Clinical Practice Guidelines for Therapeutic Drug Monitoring of Vancomycin in the Framework of Model-Informed Precision Dosing: A Consensus Review by the Japanese Society of Chemotherapy and the Japanese Society of Therapeutic Drug Monitoring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparing the Guideline
2.2. Systematic Review and Meta-Analysis (for CQs 2 and 6)
2.3. Studies Conducted by the Committee to Make Recommendations for Each CQ
2.4. Process before Publication
3. Results
3.1. Executive Summary
- CQ 1. How can MIPD software be used to increase the accuracy of dose individualization?
- 1)
- Because vancomycin has a narrow therapeutic window, maintaining exposure for better treatment efficacy and less toxicity is essential for antimicrobial stewardship [3,17,56]. MIPD applies a concept for interpreting drug concentrations including PK calculations along with significant covariates [57,58,59,60].
- 2)
- Population PK models can serve as a quantitative PK framework in MIPD.
- a)
- b)
- c)
- Better prior probability was reported in a population PK model based on rich sampling (full data set: e.g., at the end of infusion, at 60, 120, and 300 min following the infusion, and immediately before the next dose) than that based on limited sampling (e.g., trough and peak concentrations) [66,67,68,69,70,71].
- d)
- Population properties (i.e., age, body weight, kidney function, other potential covariates) for establishing a population PK model should be considered to determine the reasonable candidates for the MIPD software to increase the accuracy of dosing [53,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97].
- e)
- The Bayesian prior information has been accumulated in special populations of obesity, paediatrics, and renal replacement therapy (RRT).
- 3)
- 4)
- Compared to traditional TDM, the MIPD approach has several advantages to streamline the TDM process of vancomycin.
- a)
- b)
- c)
- MIPD does not require steady state to be reached, and earlier concentration data are available than obtained using traditional TDM for the adjustment of vancomycin dosing.
- d)
- MIPD offers an opportunity to handle concentrations measured at any time during the treatment course, allowing for more flexibility in the timing of sampling.
- e)
- MIPD utilizes a patient’s entire dosing information including the loading dose and concentrations in calculations during treatment, and cumulative data are included for estimating AUC in patients with modified dosing regimens because of the TDM process.
- CQ 2. What are the recommended PK/PD parameters for TDM?
- 1)
- 2)
- 3)
- 4)
- 5)
- CQ 3. Who are the candidates for AUC-guided dosing?
- 1)
- When feasible, the routine use of AUC-guided dosing is suggested irrespective of the severity or complexity of MRSA infections because it decreases the risk of AKI (III-A).
- 2)
- Even in institutions in which routine use of the Bayesian approach is difficult, the introduction of AUC-guided dosing should be considered for patients at high risk of AKI because of impaired kidney function, concomitant use of piperacillin/tazobactam (PIPC/TAZ) or diuretics, and intensive care unit (ICU) stay [6,17,52,117,118,119,120,121,122,123,124] (II).
- 3)
- CQ 4. Is the trough concentration alone sufficient to estimate AUC using Bayesian software?
- 1)
- Because most published population PK models were based on limited sampling, two-point measurement (trough level and peak level at 1–2 h after infusion) is recommended, especially in patients with impaired kidney function who receive vancomycin over a 24-h interval, patients at risk of vancomycin-induced AKI, and those with serious or complicated MRSA infections [42,52,53,54,56,63,66,96,110,112,118,125,126,127,130,137,140] (II).
- 2)
- AUC estimated using trough-only data is more reliable when Bayesian software based on a population PK model with rich sampling is used [66] (II).
- 3)
- Trough-only measurements may be used for Bayesian estimation in patients with mild infections who received vancomycin q12h [53] (III-A).
- 4)
- Although it is recommended to measure the trough level within 30 min before dosing, its measurement timing tends to be incorrect in actual clinical practice [18]. However, blood samples can be taken at random times in Bayesian estimation (III-A), and the exact times before (or after) dosing should be used in Bayesian estimation.
- CQ 5. When should TDM be performed?
- 1)
- Using the MIPD approach, TDM on day 2 before steady state is reached should be considered in patients with serious or complicated MRSA infections, patients at risk of AKI, and those with unstable renal function [26,51,54,141] (III-A). With dose optimisation based on TDM in the morning on day 2, the probability of achieving day 2 AUC (24–48 h) targets can be increased.
- 2)
- Candidates for day 2 TDM and two-point measurement have similar patient/infection characteristics (e.g., high risk of AKI or serious infection). Therefore, two-point measurement (e.g., before [trough] and 1–2 h after [peak] the third dose) is a reasonable approach in ICU patients in whom vancomycin is administered q12h and TDM is performed on day 2 (III-A).
- 3)
- As mentioned in CQ 4, two-point measurement was recommended in patients receiving q24h administration. It should be considered that only a loading dose was administered on day 1 in such patients, and two-point measurement is strongly recommended when TDM was planned in the morning on day 2.
- 4)
- When only the trough concentration was measured on day 2 in non-ICU patients, the third dose may be postponed to optimise the dose until the confirmation of TDM results.
- 5)
- Delaying TDM until near steady state (i.e., 3 days after vancomycin therapy) might be applicable in patients with mild/moderate MRSA infections and those without a risk of AKI (III-A).
- 6)
- Performing earlier and frequent TDM is prudent in critically ill ICU patients (I).
- CQ 6. What is the target AUC in TDM?
- 1)
- The target AUC/MIC for improving the efficacy of treatment for MRSA infection is ≥400 when using the MIC determined by the broth microdilution method (MICBMC) [3,11,17,23,27,45,46,47,103,110,142,143,144,145,146,147] (I). The ratio should be ≥200 when using the MIC determined by Etest (MICEtest) [148,149,150] (III-A).
- 2)
- 3)
- Because of the insignificant difference of a 2-fold dilution in the measurement of MIC, the AUC/MIC ratio has excessive sensitivity to errors of MIC. Hence, the committee recommend the same AUC targets irrespective of the MIC even after determination of the MIC (III-A).
- 4)
- 5)
- 6)
- Because limited data are available regarding AUC targets for increasing treatment success rates against infections caused by antibiotic-resistant organisms other than MRSA [149,169,170,171,172,173,174] (III-B), revision of the dosing regimen should be decided according to the treatment response even at AUC/MIC < 400 for such infections.
- CQ 7. Is a continuous infusion administration strategy superior to intermittent infusion?
- 1)
- 2)
- As the common practice of continuous infusion, after a loading dose (15–20 mg/kg), a maintenance dose (30–40 mg/kg) was administered continuously over 24 h (III-A).
- 3)
- The PK level to monitor is the plateau level (i.e., steady-state concentration), and the target concentration is 20–25 μg/mL for continuous infusion (III-A).
- 4)
- CQ 8. Is a loading dose required to achieve the target concentration and improve treatment efficacy?
- 1)
- To increase the concentration on days 1–2, the routine use of a loading dose is required irrespective of renal function (I). This may increase the early treatment response (III-A).
- 2)
- 3)
- CQ 9. How can the dosage regimen be optimised to achieve the target AUC?
- 1)
- Initial regimen
- a)
- b)
- c)
- When increased vancomycin clearance is presumed (e.g., eGFR ≥ 130 mL/min/1.73 m2), maintenance doses of 15–20 mg/kg (actual body weight) q8h should be considered [196] (III-A).
- d)
- e)
- f)
- AUC on day 2 might be a better PK parameter than AUC at steady state to prevent adverse effects (III-A).
- 2)
- Optimisation of the regimen based on the result of TDM
- a)
- b)
- In dose optimisation based on TDM results, a margin of error of ±20% should be considered in Bayesian estimation using population PK models derived from limited sampling (III-A). Therefore, it is recommended that the dose is adjusted to target an AUC of 500 µg·h/mL (margin of error = ±100).
- CQ 10. How can the dosage regimen be optimised to achieve the AUC targets in patients with impaired kidney function?
- 1)
- Initial regimen
- a)
- A nomogram for the tentative regimen was suggested according to body weight and CLcr in patients with impaired kidney function (Table 2) (III-A).
- b)
- The tentative regimen should be individualized using the mean population PK model by entering patient data (gender, age, body weight and serum creatinine) into the software (III-A). A larger margin of bias should be considered for AUC estimated by the mean PK population model than for AUC estimated by the Bayesian method using individual patient serum concentrations. Hence, decreasing the upper threshold of AUC targets (i.e., 400–500 µg·h/mL) is suggested for the initial regimen to prevent overdose (III-A).
- 2)
- Optimisation of the regimen based on the TDM results
3.2. Studies Conducted by the Committee
3.2.1. CQ 1: Development of MIPD Software
3.2.2. CQ 2: Systematic Review and Meta-Analysis for Target Trough Levels and Comparison of Clinical Outcomes between AUC-Guided and Trough-Guided Dosing
- a)
- The target range of trough levels
- b)
- AKI risk and treatment efficacy between AUC-guided dosing and trough-guided dosing
3.2.3. CQ 3: Candidates for AUC-Guided Dosing
3.2.4. CQ 4: AUC Estimation Using Trough-Only Measurement
3.2.5. CQ 5: The Usefulness of AUC on Day 2
3.2.6. CQ 6: Systematic Review and Meta-Analyses for AUC/MIC Targets
3.2.7. CQ 8: Safety and Early Treatment Response of a Loading Dose
3.2.8. CQ 9: Recommended Dosing Regimen
3.2.9. Nomogram of Vancomycin Dosing to Achieve AUC Targets
4. Discussion
4.1. Literature Review
4.1.1. CQ 1. How Can MIPD Software Be Used to Increase the Accuracy of Dose Individualization?
4.1.2. CQ 2. What Are the Recommended PK/PD Parameters for TDM?
4.1.3. CQ 3. Who Are the Candidates for AUC-Guided Dosing?
4.1.4. CQ 4. Is the Trough Concentration Alone Sufficient to Estimate AUC Using Bayesian Software?
4.1.5. CQ 5. When Should TDM Be Performed?
4.1.6. CQ 6. What Is the Target AUC in TDM?
4.1.7. CQ 7. Is a Continuous Infusion Administration Strategy Superior to Intermittent Infusion?
4.1.8. CQ 8. Is a Loading Dose Required to Achieve the Target Concentration and Improve Treatment Efficacy?
4.1.9. CQ 9. How Can the Dosage Regimen Be Optimised to Achieve the Target AUC?
4.1.10. CQ 10. How Can the Dosage Regimen Be Optimised to Achieve the AUC Targets in Patients with Impaired Kidney Function?
