Mesoporous Silica Nanoparticle-Based Drug Delivery Systems for the Treatment of Pancreatic Cancer: A Systematic Literature Overview
Abstract
:1. Introduction
1.1. Pancreatic Cancer
1.2. Targeted Delivery
2. Materials and Methods
3. Results
3.1. Cytotoxicity of Classical MSNs in PDAC
3.2. Liposome-Coated MSNs
3.3. Gold-MSN Hybrid Nanocarriers
3.4. Magnetic Iron Oxide-MSN Hybrid Nanocarriers
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 2015, 136, E359–E386. [Google Scholar] [CrossRef]
- Hidalgo, M.; Cascinu, S.; Kleeff, J.; Labianca, R.; Lohr, J.M.; Neoptolemos, J.; Real, F.X.; Van Laethem, J.L.; Heinemann, V. Addressing the challenges of pancreatic cancer: Future directions for improving outcomes. Pancreatology 2015, 15, 8–18. [Google Scholar] [CrossRef]
- Ilic, M.; Ilic, I. Epidemiology of pancreatic cancer. World J. Gastroenterol. 2016, 22, 9694–9705. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Alderson, D.; Johnson, C.D.; Neoptolemos, J.P.; Ainley, C.C.; Bennett, M.K. Guidelines for the management of patients with pancreatic cancer, periampullary and ampullary carcinomas. Gut 2005, 54 (Suppl. 5), 1–16. [Google Scholar]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef]
- Millikan, K.W.; Deziel, D.J.; Silverstein, J.C.; Kanjo, T.M.; Christein, J.D.; Doolas, A.; Prinz, R.A. Prognostic factors associated with resectable adenocarcinoma of the head of the pancreas. Am. Surg. 1999, 65, 618–623, discussion 623–614. [Google Scholar] [PubMed]
- Neoptolemos, J.P.; Dunn, J.A.; Stocken, D.D.; Almond, J.; Link, K.; Beger, H.; Bassi, C.; Falconi, M.; Pederzoli, P.; Dervenis, C.; et al. Adjuvant chemoradiotherapy and chemotherapy in resectable pancreatic cancer: A randomised controlled trial. Lancet 2001, 358, 1576–1585. [Google Scholar] [CrossRef]
- Conroy, T.; Hammel, P.; Hebbar, M.; Ben Abdelghani, M.; Wei, A.C.; Raoul, J.-L.; Choné, L.; Francois, E.; Artru, P.; Biagi, J.J.; et al. FOLFIRINOX or Gemcitabine as Adjuvant Therapy for Pancreatic Cancer. N. Engl. J. Med. 2018, 379, 2395–2406. [Google Scholar] [CrossRef]
- Versteijne, E.; Suker, M.; Groothuis, K.; Akkermans-Vogelaar, J.M.; Besselink, M.G.; Bonsing, B.A.; Buijsen, J.; Busch, O.R.; Creemers, G.M.; van Dam, R.M.; et al. Preoperative Chemoradiotherapy Versus Immediate Surgery for Resectable and Borderline Resectable Pancreatic Cancer: Results of the Dutch Randomized Phase III PREOPANC Trial. J. Clin. Oncol. 2020, 38, 1763–1773. [Google Scholar] [CrossRef]
- Mizrahi, J.D.; Surana, R.; Valle, J.W.; Shroff, R.T. Pancreatic cancer. Lancet 2020, 395, 2008–2020. [Google Scholar] [CrossRef]
- Conroy, T.; Desseigne, F.; Ychou, M.; Bouche, O.; Guimbaud, R.; Becouarn, Y.; Adenis, A.; Raoul, J.L.; Gourgou-Bourgade, S.; de la Fouchardiere, C.; et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N. Engl. J. Med. 2011, 364, 1817–1825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Von Hoff, D.D.; Ervin, T.; Arena, F.P.; Chiorean, E.G.; Infante, J.; Moore, M.; Seay, T.; Tjulandin, S.A.; Ma, W.W.; Saleh, M.N.; et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N. Engl. J. Med. 2013, 369, 1691–1703. [Google Scholar] [CrossRef] [Green Version]
- Kamisawa, T.; Wood, L.D.; Itoi, T.; Takaori, K. Pancreatic cancer. Lancet 2016, 388, 73–85. [Google Scholar] [CrossRef]
- Singh, D.; Upadhyay, G.; Srivastava, R.K.; Shankar, S. Recent advances in pancreatic cancer: Biology, treatment, and prevention. Biochim. Biophys. Acta 2015, 1856, 13–27. [Google Scholar] [CrossRef]
- Zhan, H.X.; Zhou, B.; Cheng, Y.G.; Xu, J.W.; Wang, L.; Zhang, G.Y.; Hu, S.Y. Crosstalk between stromal cells and cancer cells in pancreatic cancer: New insights into stromal biology. Cancer Lett. 2017, 392, 83–93. [Google Scholar] [CrossRef]
- Hidalgo, M. Pancreatic cancer. N. Engl. J. Med. 2010, 362, 1605–1617. [Google Scholar] [CrossRef] [Green Version]
- McBride, A.; Bonafede, M.; Cai, Q.; Princic, N.; Tran, O.; Pelletier, C.; Parisi, M.; Patel, M. Comparison of treatment patterns and economic outcomes among metastatic pancreatic cancer patients initiated on nab-paclitaxel plus gemcitabine versus FOLFIRINOX. Expert Rev. Clin. Pharm. 2017, 10, 1153–1160. [Google Scholar] [CrossRef]
- Desai, N.; Trieu, V.; Yao, Z.; Louie, L.; Ci, S.; Yang, A.; Tao, C.; De, T.; Beals, B.; Dykes, D.; et al. Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of cremophor-free, albumin-bound paclitaxel, ABI-007, compared with cremophor-based paclitaxel. Clin. Cancer Res. 2006, 12, 1317–1324. [Google Scholar] [CrossRef] [Green Version]
