kim, S.; Yang, H.; Jang, M.; Jo, D.; Ryu, J.; Baek, J.; Jung, H. Adenosine-loaded dissolving microneedle patches to improve skin wrinkles, dermal density, elasticity and hydration. Int. J. Cosmet. Sci. 2018, 40, 199–206. [Google Scholar] [CrossRef]
- Lee, J.W.; Choi, S.O.; Felner, E.I.; Prausnitz, M.R. Dissolving microneedle patch for transdermal delivery of human growth hormone. Small 2011, 7, 531–539. [Google Scholar] [CrossRef] [Green Version]
- Ohn, J.; Jang, M.; Kang, B.M.; Yang, H.; Hong, J.T.; Kim, K.H.; Kwon, O.; Jung, H. Dissolving Candlelit Microneedle for Chronic Inflammatory Skin Diseases. Adv. Sci. 2021, 8, 2004873. [Google Scholar] [CrossRef]
- Englert, C.; Brendel, J.C.; Majdanski, T.C.; Yildirim, T.; Schubert, S.; Gottschaldt, M.; Schubert, U.S. Pharmapolymers in the 21st century: Synthetic polymers in drug delivery applications. Prog. Polym. Sci. 2018, 87, 107–164. [Google Scholar] [CrossRef]
- He, F.; Zhao, D.; Paul, C. Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones. Water Res. 2010, 44, 2360–2370. [Google Scholar] [CrossRef]
- Zvezdin, V.; Peno-Mazzarino, L.; Radionov, N.; Kasatkina, T.; Kasatkin, I. Microneedle patch based on dissolving, detachable microneedle technology for improved skin quality—Part 1: Ex vivo safety evaluation. Int. J. Cosmet. Sci. 2020, 42, 369–376. [Google Scholar] [CrossRef]
- Kim, M.; Yang, H.; Kim, S.; Lee, C.; Jung, H. The Troy Microneedle: A Rapidly Separating, Dissolving Microneedle Formed by Cyclic Contact and Drying on the Pillar (CCDP). PLoS ONE 2015, 10, e0136513. [Google Scholar] [CrossRef]
- Leone, M.; Monkare, J.; Bouwstra, J.A.; Kersten, G. Dissolving Microneedle Patches for Dermal Vaccination. Pharm. Res. 2017, 34, 2223–2240. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Kim, S.; Kang, G.; Lahiji, S.F.; Jang, M.; Kim, Y.M.; Kim, J.M.; Cho, S.N.; Jung, H. Centrifugal Lithography: Self-Shaping of Polymer Microstructures Encapsulating Biopharmaceutics by Centrifuging Polymer Drops. Adv. Healthc. Mater. 2017, 6, 1700326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.; Dangol, M.; Kang, G.; Lahiji, S.F.; Yang, H.; Jang, M.; Ma, Y.; Li, C.; Lee, S.G.; Kim, C.H.; et al. Enhanced Transdermal Delivery by Combined Application of Dissolving Microneedle Patch on Serum-Treated Skin. Mol. Pharm. 2017, 14, 2024–2031. [Google Scholar] [CrossRef]
- Kang, G.; Kim, S.; Yang, H.; Jang, M.; Chiang, L.; Baek, J.H.; Ryu, J.H.; Choi, G.W.; Jung, H. Combinatorial application of dissolving microneedle patch and cream for improvement of skin wrinkles, dermal density, elasticity, and hydration. J. Cosmet. Dermatol. 2019, 18, 1083–1091. [Google Scholar] [CrossRef]
- Hong, S.; Park, J.; Kim, J.; Park, D.; Kim, S.; Kang, J.; Lee, J.; Hong, W.; Jeon, H.; Lee, H.; et al. Fabrication of cell membrane-adhesive soft polymeric nanovehicles for noninvasive visualization of epidermal-dermal junction-targeted drug delivery. Int. J. Pharm. 2019, 565, 233–241. [Google Scholar] [CrossRef]
- Kim, M.Y.; Lee, H.E.; Im, M.; Lee, Y.; Kim, C.D.; Lee, J.H.; Seo, Y.J. Effect of adenosine on melanogenesis in b16 cells and zebrafish. Ann. Dermatol. 2014, 26, 209–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hakozaki, T.; Minwalla, L.; Zhuang, J.; Chhoa, M.; Matsubara, A.; Miyamoto, K.; Greatens, A.; Hillebrand, G.G.; Bissett, D.L.; Boissy, R.E. The effect of niacinamide on reducing cutaneous pigmentation and suppression of melanosome transfer. Br. J. Dermatol. 2002, 147, 20–31. [Google Scholar] [CrossRef]
- Boo, Y.C. Mechanistic Basis and Clinical Evidence for the Applications of Nicotinamide (Niacinamide) to Control Skin Aging and Pigmentation. Antioxidants 2021, 10, 1315. [Google Scholar] [CrossRef]
- Marucci, G.; Buccioni, M.; Varlaro, V.; Volpini, R.; Amenta, F. The possible role of the nucleoside adenosine in countering skin aging: A review. Biofactors 2022, 48, 1027–1035. [Google Scholar] [CrossRef]
- Gueniche, A.; Philippe, D.; Bastien, P.; Reuteler, G.; Blum, S.; Castiel-Higounenc, I.; Breton, L.; Benyacoub, J. Randomised double-blind placebo-controlled study of the effect of Lactobacillus paracasei NCC 2461 on skin reactivity. Benef. Microbes 2014, 5, 137–145. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sim, J.; Gong, S.; Kang, G.; Jang, M.; Yang, H.; Park, J.; Kim, Y.; Lee, H.; Jung, H.; Kim, Y.; et al. Enhanced Micro-Channeling System via Dissolving Microneedle to Improve Transdermal Serum Delivery for Various Clinical Skincare Treatments. Pharmaceutics 2022, 14, 2804. https://doi.org/10.3390/pharmaceutics14122804
Sim J, Gong S, Kang G, Jang M, Yang H, Park J, Kim Y, Lee H, Jung H, Kim Y, et al. Enhanced Micro-Channeling System via Dissolving Microneedle to Improve Transdermal Serum Delivery for Various Clinical Skincare Treatments. Pharmaceutics. 2022; 14(12):2804. https://doi.org/10.3390/pharmaceutics14122804
Chicago/Turabian StyleSim, Jeeho, SeongDae Gong, Geonwoo Kang, Mingyu Jang, Huisuk Yang, Jaesung Park, Youngchan Kim, Hyunkyu Lee, Hyunji Jung, Youseong Kim, and et al. 2022. "Enhanced Micro-Channeling System via Dissolving Microneedle to Improve Transdermal Serum Delivery for Various Clinical Skincare Treatments" Pharmaceutics 14, no. 12: 2804. https://doi.org/10.3390/pharmaceutics14122804
APA StyleSim, J., Gong, S., Kang, G., Jang, M., Yang, H., Park, J., Kim, Y., Lee, H., Jung, H., Kim, Y., Jeon, C., Ahn, H., Kim, M., Choi, J., Lee, H., & Jung, H. (2022). Enhanced Micro-Channeling System via Dissolving Microneedle to Improve Transdermal Serum Delivery for Various Clinical Skincare Treatments. Pharmaceutics, 14(12), 2804. https://doi.org/10.3390/pharmaceutics14122804