4.2. Limitation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, C.; Bayer, A.; Cosgrove, S.E.; Daum, R.S.; Fridkin, S.K.; Gorwitz, R.J.; Kaplan, S.L.; Karchmer, A.W.; Levine, D.P.; Murray, B.E.; et al. Infectious Diseases Society of America. Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin. Infect. Dis. 2011, 52, e18–e55. [Google Scholar] [CrossRef] [Green Version]
- Giuliano, C.; Haase, K.K.; Hall, R. Use of vancomycin pharmacokinetic-pharmacodynamic properties in the treatment of MRSA infections. Expert Rev. Anti. Infect. Ther. 2010, 8, 95–106. [Google Scholar] [CrossRef] [Green Version]
- Rybak, M.J.; Le, J.; Lodise, T.P.; Levine, D.P.; Bradley, J.S.; Liu, C.; Mueller, B.A.; Pai, M.P.; Wong-Beringer, A.; Rotschafer, J.C.; et al. Therapeutic monitoring of vancomycin for serious methicillin-resistant Staphylococcus aureus infections: A revised consensus guideline and review by the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the Society of Infectious Diseases Pharmacists. Am. J. Health Syst. Pharm. 2020, 77, 835–864. [Google Scholar] [CrossRef] [Green Version]
- Brown, N.M.; Brown, E.M. Guideline Development Group. Treatment of methicillin-resistant Staphylococcus aureus (MRSA): Updated guidelines from the UK. J. Antimicrob. Chemother. 2021, 76, 1377–1378. [Google Scholar] [CrossRef] [PubMed]
- Jame, W.; Basgut, B.; Abdi, A. Efficacy and safety of novel glycopeptides versus vancomycin for the treatment of gram-positive bacterial infections including methicillin resistant Staphylococcus aureus: A systematic review and meta-analysis. PLoS ONE 2021, 16, e0260539. [Google Scholar] [CrossRef] [PubMed]
- Filippone, E.J.; Kraft, W.K.; Farber, J.L. The Nephrotoxicity of Vancomycin. Clin. Pharmacol. Ther. 2017, 102, 459–469. [Google Scholar] [CrossRef]
- Elyasi, S.; Khalili, H.; Dashti-Khavidaki, S.; Mohammadpour, A. Vancomycin-induced nephrotoxicity: Mechanism, incidence, risk factors and special populations. A literature review. Eur. J. Clin. Pharmacol. 2012, 68, 1243–1255. [Google Scholar] [CrossRef]
- Hori, Y.; Aoki, N.; Kuwahara, S.; Hosojima, M.; Kaseda, R.; Goto, S.; Iida, T.; De, S.; Kabasawa, H.; Kaneko, R.; et al. Megalin Blockade with Cilastatin Suppresses Drug-Induced Nephrotoxicity. J. Am. Soc. Nephrol. 2017, 28, 1783–1791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forouzesh, A.; Moise, P.A.; Sakoulas, G. Vancomycin ototoxicity: A reevaluation in an era of increasing doses. Antimicrob. Agents Chemother. 2009, 53, 483–486. [Google Scholar] [CrossRef] [Green Version]
- Humphrey, C.; Veve, M.P.; Walker, B.; Shorman, M.A. Long-term vancomycin use had low risk of ototoxicity. PLoS ONE 2019, 14, e0224561. [Google Scholar] [CrossRef]
- Matsumoto, K.; Takesue, Y.; Ohmagari, N.; Mochizuki, T.; Mikamo, H.; Seki, M.; Takakura, S.; Tokimatsu, I.; Takahashi, Y.; Kasahara, K.; et al. Practice guidelines for therapeutic drug monitoring of vancomycin: A consensus review of the Japanese Society of Chemotherapy and the Japanese Society of Therapeutic Drug Monitoring. J. Infect. Chemother. 2013, 19, 365–380. [Google Scholar] [CrossRef] [Green Version]
- Ye, Z.K.; Li, C.; Zhai, S.D. Guidelines for therapeutic drug monitoring of vancomycin: A systematic review. PLoS ONE 2014, 9, e99044. [Google Scholar] [CrossRef]
- Rybak, M.; Lomaestro, B.; Rotschafer, J.C.; Moellering Jr, R.; Craig, W.; Billeter, M.; Dalovisio, J.R.; Levine, D.P. Therapeutic monitoring of vancomycin in adult patients: A consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. Am. J. Health Syst. Pharm. 2009, 66, 82–98. [Google Scholar] [CrossRef] [PubMed]
- He, N.; Su, S.; Ye, Z.; Du, G.; He, B.; Li, D.; Liu, Y.; Yang, K.; Zhang, X.; Zhang, Y.; et al. Evidence-based Guideline for Therapeutic Drug Monitoring of Vancomycin: 2020 Update by the Division of Therapeutic Drug Monitoring, Chinese Pharmacological Society. Clin. Infect. Dis. 2020, 71, S363–S371. [Google Scholar] [CrossRef] [PubMed]
- Kojimahara, N.; Nakayama, T.; Morizane, T.; Yamaguchi, N.; Yoshida, M. Minds Manual for Guideline Development; Japan Council for Quality Health Care: Tokyo, Japan, 2017. (In Japanese) [Google Scholar]
- Hanai, Y.; Takahashi, Y.; Niwa, T.; Mayumi, T.; Hamada, Y.; Kimura, T.; Matsumo, K.; Fujii, S.; Takesue, Y. Clinical practice guidelines for therapeutic drug monitoring of teicoplanin: A consensus review by the Japanese Society of Chemotherapy and the Japanese Society of Therapeutic Drug Monitoring. J. Antimicrob. Chemother. 2022, dkab499. [Google Scholar] [CrossRef] [PubMed]
- Tsutsuura, M.; Moriyama, H.; Kojima, N.; Mizukami, Y.; Tashiro, S.; Osa, S.; Enoki, Y.; Taguchi, K.; Oda, K.; Fujii, S.; et al. The monitoring of vancomycin: A systematic review and meta-analyses of area under the concentration-time curve-guided dosing and trough-guided dosing. BMC Infect. Dis. 2021, 21, 153. [Google Scholar] [CrossRef] [PubMed]
- Neely, M.N.; Kato, L.; Youn, G.; Kraler, L.; Bayard, D.; van Guilder, M.; Schumitzky, A.; Yamada, W.; Jones, B.; Minejima, E. Prospective Trial on the Use of Trough Concentration versus Area under the Curve to Determine Therapeutic Vancomycin Dosing. Antimicrob. Agents Chemother. 2018, 62, e02042-17. [Google Scholar] [CrossRef] [Green Version]
- Oda, K.; Jono, H.; Nosaka, K.; Saito, H. Reduced nephrotoxicity with vancomycin therapeutic drug monitoring guided by area under the concentration-time curve against a trough 15–20 μg/mL concentration. Int. J. Antimicrob. Agents 2020, 56, 106109. [Google Scholar] [CrossRef]
- Meng, L.; Wong, T.; Huang, S.; Mui, E.; Nguyen, V.; Espinosa, G.; Desai, J.; Holubar, M.; Deresinski, S. Conversion from Vancomycin Trough Concentration-Guided Dosing to Area Under the Curve-Guided Dosing Using Two Sample Measurements in Adults: Implementation at an Academic Medical Center. Pharmacotherapy 2019, 39, 433–442. [Google Scholar] [CrossRef]
- Finch, N.A.; Zasowski, E.J.; Murray, K.P.; Mynatt, R.P.; Zhao, J.J.; Yost, R.; Pogue, J.M.; Rybak, M.J. A Quasi-Experiment to Study the Impact of Vancomycin Area under the Concentration-Time Curve-Guided Dosing on Vancomycin-Associated Nephrotoxicity. Antimicrob. Agents Chemother. 2017, 61, e01293-17. [Google Scholar] [CrossRef] [Green Version]
- Kullar, R.; Davis, S.L.; Levine, D.P.; Rybak, M.J. Impact of vancomycin exposure on outcomes in patients with methicillin-resistant Staphylococcus aureus bacteremia: Support for consensus guidelines suggested targets. Clin. Infect. Dis. 2011, 52, 975–981. [Google Scholar] [CrossRef] [Green Version]
- Song, K.H.; Kim, H.B.; Kim, H.S.; Lee, M.J.; Jung, Y.; Kim, G.; Hwang, J.H.; Kim, N.H.; Kim, M.; Kim, C.J.; et al. Impact of area under the concentration-time curve to minimum inhibitory concentration ratio on vancomycin treatment outcomes in methicillin-resistant Staphylococcus aureus bacteraemia. Int. J. Antimicrob. Agents 2015, 46, 689–695. [Google Scholar] [CrossRef] [PubMed]
- Hermsen, E.D.; Hanson, M.; Sankaranarayanan, J.; Stoner, J.A.; Florescu, M.C.; Rupp, M.E. Clinical outcomes and nephrotoxicity associated with vancomycin trough concentrations during treatment of deep-seated infections. Expert Opin. Drug Saf. 2010, 9, 9–14. [Google Scholar] [CrossRef]
- Clemens, E.C.; Chan, J.D.; Lynch, J.B.; Dellit, T.H. Relationships between vancomycin minimum inhibitory concentration, dosing strategies, and outcomes in methicillin-resistant Staphylococcus aureus bacteremia. Diagn. Microbiol. Infect. Dis. 2011, 71, 408–414. [Google Scholar] [CrossRef] [PubMed]
- Casapao, A.M.; Leonard, S.N.; Davis, S.L.; Lodise, T.P.; Patel, N.; Goff, D.A.; LaPlante, K.L.; Potoski, B.A.; Rybak, M.J. Clinical Outcomes in Patients with Heterogeneous Vancomycin-Intermediate Staphylococcus aureus Bloodstream Infection. Antimicrob. Agents Chemother. 2013, 57, 4252–4259. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, N.; Chavada, R.; Maley, M.; van Hal, S.J. Impact of source of infection and vancomycin AUC0-24/MICBMD targets on treatment failure in patients with methicillin-resistant Staphylococcus aureus bacteraemia. Clin. Microbiol. Infect. 2014, 20, O1098–O1105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, C.F.; Huang, J.D.; Wang, J.T.; Lin, S.W.; Wu, C.C. The ratio of pre-dialysis vancomycin trough serum concentration to minimum inhibitory concentration is associated with treatment outcomes in methicillin-resistant Staphylococcus aureus bacteremia. PLoS ONE 2018, 13, e0193585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mogle, B.T.; Steele, J.M.; Seabury, R.W.; Dang, U.J.; Kufel, W.D. Implementation of a two-point pharmacokinetic AUC-based vancomycin therapeutic drug monitoring approach in patients with methicillin-resistant Staphylococcus aureus bacteraemia. Int. J. Antimicrob. Agents 2018, 52, 805–810. [Google Scholar] [CrossRef] [PubMed]
- Hirano, R.; Sakamoto, Y.; Kitazawa, J.; Yamamoto, S.; Tachibana, N. Pharmacist-managed dose adjustment feedback using therapeutic drug monitoring of vancomycin was useful for patients with methicillin-resistant Staphylococcus aureus infections: A single institution experience. Infect. Drug Resist. 2016, 9, 243–252. [Google Scholar] [CrossRef] [Green Version]