- Mantoni, T.S.; Schendel, R.R.; Rodel, F.; Niedobitek, G.; Al-Assar, O.; Masamune, A.; Brunner, T.B. Stromal SPARC expression and patient survival after chemoradiation for non-resectable pancreatic adenocarcinoma. Cancer Biol 2008, 7, 1806–1815. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Samuel, S.; Lopez-Casas, P.; Grizzle, W.; Hidalgo, M.; Kovar, J.; Oelschlager, D.; Zinn, K.; Warram, J.; Buchsbaum, D. SPARC-Independent Delivery of Nab-Paclitaxel without Depleting Tumor Stroma in Patient-Derived Pancreatic Cancer Xenografts. Mol. Cancer 2016, 15, 680–688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neesse, A.; Frese, K.K.; Chan, D.S.; Bapiro, T.E.; Howat, W.J.; Richards, F.M.; Ellenrieder, V.; Jodrell, D.I.; Tuveson, D.A. SPARC independent drug delivery and antitumour effects of nab-paclitaxel in genetically engineered mice. Gut 2014, 63, 974–983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang-Gillam, A.; Li, C.-P.; Bodoky, G.; Dean, A.; Shan, Y.-S.; Jameson, G.; Macarulla, T.; Lee, K.-H.; Cunningham, D.; Blanc, J.F.; et al. Nanoliposomal irinotecan with fluorouracil and folinic acid in metastatic pancreatic cancer after previous gemcitabine-based therapy (NAPOLI-1): A global, randomised, open-label, phase 3 trial. Lancet 2016, 387, 545–557. [Google Scholar] [CrossRef]
- Lohr, J.M.; Haas, S.L.; Bechstein, W.O.; Bodoky, G.; Cwiertka, K.; Fischbach, W.; Folsch, U.R.; Jager, D.; Osinsky, D.; Prausova, J.; et al. Cationic liposomal paclitaxel plus gemcitabine or gemcitabine alone in patients with advanced pancreatic cancer: A randomized controlled phase II trial. Ann. Oncol. 2012, 23, 1214–1222. [Google Scholar] [CrossRef] [PubMed]
- Rao, D.D.; Luo, X.; Wang, Z.; Jay, C.M.; Brunicardi, F.C.; Maltese, W.; Manning, L.; Senzer, N.; Nemunaitis, J. KRAS mutant allele-specific expression knockdown in pancreatic cancer model with systemically delivered bi-shRNA KRAS lipoplex. PLoS ONE 2018, 13, e0193644. [Google Scholar] [CrossRef]
- Mao, Y.; Li, X.; Chen, G.; Wang, S. Thermosensitive Hydrogel System With Paclitaxel Liposomes Used in Localized Drug Delivery System for In Situ Treatment of Tumor: Better Antitumor Efficacy and Lower Toxicity. J. Pharm Sci. 2016, 105, 194–204. [Google Scholar] [CrossRef]
- Matsumoto, S.; Nakata, K.; Sagara, A.; Guan, W.; Ikenaga, N.; Ohuchida, K.; Nakamura, M. Efficient pre-treatment for pancreatic cancer using chloroquine-loaded nanoparticles targeting pancreatic stellate cells. Oncol. Lett. 2021, 22, 633. [Google Scholar] [CrossRef]
- Cai, H.; Wang, R.; Guo, X.; Song, M.; Yan, F.; Ji, B.; Liu, Y. Combining Gemcitabine-Loaded Macrophage-like Nanoparticles and Erlotinib for Pancreatic Cancer Therapy. Mol. Pharm 2021, 18, 2495–2506. [Google Scholar] [CrossRef]
- Jung, J.Y.; Ryu, H.J.; Lee, S.H.; Kim, D.Y.; Kim, M.J.; Lee, E.J.; Ryu, Y.M.; Kim, S.Y.; Kim, K.P.; Choi, E.Y.; et al. siRNA Nanoparticle Targeting PD-L1 Activates Tumor Immunity and Abrogates Pancreatic Cancer Growth in Humanized Preclinical Model. Cells 2021, 10, 2734. [Google Scholar] [CrossRef]
- Thakkar, A.; Chenreddy, S.; Wang, J.; Prabhu, S. Ferulic acid combined with aspirin demonstrates chemopreventive potential towards pancreatic cancer when delivered using chitosan-coated solid-lipid nanoparticles. Cell Biosci. 2015, 5, 46. [Google Scholar] [CrossRef] [Green Version]
- Thakkar, A.; Desai, P.; Chenreddy, S.; Modi, J.; Thio, A.; Khamas, W.; Ann, D.; Wang, J.; Prabhu, S. Novel nano-drug combination therapeutic regimen demonstrates significant efficacy in the transgenic mouse model of pancreatic ductal adenocarcinoma. Am. J. Cancer Res. 2018, 8, 2005–2019. [Google Scholar] [PubMed]
- Ferreira, R.G.; Narvaez, L.E.M.; Espíndola, K.M.M.; Rosario, A.C.R.S.; Lima, W.G.N.; Monteiro, M.C. Can Nimesulide Nanoparticles Be a Therapeutic Strategy for the Inhibition of the KRAS/PTEN Signaling Pathway in Pancreatic Cancer? Front. Oncol. 2021, 11, 2647. [Google Scholar] [CrossRef] [PubMed]
- Porta, F.; Lamers, G.E.; Morrhayim, J.; Chatzopoulou, A.; Schaaf, M.; den Dulk, H.; Backendorf, C.; Zink, J.I.; Kros, A. Folic acid-modified mesoporous silica nanoparticles for cellular and nuclear targeted drug delivery. Adv. Healthc. Mater. 2013, 2, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Watermann, A.; Brieger, J. Mesoporous Silica Nanoparticles as Drug Delivery Vehicles in Cancer. Nanomater 2017, 7, 189. [Google Scholar] [CrossRef] [Green Version]
