Development and Use of a Residence Time Distribution (RTD) Model Control Strategy for a Continuous Manufacturing Drug Product Pharmaceutical Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Formulation and Process
RTD and Impulse Experiments
2.2. RTD Model Implementation and Optimization
2.2.1. Model Mathematical Structure
2.2.2. Mathematical Model Optimization
2.3. Experimental Design and Optimization
2.3.1. Experimental Model Optimization
2.4. Analytical Methods
3. Results
3.1. Calculated Residence Time Distribution (RTD) Parameter Analysis
3.2. Measured Residence Time Distribution (RTD) Parameter Analysis
3.3. Comparison of Calculated and Measured Mean Residence Time (MRT)
4. Discussion
4.1. Optimized RTD Prediction Curves
4.2. Empirical Relationship
4.3. Blending Capability
4.4. Model Validation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tanner, A.H. Continuous Casting: A Revolution in Steel: The Worldwide Success Story of Concast AG, Zurich; Write Stuff Enterprises Incorporated: Fort Lauderdale, FL, USA, 1998. [Google Scholar]
- Perry, R.H.; Green, D.W. Perry’s Chemical Engineers’ Handbook, 8th ed.; McGraw-Hill: New York, NY, USA, 2007. [Google Scholar]
- Hallam, E. Food Technology; Nelson Thornes: Cheltenham, UK, 2004. [Google Scholar]
- Martinetz, M.; Karttunen, A.; Sacher, S.; Wahl, P.; Ketolainen, J.; Khinast, J.; Korhonenbc, O. RTD-based material tracking in a fully-continuous dry granulation tableting line. Int. J. Pharm. 2018, 547, 469–479. [Google Scholar] [CrossRef]
- Byrn, S.; Futran, M.; Thomas, H.; Jayjock, E.; Maron, N.; Meyer, R.F.; Myerson, A.S.; Thien, M.P.; Trout, B.L. Achieving continuous manufacturing for final dosage formation: Challenges and how to meet them. 20–21 May 2014, continuous manufacturing symposium. J. Pharm. Sci. 2015, 104, 792–802. [Google Scholar] [CrossRef] [PubMed]
- Engisch, W.; Muzzio, F. Using residence time distributions (RTDs) to address the traceability of raw materials in continuous pharmaceutical manufacturing. J. Pharm. Innov. 2016, 11, 64–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plumb, K. Continuous processing in the pharmaceutical industry: Changing the mind set. Chem. Eng. Res. Des. 2005, 83, 730–738. [Google Scholar] [CrossRef]
- Srai, J.S.; Badman, C.; Krumme, M.; Futran, M.; Johnston, C. Future supply chains enabled by continuous processing—Opportunities and challenges. 20–21 May 2014, Continuous Manufacturing Symposium. J. Pharm. Sci. 2015, 104, 840–849. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, S. (Ed.) FDA perspective on continuous manufacturing. In Proceedings of the IFPAC Annual Meeting, Baltimore, MD, USA, 22–25 January 2012. [Google Scholar]
- Woodcock, J. (Ed.) Modernizing pharmaceutical manufacturing—Continuous manufacturing as a key enabler. In Proceedings of the International Symposium on Continuous Manufacturing of Pharmaceuticals, Cambridge, MA, USA, 20 May 2014. [Google Scholar]
- Lee, S.L. (Ed.) Current FDA perspective for continuous manufacturing. In Proceedings of the 2nd International Symposium on Continuous Manufacturing of Pharmaceuticals, Cambridge, MA, USA, 26 September 2016. [Google Scholar]
- Almaya, A.; De Belder, L.; Meyer, R.; Nagapudi, K.; Lin, H.-R.H.; Leavesley, I.; Jayanth, J.; Bajwa, G.; DiNunzio, J.; Tantuccio, A.; et al. Control strategies for drug product continuous direct compression—State of control, product collection strategies, and startup/shutdown operations for the production of clinical trial materials and commercial products. J. Pharm. Sci. 2017, 106, 930–943. [Google Scholar] [CrossRef] [PubMed]
- Bekaert, B.; Van Snick, B.; Pandelaere, K.; Dhondt, J.; Di Pretoro, G.; De Beer, T.; Vervaet, C.; Vanhoorne, V. In-depth analysis of the long-term processability of materials during continuous feeding. Int. J. Pharm. 2022, 614, 121454. [Google Scholar] [CrossRef] [PubMed]