- Chuma, M.; Makishima, M.; Imai, T.; Tochikura, N.; Suzuki, S.; Kuwana, T.; Sawada, N.; Komatsu, T.; Sakaue, T.; Kikuchi, N.; et al. Relationship Between Initial Vancomycin Trough Levels and Early-Onset Vancomycin-Associated Nephrotoxicity in Critically Ill Patients. Ther. Drug Monit. 2018, 40, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Wu, H.; Zhou, J.; Xu, M.; Zhou, S. Efficacy of Vancomycin on Gram-Positive Bacterial Infection in Elderly Critical Patients and Risk Factors Associated with Nephrotoxicity. Arch. Iran. Med. 2018, 21, 349–355. [Google Scholar] [PubMed]
- Park, S.J.; Lim, N.R.; Park, H.J.; Yang, J.W.; Kim, M.J.; Kim, K.; In, Y.W.; Lee, Y.M. Evaluation of risk factors for vancomycin-induced nephrotoxicity. Int. J. Clin. Pharm. 2018, 40, 1328–1334. [Google Scholar] [CrossRef]
- Shime, N.; Saito, N.; Bokui, M.; Sakane, N.; Kamimura, M.; Shinohara, T.; Kosaka, T.; Ishikura, H.; Kobayashi, A. Clinical outcomes after initial treatment of methicillin-resistant Staphylococcus aureus infections. Infect. Drug Resist. 2018, 11, 1073–1081. [Google Scholar] [CrossRef] [Green Version]
- De Almeida, C.D.C.; Simoes e Silva, A.C.; de Queiroz Oliveira, J.A.; Batista, I.S.F.; Pereira, F.H.; Gonçalves, J.E.; Nobre, V.; Martins, M.A.P. Vancomycin-associated nephrotoxicity in non-critically ill patients admitted in a Brazilian public hospital: A prospective cohort study. PLoS ONE 2019, 14, e0222095. [Google Scholar] [CrossRef] [PubMed]
- Horey, A.; Mergenhagen, K.A.; Mattappallil, A. The Relationship of nephrotoxicity to vancomycin trough serum concentrations in a veteran’s population: A retrospective analysis. Ann. Pharmacother. 2012, 46, 1477–1483. [Google Scholar] [CrossRef]
- Prabaker, K.K.; Tran, T.P.; Pratummas, T.; Goetz, M.B.; Graber, C.J. Elevated vancomycin trough is not associated with nephrotoxicity among inpatient veterans. J. Hosp. Med. 2012, 7, 91–97. [Google Scholar] [CrossRef]
- Fujii, S.; Takahashi, S.; Makino, S.; Kunimoto, Y.; Nakata, H.; Noda, N.; Sakurai, K.; Miyamoto, A. Impact of vancomycin or linezolid therapy on development of renal dysfunction and thrombocytopenia in Japanese patients. Chemotherapy 2013, 59, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Ley, E.J.; Liou, D.Z.; Singer, M.B.; Mirocha, J.; Srour, M.; Bukur, M.; Margulies, D.R. Supratherapeutic vancomycin levels after trauma predict acute kidney injury and mortality. J. Surg. Res. 2013, 184, 501–506. [Google Scholar] [CrossRef] [PubMed]
- Obara, V.Y.; Zacas, C.P.; Carrilho, C.M.; Delfino, V.D. Currently used dosage regimens of vancomycin fail to achieve therapeutic levels in approximately 40% of intensive care unit patients. Rev. Bras. Ter. Intensiva 2016, 28, 380–386. [Google Scholar] [CrossRef] [Green Version]
- Hammoud, K.; Brimacombe, M.; Yu, A.; Goodloe, N.; Haidar, W.; el Atrouni, W. Vancomycin Trough and Acute Kidney Injury: A Large Retrospective, Cohort Study. Am. J. Nephrol. 2016, 44, 456–461. [Google Scholar] [CrossRef]
- Lodise, T.P.; Patel, N.; Lomaestro, B.M.; Rodvold, K.A.; Drusano, G.L. Relationship between initial vancomycin concentration-time profile and nephrotoxicity among hospitalized patients. Clin. Infect. Dis. 2009, 49, 507–514. [Google Scholar] [CrossRef] [Green Version]
- Cano, E.L.; Haque, N.Z.; Welch, V.L.; Cely, C.M.; Peyrani, P.; Scerpella, E.G.; Ford, K.D.; Zervos, M.J.; Ramirez, J.A.; Kett, D.H. Incidence of nephrotoxicity and association with vancomycin use in intensive care unit patients with pneumonia: Retrospective analysis of the IMPACT-HAP Database. Clin. Ther. 2012, 34, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Barriere, S.L.; Stryjewski, M.E.; Corey, G.R.; Genter, F.C.; Rubinstein, E. Effect of vancomycin serum trough levels on outcomes in patients with nosocomial pneumonia due to Staphylococcus aureus: A retrospective, post hoc, subgroup analysis of the Phase 3 ATTAIN studies. BMC Infect. Dis. 2014, 14, 183. [Google Scholar] [CrossRef] [Green Version]
- Zelenitsky, S.; Rubinstein, E.; Ariano, R.; Iacovides, H.; Dodek, P.; Mirzanejad, Y.; Kumar, A.; Cooperative Antimicrobial Therapy of Septic Shock-CATSS Database Research Group. Vancomycin pharmacodynamics and survival in patients with methicillin-resistant Staphylococcus aureus-associated septic shock. Int. J. Antimicrob. Agents 2013, 41, 255–260. [Google Scholar] [CrossRef]
- Jung, Y.; Song, K.H.; eun Cho, J.; Kim, H.S.; Kim, N.H.; Kim, T.S.; Choe, P.G.; Chung, J.Y.; Park, W.B.; Bang, J.H.; et al. Area under the concentration-time curve to minimum inhibitory concentration ratio as a predictor of vancomycin treatment outcome in methicillin-resistant Staphylococcus aureus bacteraemia. Int. J. Antimicrob. Agents 2014, 43, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Makmor-Bakry, M.; Ahmat, A.; Shamsuddin, A.; Lau, C.L.; Ramli, R. Association between single trough-based area under the curve estimation of vancomycin and treatment outcome among methicillin-resistant Staphylococcus aureus bacteremia patients. Anaesthesiol. Intensive Ther. 2019, 51, 218–223. [Google Scholar] [CrossRef]
- Chavada, R.; Ghosh, N.; Sandaradura, I.; Maley, M.; van Hal, S.J. Establishment of an AUC0-24 Threshold for Nephrotoxicity Is a Step towards Individualized Vancomycin Dosing for Methicillin-Resistant Staphylococcus aureus Bacteremia. Antimicrob. Agents Chemother. 2017, 61, e02535-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zasowski, E.J.; Murray, K.P.; Trinh, T.D.; Finch, N.A.; Pogue, J.M.; Mynatt, R.P.; Rybak, M.J. Identification of Vancomycin Exposure-Toxicity Thresholds in Hospitalized Patients Receiving Intravenous Vancomycin. Antimicrob. Agents Chemother. 2017, 62, e01684-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brunetti, L.; Song, J.H.; Suh, D.; Kim, H.J.; Seong, Y.H.; Lee, D.S.; Lee, S.M.; Suh, D.C. The risk of vancomycin toxicity in patients with liver impairment. Ann. Clin. Microbiol. Antimicrob. 2020, 19, 13. [Google Scholar] [CrossRef]
- Lodise Jr, T.P.; Rosenkranz, S.L.; Finnemeyer, M.; Evans, S.; Sims, M.; Zervos, M.J.; Creech, C.B.; Patel, P.C.; Keefer, M.; Riska, P.; et al. The Emperor’s New Clothes: Prospective Observational Evaluation of the Association Between Initial VancomycIn Exposure and Failure Rates Among Adult Hospitalized Patients with Methicillin-resistant Staphylococcus aureus Bloodstream Infections (PROVIDE). Clin. Infect. Dis. 2020, 70, 1536–1545. [Google Scholar] [CrossRef]
- Hashimoto, N.; Kimura, T.; Hamada, Y.; Niwa, T.; Hanai, Y.; Chuma, M.; Fujii, S.; Matsumoto, K.; Shigemi, A.; Kawamura, H.; et al. Candidates for area under the concentration-time curve (AUC)-guided dosing and risk reduction based on analyses of risk factors associated with nephrotoxicity in vancomycin-treated patients. J. Glob. Antimicrob. Resist. 2021, 27, 12–19. [Google Scholar] [CrossRef]
- Oda, K.; Hashiguchi, Y.; Kimura, T.; Tsuji, Y.; Shoji, K.; Takahashi, Y.; Matsumoto, K.; Kawamura, H.; Saito, H.; Takesue, Y. Performance of Area under the Concentration-Time Curve Estimations of Vancomycin with Limited Sampling by a Newly Developed Web Application. Pharm. Res. 2021, 38, 637–646. [Google Scholar] [CrossRef] [PubMed]
- Ueda, T.; Takesue, Y.; Nakajima, K.; Ichiki, K.; Ishikawa, K.; Yamada, K.; Tsuchida, T.; Otani, N.; Takahashi, Y.; Ishihara, M.; et al. Validation of Vancomycin Area under the Concentration-Time Curve Estimation by the Bayesian Approach Using One-Point Samples for Predicting Clinical Outcomes in Patients with Methicillin-Resistant Staphylococcus aureus Infections. Antibiotics 2022, 11, 96. [Google Scholar] [CrossRef] [PubMed]
- Ueda, T.; Takesue, Y.; Nakajima, K.; Ichiki, K.; Ishikawa, K.; Takai, Y.; Yamada, K.; Wada, Y.; Tsuchida, T.; Otani, N.; et al. Vancomycin loading dose is associated with increased early clinical response without attainment of initial target trough concentration at a steady state in patients with methicillin-resistant Staphylococcus aureus infections. J. Clin. Pharm. Ther. 2020, 45, 682–690. [Google Scholar] [CrossRef] [PubMed]
- Pai, M.P.; Neely, M.; Rodvold, K.A.; Lodise, T.P. Innovative approaches to optimizing the delivery of vancomycin in individual patients. Adv. Drug Deliv. Rev. 2014, 77, 50–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darwich, A.S.; Polasek, T.M.; Aronson, J.K.; Ogungbenro, K.; Wright, D.F.; Achour, B.; Reny, J.L.; Daali, Y.; Eiermann, B.; Cook, J.; et al. Model-Informed Precision Dosing: Background, Requirements, Validation, Implementation, and Forward Trajectory of Individualizing Drug Therapy. Annu. Rev. Pharmacol. Toxicol. 2021, 61, 225–245. [Google Scholar] [CrossRef]
- Darwich, A.S.; Ogungbenro, K.; Vinks, A.A.; Powell, J.R.; Reny, J.L.; Marsousi, N.; Daali, Y.; Fairman, D.; Cook, J.; Lesko, L.J.; et al. Why has model-informed precision dosing not yet become common clinical reality? lessons from the past and a roadmap for the future. Clin. Pharmacol. Ther. 2017, 101, 646–656. [Google Scholar] [CrossRef] [PubMed]