- Knežević, N.Ž.; Jean-Olivier, D. Targeted Treatment of Cancer with Nanotherapeutics Based on Mesoporous Silica Nanoparticles. ChemPlusChem. 2015, 80, 26–36. [Google Scholar] [CrossRef]
- Mekaru, H.; Lu, J.; Tamanoi, F. Development of mesoporous silica-based nanoparticles with controlled release capability for cancer therapy. Adv. Drug Deliv. Rev. 2015, 95, 40–49. [Google Scholar] [CrossRef] [Green Version]
- Xia, T.; Kovochich, M.; Liong, M.; Meng, H.; Kabehie, S.; George, S.; Zink, J.I.; Nel, A.E. Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of siRNA and DNA constructs. ACS Nano 2009, 3, 3273–3286. [Google Scholar] [CrossRef]
- Chen, J.; Luo, H.; Liu, Y.; Zhang, W.; Li, H.; Luo, T.; Zhang, K.; Zhao, Y.; Liu, J. Oxygen-Self-Produced Nanoplatform for Relieving Hypoxia and Breaking Resistance to Sonodynamic Treatment of Pancreatic Cancer. ACS Nano 2017, 11, 12849–12862. [Google Scholar] [CrossRef]
- Lu, J.; Li, Z.; Zink, J.I.; Tamanoi, F. In vivo tumor suppression efficacy of mesoporous silica nanoparticles-based drug-delivery system: Enhanced efficacy by folate modification. Nanomedicine 2012, 8, 212–220. [Google Scholar] [CrossRef] [Green Version]
- Meng, H.; Zhao, Y.; Dong, J.; Xue, M.; Lin, Y.S.; Ji, Z.; Mai, W.X.; Zhang, H.; Chang, C.H.; Brinker, C.J.; et al. Two-wave nanotherapy to target the stroma and optimize gemcitabine delivery to a human pancreatic cancer model in mice. ACS Nano 2013, 7, 10048–10065. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Cheng, C.A.; Zink, J.I. Spatial, Temporal, and Dose Control of Drug Delivery using Noninvasive Magnetic Stimulation. ACS Nano 2019, 13, 1292–1308. [Google Scholar] [CrossRef] [PubMed]
- Seeta Rama Raju, G.; Pavitra, E.; Nagaraju, G.P.; Ramesh, K.; El-Rayes, B.F.; Yu, J.S. Imaging and curcumin delivery in pancreatic cancer cell lines using PEGylated alpha-Gd2(MoO4)3 mesoporous particles. DaltoN. Trans. 2014, 43, 3330–3338. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Wu, J.; Niu, S.; Sun, T.; Li, F.; Bai, Y.; Jin, L.; Lin, L.; Shi, Q.; Zhu, L.M.; et al. Biodegradable, pH-Sensitive Hollow Mesoporous Organosilica Nanoparticle (HMON) with Controlled Release of Pirfenidone and Ultrasound-Target-Microbubble-Destruction (UTMD) for Pancreatic Cancer Treatment. Theranostics 2019, 9, 6002–6018. [Google Scholar] [CrossRef] [PubMed]
- Er, Ö.; Colak, S.G.; Ocakoglu, K.; Ince, M.; Bresolí-Obach, R.; Mora, M.; Sagristá, M.L.; Yurt, F.; Nonell, S. Selective Photokilling of Human Pancreatic Cancer Cells Using Cetuximab-Targeted Mesoporous Silica Nanoparticles for Delivery of Zinc Phthalocyanine. Molecules 2018, 23, 2749. [Google Scholar] [CrossRef] [Green Version]
- Poostforooshan, J.; Belbekhouche, S.; Shaban, M.; Alphonse, V.; Habert, D.; Bousserrhine, N.; Courty, J.; Weber, A.P. Aerosol-Assisted Synthesis of Tailor-Made Hollow Mesoporous Silica Microspheres for Controlled Release of Antibacterial and Anticancer Agents. ACS Appl. Mater. Interfaces 2020, 12, 6885–6898. [Google Scholar] [CrossRef] [PubMed]
- Saini, K.; Bandyopadhyaya, R. Transferrin-Conjugated Polymer-Coated Mesoporous Silica Nanoparticles Loaded with Gemcitabine for Killing Pancreatic Cancer Cells. ACS Appl. Nano Mater. 2020, 3, 229–240. [Google Scholar] [CrossRef] [Green Version]
- RS, P.; Mal, A.; Valvi, S.K.; Srivastava, R.; De, A.; Bandyopadhyaya, R. Noninvasive Preclinical Evaluation of Targeted Nanoparticles for the Delivery of Curcumin in Treating Pancreatic Cancer. ACS Appl. Bio. Mater. 2020, 3, 4643–4654. [Google Scholar] [CrossRef]
- Tarannum, M.; Hossain, M.A.; Holmes, B.; Yan, S.; Mukherjee, P.; Vivero-Escoto, J.L. Advanced Nanoengineering Approach for Target-Specific, Spatiotemporal, and Ratiometric Delivery of Gemcitabine-Cisplatin Combination for Improved Therapeutic Outcome in Pancreatic Cancer. Small 2021, e2104449. [Google Scholar] [CrossRef] [PubMed]
- Er, O.; Tuncel, A.; Ocakoglu, K.; Ince, M.; Kolatan, E.H.; Yilmaz, O.; Aktaş, S.; Yurt, F. Radiolabeling, In Vitro Cell Uptake, and In Vivo Photodynamic Therapy Potential of Targeted Mesoporous Silica Nanoparticles Containing Zinc Phthalocyanine. Mol. Pharm 2020, 17, 2648–2659. [Google Scholar] [CrossRef]