- Pauli, V.; Roggo, Y.; Pellegatti, L.; Trung, N.Q.N.; Elbaz, F.; Ensslin, S.; Kleinebudde, P.; Krumme, M. Process analytical technology for continuous manufacturing tableting processing: A case study. J. Pharm. Biomed. Anal. 2019, 162, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Muzzio, F.J.; Ierapetritou, M.G. A review of the Residence Time Distribution (RTD) applications in solid unit operations. Powder Technol. 2012, 228, 416–423. [Google Scholar] [CrossRef]
- Ziegler, G.R.; Aguilar, C.A. Residence time distribution in a co-rotating, twin-screw continuous mixer by the step change method. J. Food Eng. 2003, 59, 161–167. [Google Scholar] [CrossRef]
- Harris, A.; Davidson, J.; Thorpe, R. Particle residence time distributions in circulating fluidised beds. Chem. Eng. Sci. 2003, 58, 2181–2202. [Google Scholar] [CrossRef]
- García-Muñoz, S.; Butterbaugh, A.; Leavesley, I.; Manley, L.F.; Slade, D.; Bermingham, S. A flowsheet model for the development of a continuous process for pharmaceutical tablets: An industrial perspective. AIChE J. 2018, 64, 511–525. [Google Scholar] [CrossRef]
- Escotet-Espinoza, M.S.; Moghtadernejad, S.; Oka, S.; Wang, Z.; Wang, Y.; Roman-Ospino, A.; Schäfer, E.; Cappuyns, P.; van Assche, I.; Futran, M.; et al. Effect of material properties on the residence time distribution (RTD) characterization of powder blending unit operations. Part II of II: Application of models. Powder Technol. 2019, 344, 525–544. [Google Scholar] [CrossRef]
- Van Snick, B.; Holman, J.; Cunningham, C.; Kumar, A.; Vercruysse, J.; De Beer, T.; Remon, J.P.; Vervaet, C. Continuous direct compression as manufacturing platform for sustained release tablets. Int. J. Pharm. 2017, 519, 390–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holman, J.; Tantuccio, A.; Palmer, J.; van Doninck, T.; Meyer, R. A very boring 120 h: 15 million tablets under a continuous state of control. Powder Technol. 2021, 382, 208–231. [Google Scholar] [CrossRef]
- Escotet-Espinoza, M.S.; Moghtadernejad, S.; Oka, S.; Wang, Y.; Roman-Ospino, A.; Schäfer, E.; Cappuyns, P.; van Assche, I.; Futran, M.; Ierapetritou, M.; et al. Effect of tracer material properties on the residence time distribution (RTD) of continuous powder blending operations. Part I of II: Experimental evaluation. Powder Technol. 2019, 342, 744–763. [Google Scholar] [CrossRef]
- Bhaskar, A.; Singh, R. Residence time distribution (RTD)-based control system for continuous pharmaceutical manufacturing process. J. Pharm. Innov. 2019, 14, 316–331. [Google Scholar] [CrossRef]
- Vanarase, A.U.; Muzzio, F.J. Effect of operating conditions and design parameters in a continuous powder mixer. Powder Technol. 2011, 208, 26–36. [Google Scholar] [CrossRef]
- Nauman, E.B. Residence time theory. Ind. Eng. Chem. Res. 2008, 47, 3752–3766. [Google Scholar] [CrossRef]
- Fogler, H.S. Elements of Chemical Reaction Engineering; Prentice Hall: Hoboken, NJ, USA, 2006. [Google Scholar]
- Tian, G.; Lee, S.L.; Yang, X.; Hong, M.S.; Gu, Z.; Li, S.; Fisher, R.; O’Connor, F.T. A dimensionless analysis of residence time distributions for continuous powder mixing. Powder Technol. 2017, 315, 332–338. [Google Scholar] [CrossRef]
- Van Snick, B.; Holman, J.; Vanhoorne, V.; Kumar, A.; De Beer, T.; Remon, J.P.; Vervaeta, C. Development of a continuous direct compression platform for low-dose drug products. Int. J. Pharm. 2017, 529, 329–346. [Google Scholar] [CrossRef] [PubMed]
- Vanarase, A.U.; Osorio, J.G.; Muzzio, F.J. Effects of powder flow properties and shear environment on the performance of continuous mixing of pharmaceutical powders. Powder Technol. 2013, 246, 63–72. [Google Scholar] [CrossRef] [Green Version]