- Wicha, S.G.; Märtson, A.G.; Nielsen, E.I.; Koch, B.C.P.; Friberg, L.E.; Alffenaar, J.W.; Minichmayr, I.K. International Society of Anti-Infective Pharmacology (ISAP), the PK/PD study group of the European Society of Clinical Microbiology, Infectious Diseases (EPASG). From Therapeutic Drug Monitoring to Model-Informed Precision Dosing for Antibiotics. Clin. Pharmacol. Ther. 2021, 109, 928–941. [Google Scholar] [CrossRef]
- Abdulla, A.; Edwina, A.E.; Flint, R.B.; Allegaert, K.; Wildschut, E.D.; Koch, B.C.P.; de Hoog, M. Model-Informed Precision Dosing of Antibiotics in Pediatric Patients: A Narrative Review. Front. Pediatr. 2021, 9, 624639. [Google Scholar] [CrossRef]
- Aljutayli, A.; Marsot, A.; Nekka, F. An Update on Population Pharmacokinetic Analyses of Vancomycin, Part I: In Adults. Clin. Pharmacokinet. 2020, 59, 671–698. [Google Scholar] [CrossRef]
- Aljutayli, A.; El-Haffaf, I.; Marsot, A.; Nekka, F. An Update on Population Pharmacokinetic Analyses of Vancomycin, Part II: In Pediatric Patients. Clin. Pharmacokinet. 2021, 61, 47–70. [Google Scholar] [CrossRef]
- Marsot, A.; Boulamery, A.; Bruguerolle, B.; Simon, N. Vancomycin: A review of population pharmacokinetic analyses. Clin. Pharmacokinet. 2012, 51, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Sheiner, L.B. Computer-aided long-term anticoagulation therapy. Comput. Biomed. Res. 1969, 2, 507–518. [Google Scholar] [CrossRef]
- Jelliffe, R.W. Administration of digoxin. Dis. Chest. 1969, 56, 56–60. [Google Scholar] [CrossRef] [PubMed]
- Neely, M.N.; Youn, G.; Jones, B.; Jelliffe, R.W.; Drusano, G.L.; Rodvold, K.A.; Lodise, P.L. Are vancomycin trough concentrations adequate for optimal dosing? Antimicrob. Agents Chemother. 2014, 58, 309–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shingde, R.V.; Reuter, S.E.; Graham, G.G.; Carland, J.E.; Williams, K.M.; Day, R.O.; Stocker, S.L. Assessing the accuracy of two Bayesian forecasting programs in estimating vancomycin drug exposure. J. Antimicrob. Chemother. 2020, 75, 3293–3302. [Google Scholar] [CrossRef] [PubMed]
- Goti, V.; Chaturvedula, A.; Fossler, M.J.; Mok, S.; Jacob, J.T. Hospitalized Patients with and without Hemodialysis Have Markedly Different Vancomycin Pharmacokinetics: A Population Pharmacokinetic Model-Based Analysis. Ther. Drug Monit. 2018, 40, 212–221. [Google Scholar] [CrossRef] [PubMed]
- Thomson, A.H.; Staatz, C.E.; Tobin, C.M.; Gall, M.; Lovering, A.M. Development and evaluation of vancomycin dosage guidelines designed to achieve new target concentrations. J. Antimicrob. Chemother. 2009, 63, 1050–1057. [Google Scholar] [CrossRef]
- Rodvold, K.A.; Blum, R.A.; Fischer, J.H.; Zokufa, H.Z.; Rotschafer, J.C.; Crossley, K.B.; Riff, L.J. Vancomycin pharmacokinetics in patients with various degrees of renal function. Antimicrob. Agents Chemother. 1988, 32, 848–852. [Google Scholar] [CrossRef] [Green Version]
- Carreno, J.J.; Lomaestro, B.; Tietjan, J.; Lodise, T.P. Pilot Study of a Bayesian Approach to Estimate Vancomycin Exposure in Obese Patients with Limited Pharmacokinetic Sampling. Antimicrob. Agents Chemother. 2017, 61, e02478-16. [Google Scholar] [CrossRef] [Green Version]
- Yasuhara, M.; Iga, T.; Zenda, H.; Okumura, K.; Oguma, T.; Yano, Y.; Hori, R. Population pharmacokinetics of vancomycin in Japanese adult patients. Ther. Drug Monit. 1998, 20, 139–148. [Google Scholar] [CrossRef]
- Colin, P.J.; Eleveld, D.J.; Hart, A.; Thomson, A.H. Do Vancomycin Pharmacokinetics Differ Between Obese and Non-obese Patients? Comparison of a General-Purpose and Four Obesity-Specific Pharmacokinetic Models. Ther Drug Monit. 2021, 43, 126–130. [Google Scholar] [CrossRef] [PubMed]
- Colin, P.J.; Allegaert, K.; Thomson, A.H.; Touw, D.J.; Dolton, M.; de Hoog, M.; Roberts, J.A.; Adane, E.D.; Yamamoto, M.; Santos-Buelga, D.; et al. Vancomycin Pharmacokinetics Throughout Life: Results from a Pooled Population Analysis and Evaluation of Current Dosing Recommendations. Clin. Pharmacokinet. 2019, 58, 767–780. [Google Scholar] [CrossRef] [Green Version]
- Hahn, A.; Frenck, R.W., Jr.; Zou, Y.; Vinks, A.A. Validation of a pediatric population pharmacokinetic model for vancomycin. Drug Monit. 2015, 37, 413–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamarre, P.; Lebel, D.; Ducharme, M.P. A population pharmacokinetic model for vancomycin in pediatric patients and its predictive value in a naive population. Antimicrob. Agents Chemother. 2000, 44, 278–282. [Google Scholar] [CrossRef] [Green Version]
- Berthaud, R.; Benaboud, S.; Hirt, D.; Genuini, M.; Oualha, M.; Castelle, M.; Briand, C.; Artru, S.; Norsa, L.; Boyer, O.; et al. Early Bayesian Dose Adjustment of Vancomycin Continuous Infusion in Children: A Randomized Controlled Trial. Antimicrob. Agents Chemother. 2019, 63, e01102-19. [Google Scholar] [CrossRef]
- Smit, C.; Goulooze, S.C.; Brüggemann, R.J.M.; Sherwin, C.M.; Knibbe, C.A.J. Dosing Recommendations for Vancomycin in Children and Adolescents with Varying Levels of Obesity and Renal Dysfunction: A Population Pharmacokinetic Study in 1892 Children Aged 1-18 Years. AAPS J. 2021, 23, 53. [Google Scholar] [CrossRef]
- Hui, K.; Patel, K.; Nalder, M.; Nelson, C.; Buising, K.; Pedagogos, E.; Kong, D.C.M.; Kirkpatrick, C.M.J. Optimizing vancomycin dosage regimens in relation to high-flux haemodialysis. J. Antimicrob. Chemother. 2019, 74, 130–134. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.H.; Yim, D.S.; Lee, H.; Park, A.R.; Kwon, J.E.; Sumiko, H.; Han, S. Application of Pharmacometrics in Pharmacotherapy: Open-Source Software for Vancomycin Therapeutic Drug Management. Pharmaceutics 2019, 11, 224. [Google Scholar] [CrossRef] [Green Version]
- Kirwan, M.; Munshi, R.; O’Keeffe, H.; Judge, C.; Coyle, M.; Deasy, E.; Kelly, Y.P.; Lavin, P.J.; Donnelly, M.; D’Arcy, D.M. Exploring population pharmacokinetic models in patients treated with vancomycin during continuous venovenous haemodiafiltration (CVVHDF). Crit. Care 2021, 25, 443. [Google Scholar] [CrossRef] [PubMed]
- Oda, K.; Jono, H.; Kamohara, H.; Nishi, K.; Tanoue, N.; Saito, H. Development of Vancomycin Dose Individualization Strategy by Bayesian Prediction in Patients Receiving Continuous Renal Replacement Therapy. Pharm. Res. 2020, 37, 108. [Google Scholar] [CrossRef] [PubMed]
- Cardone, K.E.; Chen, W.Z.; Grabe, D.W.; Batzold, A.; Manley, H.J.; Lodise, T.P. Evaluation of the pharmacodynamic profile of commonly used intravenous vancomycin dosing schemes in patients on automated peritoneal dialysis. J. Antimicrob. Chemother. 2014, 69, 1873–1876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le, J.; Ngu, B.; Bradley, J.S.; Murray, W.; Nguyen, A.; Nguyen, L.; Romanowski, G.; Vo, T.; Capparelli, E.V. Vancomycin monitoring in children using bayesian estimation. Ther. Drug Monit. 2014, 36, 510–518. [Google Scholar] [CrossRef]
- Han, J.; Sauberan, J.; Tran, M.T.; Adler-Shohet, F.C.; Michalik, D.E.; Tien, T.H.; Tran, L.; Do, D.H.; Bradley, J.S.; Le, J. Implementation of Vancomycin Therapeutic Monitoring Guidelines: Focus on Bayesian Estimation Tools in Neonatal and Pediatric Patients. Ther. Drug Monit. 2021. [Google Scholar] [CrossRef]
- Masich, A.M.; Kalaria, S.N.; Gonzales, J.P.; Heil, E.L.; Tata, A.L.; Claeys, K.C.; Patel, D.; Gopalakrishnan, M. Vancomycin Pharmacokinetics in Obese Patients with Sepsis or Septic Shock. Pharmacotherapy 2020, 40, 211–220. [Google Scholar] [CrossRef]
- Smit, C.; Wasmann, R.E.; Goulooze, S.C.; Wiezer, M.J.; van Dongen, E.P.A.; Mouton, J.W.; Bruggemann, R.J.M.; Knibbe, C.A.J. Population pharmacokinetics of vancomycin in obesity: Finding the optimal dose for (morbidly) obese individuals. Br. J. Clin. Pharmacol. 2020, 86, 303–317. [Google Scholar] [CrossRef] [Green Version]
- Hughes, J.H.; Tong, D.M.H.; Lucas, S.S.; Faldasz, J.D.; Goswami, S.; Keizer, R.J. Continuous Learning in Model-Informed Precision Dosing: A Case Study in Pediatric Dosing of Vancomycin. Clin. Pharm. Ther. 2021, 109, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Hughes, J.H.; Keizer, R.J. A hybrid machine learning/pharmacokinetic approach outperforms maximum a posteriori Bayesian estimation by selectively flattening model priors. CPT Pharmacomet. Syst. Pharmacol. 2021, 10, 1150–1160. [Google Scholar] [CrossRef]
- Uster, D.W.; Stocker, S.L.; Carland, J.E.; Brett, J.; Marriott, D.J.E.; Day, R.O.; Wicha, S.G. A Model Averaging/Selection Approach Improves the Predictive Performance of Model-Informed Precision Dosing: Vancomycin as a Case Study. Clin. Pharm. Ther. 2021, 109, 175–183. [Google Scholar] [CrossRef]
- Frymoyer, A.; Schwenk, H.T.; Zorn, Y.; Bio, L.; Moss, J.D.; Chasmawala, B.; Faulkenberry, J.; Goswami, S.; Keiyer, R.J.; Ghaskari, S. Model-Informed Precision Dosing of Vancomycin in Hospitalized Children: Implementation and Adoption at an Academic Children’s Hospital. Front. Pharmacol. 2020, 11, 551. [Google Scholar] [CrossRef]
- Sansot, C.; Kalbacher, E.; Lemoine, S.; Bourguignon, L.; Fauvel, J.P.; Ducher, M. A Bayesian Model to Describe Factors Influencing Trough Levels of Vancomycin in Hemodialysis Patients. Nephron 2015, 131, 131–137. [Google Scholar] [CrossRef]
- Yamazaki, S.; Tatebe, M.; Fujiyoshi, M.; Hattori, N.; Suzuki, T.; Takatsuka, H.; Uchida, M.; Suzuki, T.; Ishii, I. Population Pharmacokinetics of Vancomycin Under Continuous Renal Replacement Therapy Using a Polymethylmethacrylate Hemofilter. Ther. Drug Monit. 2020, 42, 452–459. [Google Scholar] [CrossRef]