- Slapak, E.J.; Kong, L.; El Mandili, M.; Nieuwland, R.; Kros, A.; Bijlsma, M.F.; Spek, C.A. ADAM9-Responsive Mesoporous Silica Nanoparticles for Targeted Drug Delivery in Pancreatic Cancer. Cancers 2021, 13, 3321. [Google Scholar] [CrossRef]
- Fu, Q.; Hargrove, D.; Lu, X. Improving paclitaxel pharmacokinetics by using tumor-specific mesoporous silica nanoparticles with intraperitoneal delivery. Nanomed. Nanotechnol. Biol. Med. 2016, 12, 1951–1959. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Xu, H.; Chen, H.; Jia, X.; Zheng, S.; Cai, X.; Wang, R.; Mou, J.; Zheng, Y.; Shi, J. CO2 bubbling-based ‘Nanobomb’ System for Targetedly Suppressing Panc-1 Pancreatic Tumor via Low Intensity Ultrasound-activated Inertial Cavitation. Theranostics 2015, 5, 1291–1302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Estevão, B.M.; Comparetti, E.J.; Rissi, N.C.; Zucolotto, V. Anti-GPC1-modified mesoporous silica nanoparticles as nanocarriers for combination therapy and targeting of PANC-1 cells. Mater. Adv. 2021, 2, 5224–5235. [Google Scholar] [CrossRef]
- Gurka, M.K.; Pender, D.; Chuong, P.; Fouts, B.L.; Sobelov, A.; McNally, M.W.; Mezera, M.; Woo, S.Y.; McNally, L.R. Identification of pancreatic tumors in vivo with ligand-targeted, pH responsive mesoporous silica nanoparticles by multispectral optoacoustic tomography. J. Control. Release 2016, 231, 60–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cong, V.T.; Tilley, R.D.; Sharbeen, G.; Phillips, P.A.; Gaus, K.; Gooding, J.J. How to exploit different endocytosis pathways to allow selective delivery of anticancer drugs to cancer cells over healthy cells. Chem. Sci. 2021, 12, 15407–15417. [Google Scholar] [CrossRef]
- Muhammad, F.; Guo, M.; Wang, A.; Zhao, J.; Qi, W.; Guo, Y.; Zhu, G. Responsive delivery of drug cocktail via mesoporous silica nanolamps. J. Colloid Interface Sci. 2014, 434, 1–8. [Google Scholar] [CrossRef]
- Lu, J.; Liong, M.; Sherman, S.; Xia, T.; Kovochich, M.; Nel, A.E.; Zink, J.I.; Tamanoi, F. Mesoporous Silica Nanoparticles for Cancer Therapy: Energy-Dependent Cellular Uptake and Delivery of Paclitaxel to Cancer Cells. Nanobiotechnology 2007, 3, 89–95. [Google Scholar] [CrossRef] [Green Version]
- Meng, H.; Wang, M.; Liu, H.; Liu, X.; Situ, A.; Wu, B.; Ji, Z.; Chang, C.H.; Nel, A.E. Use of a lipid-coated mesoporous silica nanoparticle platform for synergistic gemcitabine and paclitaxel delivery to human pancreatic cancer in mice. ACS Nano 2015, 9, 3540–3557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, Y.; Liu, X.; Li, J.; Xie, X.; Huang, M.; Jiang, J.; Liao, Y.P.; Donahue, T.; Meng, H. Use of ratiometrically designed nanocarrier targeting CDK4/6 and autophagy pathways for effective pancreatic cancer treatment. Nat. Commun. 2020, 11, 4249. [Google Scholar] [CrossRef]
- Feng, Z.; Meng, H. Efficient nano-enabled therapy for gastrointestinal cancer using silicasome delivery technology. Sci. China Chem. 2021, 64, 1946–1957. [Google Scholar] [CrossRef]
- Zheng, Y.; Fahrenholtz, C.D.; Hackett, C.L.; Ding, S.; Day, C.S.; Dhall, R.; Marrs, G.S.; Gross, M.D.; Singh, R.; Bierbach, U. Large-Pore Functionalized Mesoporous Silica Nanoparticles as Drug Delivery Vector for a Highly Cytotoxic Hybrid Platinum-Acridine Anticancer Agent. Chemistry 2017, 23, 3386–3397. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Lin, P.; Perrett, I.; Lin, J.; Liao, Y.P.; Chang, C.H.; Jiang, J.; Wu, N.; Donahue, T.; Wainberg, Z.; et al. Tumor-penetrating peptide enhances transcytosis of silicasome-based chemotherapy for pancreatic cancer. J. Clin. Investig. 2017, 127, 2007–2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Jiang, J.; Chang, C.H.; Liao, Y.P.; Lodico, J.J.; Tang, I.; Zheng, E.; Qiu, W.; Lin, M.; Wang, X.; et al. Development of Facile and Versatile Platinum Drug Delivering Silicasome Nanocarriers for Efficient Pancreatic Cancer Chemo-Immunotherapy. Small 2021, 17, e2005993. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, J.; Liao, Y.P.; Tang, I.; Zheng, E.; Qiu, W.; Lin, M.; Wang, X.; Ji, Y.; Mei, K.C.; et al. Combination Chemo-Immunotherapy for Pancreatic Cancer Using the Immunogenic Effects of an Irinotecan Silicasome Nanocarrier Plus Anti-PD-1. Adv. Sci. 2021, 8, 2002147. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Situ, A.; Kang, Y.; Villabroza, K.R.; Liao, Y.; Chang, C.H.; Donahue, T.; Nel, A.E.; Meng, H. Irinotecan Delivery by Lipid-Coated Mesoporous Silica Nanoparticles Shows Improved Efficacy and Safety over Liposomes for Pancreatic Cancer. ACS Nano 2016, 10, 2702–2715. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Jiang, J.; Chan, R.; Ji, Y.; Lu, J.; Liao, Y.P.; Okene, M.; Lin, J.; Lin, P.; Chang, C.H.; et al. Improved Efficacy and Reduced Toxicity Using a Custom-Designed Irinotecan-Delivering Silicasome for Orthotopic Colon Cancer. ACS Nano 2019, 13, 38–53. [Google Scholar] [CrossRef]