- Portillo, P.M.; Vanarase, A.U.; Ingram, A.; Seville, J.K.; Ierapetritou, M.G.; Muzzio, F.J. Investigation of the effect of impeller rotation rate, powder flow rate, and cohesion on powder flow behavior in a continuous blender using PEPT. Chem. Eng. Sci. 2010, 65, 5658–5668. [Google Scholar] [CrossRef]
- Palmer, J.; Reynolds, G.K.; Tahir, F.; Yadav, I.K.; Meehan, E.; Holman, J.; Bajwad, G. Mapping key process parameters to the performance of a continuous dry powder blender in a continuous direct compression system. Powder Technol. 2020, 362, 659–670. [Google Scholar] [CrossRef]
Mass Flow (kg/h) | Unit | Blade Speed (rpm) | MRT (s) |
---|---|---|---|
15 | Blender 1 | 180 | 362.5 |
315 | 346.4 | ||
450 | 258.8 | ||
Blender 2 | 150 | 179.8 | |
210 | 132.7 | ||
300 | 15.60 | ||
Feed Frame | - | 362.5 | |
25 | Blender 1 | 180 | 185.6 |
315 | 195.7 | ||
450 | 173.7 | ||
Blender 2 | 150 | 198.0 | |
210 | 103.6 | ||
300 | 62.34 | ||
Feed Frame | - | 346.4 | |
50 | Blender 1 | 180 | 135.9 |
315 | 134.8 | ||
450 | 115.1 | ||
Blender 2 | 150 | 152.8 | |
210 | 58.52 | ||
300 | 34.16 | ||
Feed Frame | - | 258.8 | |
90 | Blender 1 | 180 | 45.57 |
315 | 32.07 | ||
450 | 42.73 | ||
Blender 2 | 150 | 14.25 | |
210 | 39.36 | ||
300 | 50.90 | ||
Feed Frame | - | 185.6 |
Mass Flow (kg/h) | Blade Speed (rpm) | MRT (s) | ε (s) |
---|---|---|---|
15 | 180 | 209 | 10.9 |
315 | 198 | 6.10 | |
450 | 91.0 | 4.02 | |
25 | 180 | 106 | 4.25 |
315 | 104 | 2.26 | |
450 | 66.0 | 2.45 | |
50 | 180 | 90.5 | 2.37 |
315 | 74.5 | 1.34 | |
450 | 56.6 | 1.74 | |
90 | 180 | 70.8 | 2.35 |
315 | 57.0 | 1.07 | |
450 | 39.0 | 1.02 |
Mass Flow (kg/h) | Blade Speed (rpm) | MRT (s) | ε (s) |
---|---|---|---|
15 | 210 | 137 | 4.84 |
150 | 224 | 12.6 | |
300 | 85.2 | 3.41 | |
25 | 210 | 94.6 | 2.95 |
150 | 194 | 10.3 | |
300 | 76.7 | 3.16 | |
50 | 210 | 55.4 | 1.67 |
150 | 155 | 6.13 | |
300 | 45.8 | 1.55 | |
90 | 210 | 39.9 | 1.11 |
150 | 99.3 | 4.17 | |
300 | 31.6 | 1.02 |
Mass Flow (kg/h) | MRT (s) | ε (s) |
---|---|---|
15 | 292.5 | 22.9 |
25 | 145.0 | 14.8 |
50 | 82.8 | 7.05 |
90 | 68.5 | 4.29 |
Unit | A (s-kg/h) | B (s-rpm) | C (s-kg-rpm/h) | D (s) | E (s-kg2/h2) |
---|---|---|---|---|---|
Blender 1 | 4.65 × 102 | 3.54 × 103 | 3.49 × 105 | 23.2 | - |
Blender 2 | −2.70 × 102 | 1.48 × 104 | 4.12 × 105 | −34.6 | - |
Feed Frame | - | - | - | 62.1 | 5.19 × 104 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hurley, S.; Tantuccio, A.; Escotet-Espinoza, M.S.; Flamm, M.; Metzger, M. Development and Use of a Residence Time Distribution (RTD) Model Control Strategy for a Continuous Manufacturing Drug Product Pharmaceutical Process. Pharmaceutics 2022, 14, 355. https://doi.org/10.3390/pharmaceutics14020355
Hurley S, Tantuccio A, Escotet-Espinoza MS, Flamm M, Metzger M. Development and Use of a Residence Time Distribution (RTD) Model Control Strategy for a Continuous Manufacturing Drug Product Pharmaceutical Process. Pharmaceutics. 2022; 14(2):355. https://doi.org/10.3390/pharmaceutics14020355
Chicago/Turabian StyleHurley, Samantha, Anthony Tantuccio, Manuel Sebastian Escotet-Espinoza, Matthew Flamm, and Matthew Metzger. 2022. "Development and Use of a Residence Time Distribution (RTD) Model Control Strategy for a Continuous Manufacturing Drug Product Pharmaceutical Process" Pharmaceutics 14, no. 2: 355. https://doi.org/10.3390/pharmaceutics14020355
APA StyleHurley, S., Tantuccio, A., Escotet-Espinoza, M. S., Flamm, M., & Metzger, M. (2022). Development and Use of a Residence Time Distribution (RTD) Model Control Strategy for a Continuous Manufacturing Drug Product Pharmaceutical Process. Pharmaceutics, 14(2), 355. https://doi.org/10.3390/pharmaceutics14020355