- Economou, C.J.P.; Kielstein, J.T.; Czock, D.; Xie, J.; Field, J.; Richards, B.; Tallott, M.; Visser, A.; Koenig, C.; Hafer, C.; et al. Population pharmacokinetics of vancomycin in critically ill patients receiving prolonged intermittent renal replacement therapy. Int. J. Antimicrob. Agents 2018, 52, 151–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hennessy, K.; Capparelli, E.V.; Romanowski, G.; Alejandro, L.; Murray, W.; Benador, N. Intraperitoneal vancomycin for peritoneal dialysis-associated peritonitis in children: Evaluation of loading dose guidelines. Perit. Dial. Int. 2021, 41, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Blouin, R.A.; Bauer, L.A.; Miller, D.D.; Record, K.E.; Griffen, W.O., Jr. Vancomycin pharmacokinetics in normal and morbidly obese subjects. Antimicrob. Agents Chemother. 1982, 21, 575–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ducharme, M.P.; Slaughter, R.L.; Edwards, D.J. Vancomycin pharmacokinetics in a patient population: Effect of age, gender, and body weight. Ther. Drug Monit. 1994, 16, 513–518. [Google Scholar] [CrossRef]
- Turner, R.B.; Kojiro, K.; Shephard, E.A.; Won, R.; Chang, E.; Chan, D.; Elbarbry, F. Review and Validation of Bayesian Dose-Optimizing Software and Equations for Calculation of the Vancomycin Area Under the Curve in Critically Ill Patients. Pharmacotherapy 2018, 38, 1174–1183. [Google Scholar] [CrossRef]
- Kumar, A.A.; Burgard, M.; Stacey, S.; Sandaradura, I.; Lai, T.; Coorey, C.; Cincunegui, M.; Staatz, C.E.; Hennig, S. An evaluation of the user-friendliness of Bayesian forecasting programs in a clinical setting. Br. J. Clin. Pharmacol. 2019, 85, 2436–2441. [Google Scholar] [CrossRef]
- Kufel, W.D.; Seabury, R.W.; Mogle, B.T.; Beccari, M.V.; Probst, L.A.; Steele, J.M. Readiness to implement vancomycin monitoring based on area under the concentration-time curve: A cross-sectional survey of a national health consortium. Am. J. Health Syst. Pharm. 2019, 76, 889–894. [Google Scholar] [CrossRef]
- Bradley, N.; Lee, Y.; Sadeia, M. Assessment of the Implementation of AUC Dosing and Monitoring Practices with Vancomycin at Hospitals Across the United States. J. Pharm. Pract. 2021, 8971900211012395. [Google Scholar] [CrossRef]
- Rybak, M.J. The pharmacokinetic and pharmacodynamic properties of vancomycin. Clin. Infect. Dis. 2006, 42 (Suppl. 1), S35–S39. [Google Scholar] [CrossRef] [PubMed]
- Men, P.; Li, H.B.; Zhai, S.D.; Zhao, R.S. Association between the AUC0-24/MIC Ratio of Vancomycin and Its Clinical Effectiveness: A Systematic Review and Meta-Analysis. PLoS ONE 2016, 11, e0146224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsuji, B.T.; Rybak, M.J.; Lau, K.L.; Sakoulas, G. Evaluation of accessory gene regulator (agr) group and function in the proclivity towards vancomycin intermediate resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 2007, 51, 1089–1091. [Google Scholar] [CrossRef] [Green Version]
- Vidaillac, C.; Gardete, S.; Tewhey, R.; Sakoulas, G.; Kaatz, G.W.; Rose, W.E.; Tomasz, A.; Rybak, M.J. Alternative mutational pathways to intermediate resistance to vancomycin in methicillin-resistant Staphylococcus aureus. J. Infect. Dis. 2013, 208, 67–74. [Google Scholar] [CrossRef]
- Singh, N.B.; Yim, J.; Jahanbakhsh, S.; Sakoulas, G.; Rybak, M.J. Impact of cefazolin co-administration with vancomycin to reduce development of vancomycin-intermediate Staphylococcus aureus. Diagn Microbiol. Infect. Dis. 2018, 91, 363–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pais, G.M.; Avedissian, S.N.; O’Donnell, J.N.; Rhodes, N.J.; Lodise, T.P.; Prozialeck, W.C.; Lamar, P.C.; Cluff, C.; Gulati, A.; Fitzgerald, J.C.; et al. Comparative Performance of Urinary Biomarkers for Vancomycin-Induced Kidney Injury According to Timeline of Injury. Antimicrob. Agents Chemother. 2019, 63, e00079-19. [Google Scholar] [CrossRef] [Green Version]
- Avedissian, S.N.; Pais, G.M.; O’Donnell, J.N.; Lodise, T.P.; Liu, J.; Prozialeck, W.C.; Joshi, M.D.; Lamar, P.C.; Becher, L.; Gulati, A.; et al. Twenty-four hour pharmacokinetic relationships for intravenous vancomycin and novel urinary biomarkers of acute kidney injury in a rat model. J. Antimicrob. Chemother. 2019, 74, 2326–2334. [Google Scholar] [CrossRef]
- Aljefri, D.M.; Avedissian, S.N.; Rhodes, N.J.; Postelnick, M.J.; Nguyen, K.; Scheetz, M.H. Vancomycin Area Under the Curve and Acute Kidney Injury: A Meta-analysis. Clin. Infect. Dis. 2019, 69, 1881–1887. [Google Scholar] [CrossRef]
- Ye, Z.K.; Chen, Y.L.; Chen, K.; Zhang, X.L.; Du, G.H.; He, B.; Li, D.-K.; Liu, Y.N.; Yang, K.-H.; Zhang, Y.-Y.; et al. Therapeutic drug monitoring of vancomycin: A guideline of the Division of Therapeutic Drug Monitoring, Chinese Pharmacological Society. J. Antimicrob. Chemother. 2016, 71, 3020–3025. [Google Scholar] [CrossRef] [Green Version]
- Clark, L.; Skrupky, L.P.; Servais, R.; Brummitt, C.F.; Dilworth, T.J. Examining the Relationship Between Vancomycin Area Under the Concentration Time Curve and Serum Trough Levels in Adults with Presumed or Documented Staphylococcal Infections. Ther. Drug Monit. 2019, 41, 483–488. [Google Scholar] [CrossRef] [Green Version]
- Bel Kamel, A.; Bourguignon, L.; Marcos, M.; Ducher, M.; Goutelle, S. Is Trough Concentration of Vancomycin Predictive of the Area Under the Curve? A Clinical Study in Elderly Patients. Drug Monit. 2017, 39, 83–87. [Google Scholar] [CrossRef]
- Lodise, T.P.; Drusano, G. Vancomycin Area Under the Curve-Guided Dosing and Monitoring for Adult and Pediatric Patients with Suspected or Documented Serious Methicillin-Resistant Staphylococcus aureus Infections: Putting the Safety of Our Patients First. Clin. Infect. Dis. 2021, 72, 1497–1501. [Google Scholar] [CrossRef]
- Rees, M.R.; Carr, D.R.; Trienski, T.; Buchanan, C.; White, K.; Bremmer, D.N. Outpatient vancomycin therapy: Acute kidney injury in individualized AUC-based goal trough ranges versus traditional trough dosing. J. Am. Pharm. Assoc. 2021, 2021, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Linder, A.; Fjell, C.; Levin, A.; Walley, K.R.; Russell, J.A.; Boyd, J.H. Small acute increases in serum creatinine are associated with decreased long-term survival in the critically ill. Am. J. Respir. Crit. Care Med. 2014, 189, 1075–1081. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.V.; Fong, G.; Bolaris, M.; Neely, M.; Minejima, E.; Kang, A.; Lee, G.; Gong, C.L. Cost-benefit analysis comparing trough, two-level AUC and Bayesian AUC dosing for vancomycin. Clin. Microbiol. Infect. 2021, 27, 1346.e1–1346.e7. [Google Scholar] [CrossRef] [PubMed]
- Jeffres, M.N.; Isakow, W.; Doherty, J.A.; Micek, S.T.; Kollef, M.H. A retrospective analysis of possible renal toxicity associated with vancomycin in patients with health care-associated methicillin-resistant Staphylococcus aureus pneumonia. Clin. Ther. 2007, 29, 1107–1115. [Google Scholar] [CrossRef]
- Vandecasteele, S.J.; De Vriese, A.S. Recent changes in vancomycin use in renal failure. Kidney Int. 2010, 77, 760–764. [Google Scholar] [CrossRef] [Green Version]
- Hazlewood, K.A.; Brouse, S.D.; Pitcher, W.D.; Hall, R.G. Vancomycin-associated nephrotoxicity: Grave concern or death by character assassination? Am. J. Med. 2010, 123, 182.e1–182.e7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bamgbola, O. Review of vancomycin-induced renal toxicity: An update. Ther. Adv. Endocrinol. Metab. 2016, 7, 136–147. [Google Scholar] [CrossRef]
- Wong-Beringer, A.; Joo, J.; Tse, E.; Beringer, P. Vancomycin-associated nephrotoxicity: A critical appraisal of risk with high-dose therapy. Int. J. Antimicrob. Agents 2011, 37, 95–101. [Google Scholar] [CrossRef]
- Ingram, P.R.; Lye, D.C.; Tambyah, P.A.; Goh, W.P.; Tam, V.H.; Fisher, D.A. Risk factors for nephrotoxicity associated with continuous vancomycin infusion in outpatient parenteral antibiotic therapy. J Antimicrob Chemother. 2008, 62, 168–171. [Google Scholar] [CrossRef] [PubMed]
- Rybak, M.J.; Abate, B.J.; Kang, S.L.; Ruffing, M.J.; Lerner, S.A.; Drusano, G.L. Prospective evaluation of the effect of an aminoglycoside dosing regimen on rates of observed nephrotoxicity and ototoxicity. Antimicrob. Agents Chemother. 1999, 43, 1549–1555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okada, N.; Izumi, Y.; Nakamoto, A.; Chuma, M.; Goda, M.; Yagi, K.; Aizawa, F.; Hamano, H.; Zamami, Y.; Azuma, M.; et al. Impact of Area Under the Concentration-Time Curve on the Prevalence of Vancomycin-Induced Nephrotoxicity in Combination with Tazobactam/Piperacillin or Cefepime: A Single-Institution Retrospective Study. Clin. Ther. 2021, 43, 1910–1920. [Google Scholar] [CrossRef] [PubMed]
- Winter, M.E. (Ed.) Vancomycin. In Basic Clinical Pharmacokinetics, 5th ed.; Wolters Kluwer: Alphen aan den Rijn, The Netherlands; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2010; pp. 459–487. [Google Scholar]
- Katip, W.; Jaruratanasirikul, S.; Pattharachayakul, S.; Wongpoowarak, W.; Jitsurong, A.; Lucksiri, A. The pharmacokinetics of vancomycin during the initial loading dose in patients with septic shock. Infect. Drug Resist. 2016, 9, 253–260. [Google Scholar] [CrossRef] [Green Version]