- Thapa, R.K.; Nguyen, H.T.; Gautam, M.; Shrestha, A.; Lee, E.S.; Ku, S.K.; Choi, H.G.; Yong, C.S.; Kim, J.O. Hydrophobic binding peptide-conjugated hybrid lipid-mesoporous silica nanoparticles for effective chemo-photothermal therapy of pancreatic cancer. Drug Deliv. 2017, 24, 1690–1702. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Liu, X.; Liao, Y.P.; Salazar, F.; Sun, B.; Jiang, W.; Chang, C.H.; Jiang, J.; Wang, X.; Wu, A.M.; et al. Nano-enabled pancreas cancer immunotherapy using immunogenic cell death and reversing immunosuppression. Nat. Commun. 2017, 8, 1811. [Google Scholar] [CrossRef] [Green Version]
- Xing, L.; Li, X.; Xing, Z.; Li, F.; Shen, M.; Wang, H.; Shi, X.; Du, L. Silica/gold nanoplatform combined with a thermosensitive gel for imaging-guided interventional therapy in PDX of pancreatic cancer. Chem. Eng. J. 2020, 382, 122949. [Google Scholar] [CrossRef]
- Zhao, R.; Han, X.; Li, Y.; Wang, H.; Ji, T.; Zhao, Y.; Nie, G. Photothermal Effect Enhanced Cascade-Targeting Strategy for Improved Pancreatic Cancer Therapy by Gold Nanoshell@Mesoporous Silica Nanorod. ACS Nano 2017, 11, 8103–8113. [Google Scholar] [CrossRef]
- Roy, I. Gold Nanoparticle-Enhanced Photodynamic Therapy from Photosensitiser-Entrapped Ormosil Nanoparticles. J. NanoSci. Nanotechnol 2019, 19, 6942–6948. [Google Scholar] [CrossRef] [PubMed]
- Zeiderman, M.R.; Morgan, D.E.; Christein, J.D.; Grizzle, W.E.; McMasters, K.M.; McNally, L.R. Acidic pH-targeted chitosan capped mesoporous silica coated gold nanorods facilitate detection of pancreatic tumors via multispectral optoacoustic tomography. ACS Biomater Sci. Eng. 2016, 2, 1108–1120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, S.; Yang, J.; Ma, L.; Li, X.; Wu, W.; Liu, C.; He, J.; Miao, L. Ternary-Responsive Drug Delivery with Activatable Dual Mode Contrast-Enhanced in Vivo Imaging. ACS Appl. Mater. Interfaces 2018, 10, 31947–31958. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, B.; Martel, F.; Silva, C.; Santos, T.M.; Daniel-da-Silva, A.L. Nanostructured functionalized magnetic platforms for the sustained delivery of cisplatin: Synthesis, characterization and in vitro cytotoxicity evaluation. J. Inorg BioChem. 2020, 213, 111258. [Google Scholar] [CrossRef]
- Li, Y.; Tang, Y.; Chen, S.; Liu, Y.; Wang, S.; Tian, Y.; Wang, C.; Teng, Z.; Lu, G. Sequential therapy for pancreatic cancer by losartan- and gemcitabine-loaded magnetic mesoporous spheres. RSC Adv. 2019, 9, 19690–19698. [Google Scholar] [CrossRef] [Green Version]
- Wang, A.; Qi, W.; Wang, N.; Zhao, J.; Muhammad, F.; Cai, K.; Ren, H.; Sun, F.; Chen, L.; Guo, Y.; et al. A smart nanoporous theranostic platform for simultaneous enhanced MRI and drug delivery. Microporous Mesoporous Mater. 2013, 180, 1–7. [Google Scholar] [CrossRef]
- Sun, J.; Kim, D.H.; Guo, Y.; Teng, Z.; Li, Y.; Zheng, L.; Zhang, Z.; Larson, A.C.; Lu, G. A c(RGDfE) conjugated multi-functional nanomedicine delivery system for targeted pancreatic cancer therapy. J. Mater. Chem. B 2015, 3, 1049–1058. [Google Scholar] [CrossRef]
- Loc, W.S.; Linton, S.S.; Wilczynski, Z.R.; Matters, G.L.; McGovern, C.O.; Abraham, T.; Fox, T.; Gigliotti, C.M.; Tang, X.; Tabakovic, A.; et al. Effective encapsulation and biological activity of phosphorylated chemotherapeutics in calcium phosphosilicate nanoparticles for the treatment of pancreatic cancer. Nanomedicine 2017, 13, 2313–2324. [Google Scholar] [CrossRef]
- Zhang, J.; Yuan, Z.F.; Wang, Y.; Chen, W.H.; Luo, G.F.; Cheng, S.X.; Zhuo, R.X.; Zhang, X.Z. Multifunctional envelope-type mesoporous silica nanoparticles for tumor-triggered targeting drug delivery. J. Am. Chem. Soc. 2013, 135, 5068–5073. [Google Scholar] [CrossRef]
- Morelli, C.; Maris, P.; Sisci, D.; Perrotta, E.; Brunelli, E.; Perrotta, I.; Panno, M.L.; Tagarelli, A.; Versace, C.; Casula, M.F.; et al. PEG-templated mesoporous silica nanoparticles exclusively target cancer cells. Nanoscale 2011, 3, 3198–3207. [Google Scholar] [CrossRef]