- Cook, A.M.; Hatton-Kolpek, J. Augmented Renal Clearance. Pharmacotherapy 2019, 39, 346–354. [Google Scholar] [CrossRef]
- Udy, A.A.; Putt, M.T.; Boots, R.J.; Lipman, J. ARC--augmented renal clearance. Curr. Pharm. Biotechnol. 2011, 12, 2020–2029. [Google Scholar] [CrossRef]
- Shimamoto, Y.; Fukuda, T.; Tanaka, K.; Komori, K.; Sadamitsu, D. Systemic inflammatory response syndrome criteria and vancomycin dose requirement in patients with sepsis. Intensive Care Med. 2013, 39, 1247–1252. [Google Scholar] [CrossRef]
- Baptista, J.P.; Sousa, E.; Martins, P.J.; Pimentel, J.M. Augmented renal clearance in septic patients and implications for vancomycin optimisation. Int. J. Antimicrob. Agents 2012, 39, 420–423. [Google Scholar] [CrossRef]
- He, N.; Dong, F.; Liu, W.; Zhai, S. A Systematic Review of Vancomycin Dosing in Patients with Hematologic Malignancies or Neutropenia. Infect. Drug Resist. 2020, 13, 1807–1821. [Google Scholar] [CrossRef]
- Teramachi, H.; Hatakeyama, H.; Matsushita, R.; Imai, Y.; Miyamoto, K.; Tsuji, A. Evaluation of predictability for vancomycin dosage regimens by the Bayesian method with Japanese population pharmacokinetic parameters. Biol. Pharm. Bull. 2002, 25, 1333–1338. [Google Scholar] [CrossRef] [Green Version]
- Shimamoto, Y.; Fukuda, T.; Tominari, S.; Fukumoto, K.; Ueno, K.; Dong, M.; Tanaka, K.; Shirasaka, T.; Komori, K. Decreased vancomycin clearance in patients with congestive heart failure. Eur. J. Clin. Pharmacol. 2013, 69, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Imaura, M.; Yokoyama, H.; Kohyama, T.; Nagafuchi, H.; Kohata, Y.; Takahashi, H.; Yamada, Y. Prediction of distribution volume of vancomycin in critically ill patients using extravascular lung water and pulmonary vascular permeability indices. Int. J. Clin. Pharmacol. Ther. 2012, 50, 814–820. [Google Scholar] [CrossRef] [PubMed]
- Carter, B.L.; Damer, K.M.; Walroth, T.A.; Buening, N.R.; Foster, D.R.; Sood, R. A Systematic Review of Vancomycin Dosing and Monitoring in Burn Patients. J. Burn. Care Res. 2015, 36, 641–650. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, J.F.; Hahn, S.R.; Gonçalves, J.; Fresco, P. Vancomycin therapeutic drug monitoring and population pharmacokinetic models in special patient subpopulations. Pharmacol. Res. Perspect. 2018, 6, e00420. [Google Scholar] [CrossRef] [PubMed]
- Nunn, M.O.; Corallo, C.E.; Aubron, C.; Poole, S.; Dooley, M.J.; Cheng, A.C. Vancomycin dosing: Assessment of time to therapeutic concentration and predictive accuracy of pharmacokinetic modeling software. Ann. Pharmacother. 2011, 45, 757–763. [Google Scholar] [CrossRef]
- Pai, M.P.; Hong, J.; Krop, L. Peak Measurement for Vancomycin AUC Estimation in Obese Adults Improves Precision and Lowers Bias. Antimicrob. Agents Chemother. 2017, 61, e02490-16. [Google Scholar] [CrossRef] [Green Version]
- Dunn, R.D.; Crass, R.L.; Hong, J.; Pai, M.P.; Krop, L.C. Vancomycin volume of distribution estimation in adults with class III obesity. Am. J. Health Syst. Pharm. 2019, 76, 2013–2018. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, M.; Iketani, O.; Ichinose, N.; Enoki, Y.; Taguchi, K.; Uno, S.; Uwamino, Y.; Hasegawa, N.; Matsumoto, K. Evaluation for optimal dosing of vancomycin in patients with different physical types. J. Infect. Chemother. 2019, 25, 735–737. [Google Scholar] [CrossRef]
- Takahashi, Y.; Takesue, Y.; Takubo, S.; Ishihara, M.; Nakajima, K.; Tsuchida, T.; Ikeuchi, H.; Uchino, M. Preferable timing of therapeutic drug monitoring in patients with impaired renal function treated with once-daily administration of vancomycin. J. Infect. Chemother. 2013, 19, 709–716. [Google Scholar] [CrossRef]
- Prybylski, J.P. Vancomycin Trough Concentration as a Predictor of Clinical Outcomes in Patients with Staphylococcus aureus Bacteremia: A Meta-analysis of Observational Studies. Pharmacotherapy 2015, 35, 889–898. [Google Scholar] [CrossRef]
- Casapao, A.M.; Lodise, T.P.; Davis, S.L.; Claeys, K.C.; Kullar, R.; Levine, D.P.; Rybak, M.J. Association between vancomycin day 1 exposure profile and outcomes among patients with methicillin-resistant Staphylococcus aureus infective endocarditis. Antimicrob. Agents Chemother. 2015, 59, 2978–2985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lodise, T.P.; Drusano, G.L.; Zasowski, E.; Dihmess, A.; Lazariu, V.; Cosler, L.; McNutt, L.-A. Vancomycin exposure in patients with methicillin-resistant Staphylococcus aureus bloodstream infections: How much is enough? Clin. Infect. Dis. 2014, 59, 666–675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yanagihara, K.; Watanabe, A.; Aoki, N.; Matsumoto, T.; Yoshida, M.; Sato, J.; Wakamura, T.; Sunakawa, K.; Kadota, J.; Kiyota, H.; et al. Nationwide surveillance of bacterial respiratory pathogens conducted by the surveillance committee of Japanese Society of Chemotherapy, the Japanese Association for Infectious Diseases, and the Japanese Society for Clinical Microbiology in 2012: General view of the pathogens’ antibacterial susceptibility. J. Infect. Chemother. 2017, 23, 587–597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takesue, Y.; Kusachi, S.; Mikamo, H.; Sato, J.; Watanabe, A.; Kiyota, H.; Iwata, S.; Kaku, M.; Hanaki, H.; Sumiyama, Y.; et al. Antimicrobial susceptibility of pathogens isolated from surgical site infections in Japan: Comparison of data from nationwide surveillance studies conducted in 2010 and 2014–2015. J. Infect. Chemother. 2017, 23, 339–348. [Google Scholar] [CrossRef] [Green Version]
- Hanaki, H.; Cui, L.; Ikeda-Dantsuji, Y.; Nakae, T.; Honda, J.; Yanagihara, K.; Takesue, Y.; Matsumoto, T.; Sunakawa, K.; Kaku, M.; et al. Antibiotic susceptibility survey of blood-borne MRSA isolates in Japan from 2008 through 2011. J. Infect. Chemother. 2014, 20, 527–534. [Google Scholar] [CrossRef]
- Brown, J.; Brown, K.; Forrest, A. Vancomycin AUC24/MIC ratio in patients with complicated bacteremia and infective endocarditis due to methicillin-resistant Staphylococcus aureus and its association with attributable mortality during hospitalization. Antimicrob. Agents Chemother. 2012, 56, 634–638. [Google Scholar] [CrossRef] [Green Version]
- Holmes, N.E.; Turnidge, J.D.; Munckhof, W.J.; Robinson, J.O.; Korman, T.M.; O’Sullivan, M.V.; Anderson, T.L.; Roberts, S.A.; Warren, S.J.C.; Gao, W.; et al. Vancomycin AUC/MIC ratio and 30-day mortality in patients with Staphylococcus aureus bacteremia. Antimicrob. Agents Chemother. 2013, 57, 1654–1663. [Google Scholar] [CrossRef] [Green Version]
- Gawronski, K.M.; Goff, D.A.; Brown, J.; Khadem, T.M.; Bauer, K.A. A stewardship program’s retrospective evaluation of vancomycin AUC24/MIC and time to microbiological clearance in patients with methicillin-resistant Staphylococcus aureus bacteremia and osteomyelitis. Clin. Ther. 2013, 35, 772–779. [Google Scholar] [CrossRef]
- De Cock, P.A.; Desmet, S.; De Jaeger, A.; Biarent, D.; Dhont, E.; Herck, I.; Vens, D.; Colman, S.; Stove, V.; Commeyne, S.; et al. Impact of vancomycin protein binding on target attainment in critically ill children: Back to the drawing board? J. Antimicrob. Chemother. 2017, 72, 801–804. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, T.; Yoshida, S.; Okada, H.; Suzuki, A.; Niwa, T.; Suzuki, K.; Ohmori, T.; Kobayashi, R.; Baba, H.; Suyuki, K.; et al. Risk factors for decreased teicoplanin trough concentrations during initial dosing in critically ill patients. Pharmazie 2019, 74, 120–124. [Google Scholar] [CrossRef]
- Berthoin, K.; Ampe, E.; Tulkens, P.M.; Carryn, S. Correlation between free and total vancomycin serum concentrations in patients treated for Gram-positive infections. Int. J. Antimicrob. Agents 2009, 34, 555–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butterfield, J.M.; Patel, N.; Pai, M.P.; Rosano, T.G.; Drusano, G.L.; Lodise, T.P. Refining vancomycin protein binding estimates: Identification of clinical factors that influence protein binding. Antimicrob. Agents Chemother. 2011, 55, 4277–4282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crandon, J.L.; MacVane, S.H.; Nicolau, D.P. Clinical laboratory-based assay methodologies may underestimate and increase variability of vancomycin protein binding in hospitalized patients. Pharmacotherapy 2014, 34, 203–209. [Google Scholar] [CrossRef]
- Sun, H.; Maderazo, E.G.; Krusell, A.R. Serum protein-binding characteristics of vancomycin. Antimicrob. Agents Chemother. 1993, 37, 1132–1136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, W.G.; Lee, M.G.; Lee, M.H.; Kim, N.D. Factors influencing the protein binding of vancomycin. Biopharm. Drug Dispos. 1991, 12, 637–646. [Google Scholar] [CrossRef]
- Byrne, C.J.; Parton, T.; McWhinney, B.; Fennell, J.P.; O’Byrne, P.; Deasy, E.; Egan, S.; Enright, H.; Desmond, R.; Ryder, S.A.; et al. Population pharmacokinetics of total and unbound teicoplanin concentrations and dosing simulations in patients with haematological malignancy. J. Antimicrob. Chemother. 2018, 73, 995–1003. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, Y.; Kawasaki, K.; Sato, Y.; Tokimatsu, I.; Itoh, H.; Hiramatsu, K.; Takeyama, M.; Kadota, J. Is peak concentration needed in therapeutic drug monitoring of vancomycin? A pharmacokinetic-pharmacodynamic analysis in patients with methicillin-resistant staphylococcus aureus pneumonia. Chemotherapy 2012, 58, 308–312. [Google Scholar] [CrossRef]
- Suzuki, A.; Hamada, Y.; Ikeda, H.; Tanaka, H.; Yanagihara, M.; Namiki, M.; Watanabe, T.; Sasaki, T. Comparison of trough concentration and area under the curve of vancomycin associated with the incidence of nephrotoxicity and predictors of a high trough level. J. Infect. Chemother. 2021, 27, 455–460. [Google Scholar] [CrossRef]
- Soriano, A.; Marco, F.; Martínez, J.A.; Pisos, E.; Almela, M.; Dimova, V.P.; Alamo, D.; Ortega, M.; Lopez, J.; Mensa, J. Influence of vancomycin minimum inhibitory concentration on the treatment of methicillin-resistant Staphylococcus aureus bacteremia. Clin. Infect. Dis. 2008, 46, 193–200. [Google Scholar] [CrossRef]
- Takesue, Y.; Nakajima, K.; Takahashi, Y.; Ichiki, K.; Ishihara, M.; Wada, Y.; Tsuchida, T.; Uchino, M.; Ikeuchi, H. Clinical characteristics of vancomycin minimum inhibitory concentration of 2 μg/mL methicillin-resistant Staphylococcus aureus strains isolated from patients with bacteremia. J. Infect. Chemother. 2011, 17, 52–57. [Google Scholar] [CrossRef]
- Van Hal, S.J.; Lodise, T.P.; Paterson, D.L. The clinical significance of vancomycin minimum inhibitory concentration in Staphylococcus aureus infections: A systematic review and meta-analysis. Clin. Infect. Dis. 2012, 54, 755–771. [Google Scholar] [CrossRef] [Green Version]
- Lodise, T.P.; Graves, J.; Evans, A.; Graffunder, E.; Helmecke, M.; Lomaestro, B.M.; Stellrecht, K. Relationship between vancomycin MIC and failure among patients with methicillin-resistant Staphylococcus aureus bacteremia treated with vancomycin. Antimicrob. Agents Chemother. 2008, 52, 3315–3320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moise, P.A.; Sakoulas, G.; Forrest, A.; Schentag, J.J. Vancomycin in vitro bactericidal activity and its relationship to efficacy in clearance of methicillin-resistant Staphylococcus aureus bacteremia. Antimicrob. Agents Chemother. 2007, 51, 2582–2586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.L.; Wang, J.T.; Sheng, W.H.; Chen, Y.C.; Chang, S.C. Nosocomial methicillin-resistant Staphylococcus aureus (MRSA) bacteremia in Taiwan: Mortality analyses and the impact of vancomycin, MIC = 2 mg/L, by the broth microdilution method. BMC Infect. Dis. 2010, 10, 159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, C.L.; Osaki-Kiyan, P.; Haque, N.Z.; Perri, M.B.; Donabedian, S.; Zervos, M.J. Daptomycin versus vancomycin for bloodstream infections due to methicillin-resistant Staphylococcus aureus with a high vancomycin minimum inhibitory concentration: A case-control study. Clin. Infect. Dis. 2012, 54, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Murray, K.P.; Zhao, J.J.; Davis, S.L.; Kullar, R.; Kaye, K.S.; Lephart, P.; Rybak, M.J. Early use of daptomycin versus vancomycin for methicillin-resistant Staphylococcus aureus bacteremia with vancomycin minimum inhibitory concentration >1 mg/L: A matched cohort study. Clin. Infect. Dis. 2013, 56, 1562–1569. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.G.; Murakami, Y.; Andes, D.R.; Craig, W.A. Inoculum effects of ceftobiprole, daptomycin, linezolid, and vancomycin with Staphylococcus aureus and Streptococcus pneumoniae at inocula of 10(5) and 10(7) CFU injected into opposite thighs of neutropenic mice. Antimicrob. Agents Chemother. 2013, 57, 1434–1441. [Google Scholar] [CrossRef] [Green Version]
- Jumah, M.T.B.; Vasoo, S.; Menon, S.R.; De, P.P.; Neely, M.; Teng, C.B. Pharmacokinetic/Pharmacodynamic Determinants of Vancomycin Efficacy in Enterococcal Bacteremia. Antimicrob. Agents Chemother. 2018, 62, e01602-17. [Google Scholar] [CrossRef] [Green Version]
- Safdar, N.; Andes, D.; Craig, W.A. In vivo pharmacodynamic activity of daptomycin. Antimicrob. Agents Chemother. 2004, 48, 63–68. [Google Scholar] [CrossRef] [Green Version]
- Andes, D.; van Ogtrop, M.L.; Peng, J.; Craig, W.A. In vivo pharmacodynamics of a new oxazolidinone (linezolid). Antimicrob. Agents Chemother. 2002, 46, 3484–3489. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, K.; Watanabe, E.; Kanazawa, N.; Fukamizu, T.; Shigemi, A.; Yokoyama, Y.; Ikawa, K.; Morikawa, N.; Takeda, Y. Pharmacokinetic/pharmacodynamic analysis of teicoplanin in patients with MRSA infections. Clin. Pharmacol. 2016, 8, 15–18. [Google Scholar] [CrossRef] [Green Version]
- Yamada, K.; Ueda, T.; Nakajima, K.; Ichiki, K.; Tsuchida, T.; Otani, N.; Takahashi, Y.; Ikeuchi, H.; Uchino, M.; Koshiba, M.; et al. Clinical efficacy of teicoplanin in the treatment of bloodstream infection caused by methicillin-resistant coagulase-negative staphylococci. J. Infect. Chemother. 2020, 26, 459–464. [Google Scholar] [CrossRef]
- Chu, Y.; Luo, Y.; Quan, X.; Jiang, M.; Zhou, B. Intermittent vs. continuous vancomycin infusion for gram-positive infections: A systematic review and meta-analysis. J. Infect. Public Health 2020, 13, 591–597. [Google Scholar] [CrossRef]
- Flannery, A.H.; Bissell, B.D.; Bastin, M.T.; Morris, P.E.; Neyra, J.A. Continuous Versus Intermittent Infusion of Vancomycin and the Risk of Acute Kidney Injury in Critically Ill Adults: A Systematic Review and Meta-Analysis. Crit. Care Med. 2020, 48, 912–918. [Google Scholar] [CrossRef]
- Hutschala, D.; Kinstner, C.; Skhirdladze, K.; Thalhammer, F.; Müller, M.; Tschernko, E. Influence of vancomycin on renal function in critically ill patients after cardiac surgery: Continuous versus intermittent infusion. Anesthesiology 2009, 111, 356–365. [Google Scholar] [CrossRef] [Green Version]
- Wysocki, M.; Delatour, F.; Faurisson, F.; Rauss, A.; Pean, Y.; Misset, B.; Thomas, F.; Timsit, J.F.; Similowski, T.; Mentex, H.; et al. Continuous versus intermittent infusion of vancomycin in severe Staphylococcal infections: Prospective multicenter randomized study. Antimicrob. Agents Chemother. 2001, 45, 2460–2467. [Google Scholar] [CrossRef] [Green Version]
- Van Maarseveen, E.M.; Gipmans, S.G.H.; van Zanten, A.R.H. Exposure Variability and Target Attainment of Vancomycin: A Systematic Review Comparing Intermittent and Continuous Infusion. Ther. Drug Monit. 2020, 42, 381–391. [Google Scholar] [CrossRef] [PubMed]
- Garreau, R.; Falquet, B.; Mioux, L.; Bourguignon, L.; Ferry, T.; Tod, M.; Wallet, F.; Friggeri, A.; Richard, J.-C.; Goutelle, S. Population Pharmacokinetics and Dosing Simulation of Vancomycin Administered by Continuous Injection in Critically Ill Patient. Antibiotics 2021, 10, 1228. [Google Scholar] [CrossRef] [PubMed]
- Bissell, B.D.; Riggi, G.; Morrison, C. Evaluation of Continuous Infusion Vancomycin Administration in a Critically Ill Trauma Population. J. Intensive Care Med. 2020, 35, 570–575. [Google Scholar] [CrossRef] [PubMed]
- Vuagnat, A.; Stern, R.; Lotthe, A.; Schuhmacher, H.; Duong, M.; Hoffmeyer, P.; Bernard, L. High dose vancomycin for osteomyelitis: Continuous vs. intermittent infusion. J. Clin. Pharm. Ther. 2004, 29, 351–357. [Google Scholar] [CrossRef]
- Waineo, M.F.; Kuhn, T.C.; Brown, D.L. The pharmacokinetic/pharmacodynamic rationale for administering vancomycin via continuous infusion. J. Clin. Pharm. Ther. 2015, 40, 259–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mei, H.; Wang, J.; Che, H.; Wang, R.; Cai, Y. The clinical efficacy and safety of vancomycin loading dose: A systematic review and meta-analysis. Medicine 2019, 98, e17639. [Google Scholar] [CrossRef] [PubMed]
- Rosini, J.M.; Laughner, J.; Levine, B.J.; Papas, M.A.; Reinhardt, J.F.; Jasani, N.B. A randomized trial of loading vancomycin in the emergency department. Ann. Pharmacother. 2015, 49, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Ortwine, J.K.; Zasowski, E.J.; Pogue, J.M.; Hanni, C.; Giuliano, C.; Casapao, A.M.; Mynatt, R.; Rybak, M.J. Relationship Status between Vancomycin Loading Dose and Treatment Failure in Patients with MRSA Bacteremia: It’s Complicated. Infect. Dis. Ther. 2019, 8, 627–640. [Google Scholar] [CrossRef] [Green Version]
- Álvarez, O.; Plaza-Plaza, J.C.; Ramirez, M.; Peralta, A.; Amador, C.A.; Amador, R. Pharmacokinetic Assessment of Vancomycin Loading Dose in Critically Ill Patients. Antimicrob. Agents Chemother. 2017, 61, e00280-17. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.T.; Fang, C.T.; Chen, Y.C.; Chang, S.C. Necessity of a loading dose when using vancomycin in critically ill patients. J. Antimicrob. Chemother. 2001, 47, 246. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Udy, A.A.; Kirkpatrick, C.M.; Lipman, J.; Roberts, J.A. Improving vancomycin prescription in critical illness through a drug use evaluation process: A weight-based dosing intervention study. Int. J. Antimicrob. Agents 2012, 39, 69–72. [Google Scholar] [CrossRef]
- Jeon, Y.L.; Kim, M.H.; Yang, H.S.; Kang, S.Y.; Lee, W.I. Optimum initial loading dose of vancomycin for pneumonia caused by methicillin-resistant Staphylococcus aureus. J Infect. 2016, 72, 115–118. [Google Scholar] [CrossRef]