- Lebret, V.; Raehm, L.; Durand, J.O.; Smaïhi, M.; Werts, M.H.; Blanchard-Desce, M.; Méthy-Gonnod, D.; Dubernet, C. Folic acid-targeted mesoporous silica nanoparticles for two-photon fluorescence. J. Biomed. Nanotechnol 2010, 6, 176–180. [Google Scholar] [CrossRef] [PubMed]
- Yin, F.; Zhang, B.; Zeng, S.; Lin, G.; Tian, J.; Yang, C.; Wang, K.; Xu, G.; Yong, K.T. Folic acid-conjugated organically modified silica nanoparticles for enhanced targeted delivery in cancer cells and tumor in vivo. J. Mater. Chem. B 2015, 3, 6081–6093. [Google Scholar] [CrossRef]
- Kumar, R.; Roy, I.; Ohulchanskyy, T.Y.; Goswami, L.N.; Bonoiu, A.C.; Bergey, E.J.; Tramposch, K.M.; Maitra, A.; Prasad, P.N. Covalently dye-linked, surface-controlled, and bioconjugated organically modified silica nanoparticles as targeted probes for optical imaging. ACS Nano 2008, 2, 449–456. [Google Scholar] [CrossRef] [PubMed]
- MacCuaig, W.M.; Fouts, B.L.; McNally, M.W.; Grizzle, W.E.; Chuong, P.; Samykutty, A.; Mukherjee, P.; Li, M.; Jasinski, J.B.; Behkam, B.; et al. Active Targeting Significantly Outperforms Nanoparticle Size in Facilitating Tumor-Specific Uptake in Orthotopic Pancreatic Cancer. ACS Appl. Mater. Interfaces 2021, 13, 49614–49630. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Zhang, X.; Zou, X.; Cao, J.; Peng, Z. Biological Tissue Damage Monitoring Method Based on IMWPE and PNN during HIFU Treatment. Information 2021, 12, 404. [Google Scholar] [CrossRef]
- Jameson, G.S.; Borazanci, E.; Babiker, H.M.; Poplin, E.; Niewiarowska, A.A.; Gordon, M.S.; Barrett, M.T.; Rosenthal, A.; Stoll-D’Astice, A.; Crowley, J.; et al. Response Rate Following Albumin-Bound Paclitaxel Plus Gemcitabine Plus Cisplatin Treatment Among Patients with Advanced Pancreatic Cancer: A Phase 1b/2 Pilot Clinical Trial. JAMA Oncol. 2019, 6, 125–132. [Google Scholar] [CrossRef]
- Reni, M.; Zanon, S.; Balzano, G.; Passoni, P.; Pircher, C.; Chiaravalli, M.; Fugazza, C.; Ceraulo, D.; Nicoletti, R.; Arcidiacono, P.G.; et al. A randomised phase 2 trial of nab-paclitaxel plus gemcitabine with or without capecitabine and cisplatin in locally advanced or borderline resectable pancreatic adenocarcinoma. Eur. J. Cancer 2018, 102, 95–102. [Google Scholar] [CrossRef]
- Giordano, A.; Tommonaro, G. Curcumin and Cancer. Nutrients 2019, 11, 2376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bisht, S.; Mizuma, M.; Feldmann, G.; Ottenhof, N.A.; Hong, S.M.; Pramanik, D.; Chenna, V.; Karikari, C.; Sharma, R.; Goggins, M.G.; et al. Systemic administration of polymeric nanoparticle-encapsulated curcumin (NanoCurc) blocks tumor growth and metastases in preclinical models of pancreatic cancer. Mol. Cancer 2010, 9, 2255–2264. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.; Setua, S.; Kumari, S.; Dan, N.; Massey, A.; Hafeez, B.B.; Yallapu, M.M.; Stiles, Z.E.; Alabkaa, A.; Yue, J.; et al. Superparamagnetic iron oxide nanoparticles of curcumin enhance gemcitabine therapeutic response in pancreatic cancer. Biomaterials 2019, 208, 83–97. [Google Scholar] [CrossRef]
- Khaing Oo, M.K.; Yang, Y.; Hu, Y.; Gomez, M.; Du, H.; Wang, H. Gold Nanoparticle-Enhanced and Size-Dependent Generation of Reactive Oxygen Species from Protoporphyrin IX. ACS Nano 2012, 6, 1939–1947. [Google Scholar] [CrossRef] [PubMed]
- Hudson, D.E.; Hudson, D.O.; Wininger, J.M.; Richardson, B.D. Penetration of laser light at 808 and 980 nm in bovine tissue samples. Photomed Laser Surg. 2013, 31, 163–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janjua, T.I.; Cao, Y.; Yu, C.; Popat, A. Clinical translation of silica nanoparticles. Nat. Rev. Mater. 2021, 1–3. [Google Scholar] [CrossRef] [PubMed]
MSN | Modification | Aim of Modification | Experimental Model | Drug/ Treatment | Main Outcome | Ref. |
---|---|---|---|---|---|---|
MSN | PEG PEI | ↑ Biodistribution ↑ Uptake | • PDAC cells | Paclitaxel | •↑ cellular uptake compared to unmodified MSN •↑ cytotoxicity compared to free drug | [37] |
MSN | FC-Chain | Oxygen Delivery | • PDAC cells • Subc. Mouse | Sonodynamic Therapy | •↓ cell proliferation of multi-treatment MSNs compared to single treatment MSNs •↓ tumor volume compared to untreated, single-treatment MSNs •↑ improved survival compared to untreated, single-treatment MSNs | [38] * |
MSN | Folate | ↑ Uptake | • Subc. mouse | Camptothecin | •↓ tumor volume compared to untreated, free drug and unmodified MSNs | [39] |