- Wesolek, J.L.; McNorton, K.; Delgado, G., Jr.; Giuliano, C.A. Effect of vancomycin initial dosing on time to systemic inflammatory response syndrome resolution in patients with methicillin-resistant Staphylococcus aureus bacteremia. J. Chemother. 2018, 30, 101–106. [Google Scholar] [CrossRef]
- Šíma, M.; Hartinger, J.; Cikánková, T.; Slanař, O. Importance of vancomycin loading doses in intermittent infusion regimens. J. Infect. Chemother. 2018, 24, 247–250. [Google Scholar] [CrossRef]
- Crass, R.L.; Dunn, R.; Hong, J.; Krop, L.C.; Pai, M.P. Dosing vancomycin in the super obese: Less is more. J. Antimicrob. Chemother. 2018, 73, 3081–3086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oda, K.; Katanoda, T.; Hashiguchi, Y.; Kondo, S.; Narita, Y.; Iwamura, K.; Nosaka, K.; Hirofumi, J.; Saito, H. Development and evaluation of a vancomycin dosing nomogram to achieve the target area under the concentration-time curve. A retrospective study. J. Infect. Chemother. 2020, 26, 444–450. [Google Scholar] [CrossRef] [PubMed]
- Patel, N.; Pai, M.P.; Rodvold, K.A.; Lomaestro, B.; Drusano, G.L.; Lodise, T.P. Vancomycin: We can’t get there from here. Clin. Infect. Dis. 2011, 52, 969–974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kassel, L.E.; Van Matre, E.T.; Foster, C.J.; Fish, D.N.; Mueller, S.W.; Sherman, D.S.; Wempe, M.F.; MacLaren, R.; Neumann, R.T.; Kiser, T.H. A Randomized Pharmacokinetic and Pharmacodynamic Evaluation of Every 8-Hour and 12-Hour Dosing Strategies of Vancomycin and Cefepime in Neurocritically ill Patients. Pharmacotherapy 2018, 38, 921–934. [Google Scholar] [CrossRef]
- Rybak, M.J.; Bailey, E.M.; Warbasse, L.H. Absence of “red man syndrome” in patients being treated with vancomycin or high-dose teicoplanin. Antimicrob. Agents Chemother. 1992, 36, 1204–1207. [Google Scholar] [CrossRef] [Green Version]
- Healy, D.P.; Sahai, J.V.; Fuller, S.H.; Polk, R.E. Vancomycin-induced histamine release and “red man syndrome”: Comparison of 1- and 2-hour infusions. Antimicrob. Agents Chemother. 1990, 34, 550–554. [Google Scholar] [CrossRef] [Green Version]
- Healy, D.P.; Polk, R.E.; Garson, M.L.; Rock, D.T.; Comstock, T.J. Comparison of steady-state pharmacokinetics of two dosage regimens of vancomycin in normal volunteers. Antimicrob. Agents Chemother. 1987, 31, 393–397. [Google Scholar] [CrossRef] [Green Version]
- Cockcroft, D.W.; Gault, M.H. Prediction of creatinine clearance from serum creatinine. Nephron 1976, 16, 31–41. [Google Scholar] [CrossRef]
- Alqahtani, S.; Almatrafi, A.; Bin Aydan, N.; Alqahtani, M.; Alzamil, F.; Alsultan, A. Optimization of Vancomycin Dosing Regimen in Cancer Patients using Pharmacokinetic/Pharmacodynamic Modeling. Pharmacotherapy 2020, 40, 1192–1200. [Google Scholar] [CrossRef]
- Alqahtani, S.A.; Alsultan, A.S.; Alqattan, H.M.; Eldemerdash, A.; Albacker, T.B. Population Pharmacokinetic Model for Vancomycin Used in Open Heart Surgery: Model-Based Evaluation of Standard Dosing Regimens. Antimicrob. Agents Chemother. 2018, 62, e00088-18. [Google Scholar] [CrossRef] [Green Version]
- Heffernan, A.J.; Germano, A.; Sime, F.B.; Roberts, J.A.; Kimura, E. Vancomycin population pharmacokinetics for adult patients with sepsis or septic shock: Are current dosing regimens sufficient? Eur. J. Clin. Pharmacol. 2019, 75, 1219–1226. [Google Scholar] [CrossRef]
- Tsai, D.; Stewart, P.C.; Hewagama, S.; Krishnaswamy, S.; Wallis, S.C.; Lipman, J.; Lipman, J.; Roberts, J.A. Optimised dosing of vancomycin in critically ill Indigenous Australian patients with severe sepsis. Anaesther. Intensive Care 2018, 46, 374–380. [Google Scholar] [CrossRef] [Green Version]
- Shime, N.; Kosaka, T.; Fujita, N. The importance of a judicious and early empiric choice of antimicrobial for methicillin-resistant Staphylococcus aureus bacteraemia. Eur. J. Clin. Microbiol. Infect. Dis. 2010, 29, 1475–1479. [Google Scholar] [CrossRef] [PubMed]
- Ishii, H.; Hirai, K.; Sugiyama, K.; Nakatani, E.; Kimura, M.; Itoh, K. Validation of a Nomogram for Achieving Target Trough Concentration of Vancomycin: Accuracy in Patients with Augmented Renal Function. Ther. Drug Monit. 2018, 40, 693–698. [Google Scholar] [CrossRef]
- Kullar, R.; Leonard, S.N.; Davis, S.L.; Delgado, G., Jr.; Pogue, J.M.; Wahby, K.A.; Falcione, B.; Rybak, M.J. Validation of the effectiveness of a vancomycin nomogram in achieving target trough concentrations of 15-20 mg/L suggested by the vancomycin consensus guidelines. Pharmacotherapy 2011, 31, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Broeker, A.; Nardecchia, M.; Klinker, K.P.; Derendorf, H.; Day, R.O.; Marriott, D.J.; Carland, J.E.; Stocker, S.L.; Wicha, S.G. Towards precision dosing of vancomycin: A systematic evaluation of pharmacometric models for Bayesian forecasting. Clin. Microbiol. Infect. 2019, 25, 1286.e1–1286.e7. [Google Scholar] [CrossRef] [PubMed]
- Emoto, C.; Johnson, T.N.; McPhail, B.T.; Vinks, A.A.; Fukuda, T. Using a Vancomycin PBPK Model in Special Populations to Elucidate Case-Based Clinical PK Observations. CPT Pharmacomet. Syst. Pharmacol. 2018, 7, 237–250. [Google Scholar] [CrossRef] [PubMed]
- Elyasi, S.; Khalili, H. Vancomycin dosing nomograms targeting high serum trough levels in different populations: Pros and cons. Eur. J. Clin. Pharmacol. 2016, 72, 777–788. [Google Scholar] [CrossRef] [PubMed]
- Lines, J.; Burchette, J.; Kullab, S.M.; Lewis, P. Evaluation of a trough-only extrapolated area under the curve vancomycin dosing method on clinical outcomes. Int. J. Clin. Pharm. 2021, 43, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Niinuma, Y.; Imai, S.; Yamada, T.; Kagami, K.; Yamagami, A.; Miya, T.; Kasashi, K.; Kobayashi, M.; Iseki, K. Safety of administering a Ioading dose of vancomycin in patients with renal impairment. Jpn. J. Drug Monit. 2019, 36, 117–124. [Google Scholar]
Category, Grade | Definition |
---|---|
I | Strong recommendation with strong evidence for efficacy with clinical benefit |
II | General recommendation with moderate evidence for efficacy with clinical benefit |
III-A | Suggestion to encourage use by expert opinion without sufficient evidence |
III-B | Insufficient evidence to make any suggestion |
III-C | Suggestion to discourage use because of insufficient evidence |
IV | Recommendation against use with sufficient evidence of no clinical efficacy or increased adverse outcomes |
CLcr (mL/min) | Daily MD | 80 kg | 70 kg | 60 kg | 50 kg | 40 kg | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
LD | AUC24–48h | LD | AUC24–48h | LD | AUC24–48h | LD | AUC24–48h | LD | AUC24–48h | ||
100 | 1.25 g × 2 | 2 g | 512 | 2 g | 512 | 1.75 g | 504 | ||||
90 | 1.0 g × 2 | 2 g | 465 | 2 g | 465 | 1.75 g | 456 | 1.5 g | 446 | ||
80 | 1.0 g × 2 | 1.75 g | 496 | 1.75 g | 496 | 1.75 g | 496 | 1.5 g | 494 | ||
70 | 0.75 g × 2 | 1.75 g | 449 | 1.75 g | 449 | 1.75 g | 449 | 1.5 g | 435 | 1.25 g | 420 |
60 | 0.75 g × 2 | 1.75 g | 511 | 1.75 g | 511 | 1.75 g | 511 | 1.5 g | 492 | 1.25 g | 474 |
50 | 0.5 g × 2 | 1.75 g | 446 | 1.75 g | 446 | 1.75 g | 446 | 1.5 g | 423 | 1.25 g | 400 |
40 | 0.5 g × 2 | 1.75 g | 528 | 1.5 g | 497 | 1.5 g | 497 | 1.5 g | 497 | 1.25 g | 467 |
30 | 0.75 g × 1 | 1.75 g | 512 | 1.5 g | 472 | 1.5 g | 472 | 1.5 g | 472 | 1.25 g | 432 |
Regimen | LD | MD (q12h) | No. of Patients | Median (IQR) of AUC (μg·h/mL) | ||
---|---|---|---|---|---|---|
Day 1 | Day 2 | Steady State | ||||
A-1 | None | 15 mg/kg | 69 | 321.9 * (265.1–396.1) | 390.4 * (326.5–444.6) | 417.9 * (354.5–477.0) |
A-2 | None | 20 mg/kg | 20 | 355.9 * (303.1–455.7) | 429.8 (378.5–488.8) | 456.1 (420.0–503.3) |
B-1 | 25 mg/kg | 15 mg/kg | 64 | 410.0 * (352.3–473.5) | 407.0 * (353.0–454.6) | 422.3 ** (351.8–473.8) |
B-2 | 30 mg/kg | 20 mg/kg | 71 | 472.2 (403.3–543.4) | 459.9 (369.2–530.5) | 472.0 (374.7–556.8) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsumoto, K.; Oda, K.; Shoji, K.; Hanai, Y.; Takahashi, Y.; Fujii, S.; Hamada, Y.; Kimura, T.; Mayumi, T.; Ueda, T.; et al. Clinical Practice Guidelines for Therapeutic Drug Monitoring of Vancomycin in the Framework of Model-Informed Precision Dosing: A Consensus Review by the Japanese Society of Chemotherapy and the Japanese Society of Therapeutic Drug Monitoring. Pharmaceutics 2022, 14, 489. https://doi.org/10.3390/pharmaceutics14030489
Matsumoto K, Oda K, Shoji K, Hanai Y, Takahashi Y, Fujii S, Hamada Y, Kimura T, Mayumi T, Ueda T, et al. Clinical Practice Guidelines for Therapeutic Drug Monitoring of Vancomycin in the Framework of Model-Informed Precision Dosing: A Consensus Review by the Japanese Society of Chemotherapy and the Japanese Society of Therapeutic Drug Monitoring. Pharmaceutics. 2022; 14(3):489. https://doi.org/10.3390/pharmaceutics14030489
Chicago/Turabian StyleMatsumoto, Kazuaki, Kazutaka Oda, Kensuke Shoji, Yuki Hanai, Yoshiko Takahashi, Satoshi Fujii, Yukihiro Hamada, Toshimi Kimura, Toshihiko Mayumi, Takashi Ueda, and et al. 2022. "Clinical Practice Guidelines for Therapeutic Drug Monitoring of Vancomycin in the Framework of Model-Informed Precision Dosing: A Consensus Review by the Japanese Society of Chemotherapy and the Japanese Society of Therapeutic Drug Monitoring" Pharmaceutics 14, no. 3: 489. https://doi.org/10.3390/pharmaceutics14030489