MSN | LY364947 PEG PEI | TGF-β inhibition ↑ Biodistribution ↑ Uptake | • PDAC cells • Orth.. mouse • Subc. mouse | LY364947 (TGFb inhibitor) | •↓ pericytes coverage compared to free TGF-β inhibitor •↑ delivery Gemcitabine-loaded-liposomes compared to single-treatment •↓ tumor volume compared to untreated, free drug and unmodified MSNs | [40] * |
MSN | ACVA β-cyclodextrin | Cargo Release Gatekeeper | • PDAC cells | Doxycycline | • Thermoresponsive release of cargo •↑ cytotoxicity compared to untreated and empty MSN | [41] |
MSN | PEG | ↑ Biodistribution | • PDAC cells | Curcumin | •↑ curcumin formulation | [42] |
MSN | Gemcitabine | Gatekeeper | • PDAC cells • Subc. Mouse | Pirfenidone/Gemcitabine | •↓ expression stromal components •↓ IC50 compared to free drug •↓ tumor volume compared to untreated and free drug •↑ survival compared to untreated and free drug • No adverse effects major organs after three weeks of treatment | [43] * |
MSN | Cetuximab Imidazole PEG | ↑ Uptake Gatekeeper ↑ Biodistribution | • PDAC cells | ZnPcOBP (Photodynamic Therapy) | •↑ cellular uptake compared to unmodified MSN •↑ cytotoxicity compared to empty and unmodified MSN | [44] * |
MSN | Chitosan | Cargo Release | • PDAC cells | N6L (Nuceolin antagonist) | • pH-sensitive cargo release | [45] |
MSN | Transferrin Chitosan PLGA | ↑ Uptake Cargo Release Cargo Release | • PDAC cells | Gemcitabine | •↑ cytotoxicity compared to unmodified MSN • pH-sensitive cargo release | [46] |
MSN | Transferrin PEG | ↑ Uptake ↑ Biodistribution | • PDAC cells • Subc. mouse | Curcumin | •↑ cellular uptake compared to unmodified MSN •↓ tumor growth and metastasis compared to free drug and unmodified MSN | [47] |
MSN | tMUC-antibody PEG PEI | ↑ Uptake ↑ Biodistribution ↑ Uptake | • PDAC cells • Genetic mouse | Gemcitabine-/ cisplatin prodrug | •↑ cellular uptake compared to unmodified MSN •↑ cytotoxicity double-loaded MSNs compared to a single drug and mixed •↑ cellular uptake compared to unmodified MSN •↓ tumor volume and weight compared to control, free drug and unmodified MSN • No adverse effects major organs | [48] * |
MSN | Cetuximab PEG | ↑ Uptake ↑ Biodistribution | • PDAC cells • Orth. mouse | Zinc phthalocyanine | •↑ cellular uptake compared to free drug and unmodified MSN •↓ tumor volume | [49] |
MSN | ADAM9-linker Biotin-avidin | Cargo Release Gatekeeper | • PDAC and white blood cells | Paclitaxel | •↑ cytotoxicity in PDAC compared to white blood cells | [50] |
MSN | • PDAC cells • Intraperi. mouse | Paclitaxel | •↑ cellular drug concentration compared to free drug •↑ drug concentration in tumor compared to free drug | [51] | ||
MSN | L-arginine | CO2 adsorption/ release | • PDAC cells • Subc. mouse | Sonodynamic Therapy | •↑ cytotoxicity compared to single-treatment •↓ tumor volume compared to single-treatment | [52] |
MSN | GPC1-antibody | ↑ Uptake | • PDAC cells | Gemcitabine/ Ferulic Acid | •↑ cytotoxicity compared to unmodified MSNs | [53] |
MSN | Chitosan UPA | Cargo Release Cargo Release | • PDAC cells | Gemcitabine | • pH-specific cargo release | [54] |
MSN | • PDAC cells | Doxorubicin | • Delivery of doxorubicin to cytoplasm PDAC cells | [55] | ||
MSN | Quantum Dots | Cargo Loading | • PDAC cells | Doxorubicin/ Camptothecin | •↑ cytotoxicity multidrug-loaded MSNs compared to single drug-loaded MSNs | [56] |
MSN | • PDAC cells | Paclitaxel | • Dose-dependent cytotoxicity | [57] | ||
Lipo-MSN | • PDAC cells • Subc. mouse • Orth. mouse | Paclitaxel/ Gemcitabine | • Synergy of paclitaxel and gemcitabine upon co-delivery •↑ tumor shrinkage compared to free drug, MSN-loaded and combination therapy •↓ primary tumor growth and metastasis | [58] | ||
Lipo-MSN | PEG | ↑ Biodistribution | • PDAC cells • Subc. mouse • Orth. mouse | Palbociclib/ Hydroxy-chloroquine | •↑ cytotoxicity co-delivery compared to free and single drug MSNs •↓ tumor size co-delivery compared to free drug and single drug MSNs •↓ tumor size co-delivery compared to free drug and single drug MSNs | [59] |
Lipo-MSN | • Orth. mouse | Irinotecan | •↓ tumor size and improved survival compared to free drug and Onivyde •↓ liver, GIT, and bone marrow toxicity | [60] | ||
Lipo-MSN | • PDAC cells | P1A1 (Platinum-acridine) | •↑ cytotoxicity compared to empty MSN and free drug | [61] | ||
Lipo-MSN | iRGD PEG | ↑ Uptake ↑ Biodistribution | • Orth. mouse | Irinotecan | •↑ cellular uptake compared to unmodified Lipo-MSN •↑ survival and ↓ metastasis compared to unmodified Lipo-MSN | [62] |
Lipo-MSN | PEG | ↑ Biodistribution | • Orth. mouse | Oxaliplatin/ fDACHPt | •↓ tumor weight and metastasis, improved survival compared to free drug | [63] |
Lipo-MSN | PEG | ↑ Biodistribution | • Orth. mouse | Irinotecan | •↓ tumor weight and metastasis compared to free drug •↑ survival compared to free drug and Onivyde | [64] * |
Lipo-MSN | PEG | ↑ Biodistribution | • Orth. mouse | Irinotecan | •↓ tumor weight and metastasis, improved survival compared to free drug •↓ liver, GIT, and bone marrow toxicity | [65] |
Lipo-MSN | PEG | ↑ Biodistribution | • Orth. mouse | Irinotecan | •↓ tumor weight and metastasis compared to free drug and Onivyde | [66] * |
Lipo-MSN | Cyclosporine A PEG | ↑ Uptake ↑ Biodistribution | • PDAC cells • Subc. mouse | Bortezomib/ IR-820 (Photothermal Therapy) | •↑ cellular uptake compared to unmodified Lipo-MSN •↓ tumor volume and growth compared to free drug and unmodified Lipo-MSN | [67] |
Lipo-MSN | PEG | ↑ Biodistribution | • Subc. mouse • Orth. mouse | Oxaliplatin/ Indoximod | •↓ tumor size and metastasis compared to free drug, single-drug Lipo-MSNs •↑ survival compared to free drug, single-drug Lipo-MSNs •↓ tumor size and metastasis compared to free drug, single-drug Lipo-MSNs •↑ survival compared to free drug, single-drug Lipo-MSNs | [68] |
Gold-MSN | IGF-1 | ↑ Uptake | • PDAC cells • Subc. mouse | Gemcitabine/Perfluorohexane | •↑ cytotoxicity compared to untreated, free drug, unmodified MSNs • Complete response compared to untreated, free drug, unmodified MSNs • No adverse effects major organs | [69] * |
Gold-MSN | Transferrin PEG | ↑ Uptake ↑ Biodistribution | • PDAC cells • Subc. mouse | Gemcitabine | •↑ cellular uptake compared to unmodified Gold-MSN •↓ tumor volume compared to free drug, empty and unmodified Gold-MSN | [70] * |
Gold-MSN | • PDAC cells | Methylene Blue (Photodynamic Therapy) | •↑ cytotoxicity Gold-modified MSNs compared to unmodified | [71] | ||
Gold-MSN | V7-peptide Chitosan | ↑ Uptake Cargo Release | • PDAC cells | Gemcitabine | •↑ cytotoxicity compared to free drug and empty MSNs | [72] |
Iron-MSN | • PDAC cells • Orth. mouse | Camptothecin | •↑ cytotoxicity compared to free drug, empty MSN, and unmodified MSN •↓ tumor volume compared to untreated and free drug • No adverse effects major organs | [73] * | ||
Iron-MSN | Dicarboxylic acid | Cargo Release | • PDAC cells | Cisplatin | •↑ cytotoxicity compared to free drug •↓ cytotoxicity nonmalignant human pancreatic duct cells | [74] |
Iron-MSN | • PDAC cells • Subc. Mouse | Gemcitabine/ Losartan | •↑ cytotoxicity compared to free drug •↓ tumor weight and volume compared to monotherapy • No adverse effects major organs | [75] * | ||
Iron-MSN | • PDAC cells | Doxycycline | • Dose-dependent cytotoxicity | [76] | ||
Iron-MSN | c(RGDfE) PEG | ↑ Uptake ↑ Biodistribution | • PDAC cells | Gemcitabine | •↑ uptake compared to unmodified Iron-MSNs | [77] |
Iron-MSN | CCKBR aptamer G16 PEG citrate | ↑ Uptake ↑ Uptake ↑ Biodistribution ↑ Biodistribution | • PDAC cells • Orth. mouse | FdUMP/ dFdCMP | •↓ proliferation compared to free drug and empty MSNs •↓ thymidylate synthase levels compared to unmodified MSNs | [78] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Slapak, E.J.; el Mandili, M.; Bijlsma, M.F.; Spek, C.A. Mesoporous Silica Nanoparticle-Based Drug Delivery Systems for the Treatment of Pancreatic Cancer: A Systematic Literature Overview. Pharmaceutics 2022, 14, 390. https://doi.org/10.3390/pharmaceutics14020390
Slapak EJ, el Mandili M, Bijlsma MF, Spek CA. Mesoporous Silica Nanoparticle-Based Drug Delivery Systems for the Treatment of Pancreatic Cancer: A Systematic Literature Overview. Pharmaceutics. 2022; 14(2):390. https://doi.org/10.3390/pharmaceutics14020390
Chicago/Turabian StyleSlapak, Etienne J., Mouad el Mandili, Maarten F. Bijlsma, and C. Arnold Spek. 2022. "Mesoporous Silica Nanoparticle-Based Drug Delivery Systems for the Treatment of Pancreatic Cancer: A Systematic Literature Overview" Pharmaceutics 14, no. 2: 390. https://doi.org/10.3390/pharmaceutics14020390
APA StyleSlapak, E. J., el Mandili, M., Bijlsma, M. F., & Spek, C. A. (2022). Mesoporous Silica Nanoparticle-Based Drug Delivery Systems for the Treatment of Pancreatic Cancer: A Systematic Literature Overview. Pharmaceutics, 14(2), 390. https://doi.org/10.3390/pharmaceutics14020390