Sirolimus Release from Biodegradable Polymers for Coronary Stent Application: A Review
Abstract
:1. Introduction
2. Synthetic Biodegradable Polymers
2.1. Poly-L-Lactic Acid
2.2. Poly-D,L-Lactic Acid Used for Biodegradable DESs
2.3. Poly(lactic-co-glycolic acid)
3. Natural Biodegradable Polymers
3.1. Collagen
3.2. Silk Fibroin
4. Conclusions and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sigwart, U.; Puel, J.; Mirkovitch, V.; Joffre, F.; Kappenberger, L. Intravascular stents to prevent occlusion and restenosis after transluminal angioplasty. N. Engl. J. Med. 1987, 19, 701–706. [Google Scholar] [CrossRef] [PubMed]
- Van Beusekom, H.M.M.; Whelan, D.M.; Hofma, S.H.; Krabbendam, S.C.; van Hinsbergh, W.W.M.; Verdouw, P.D.; van der Giessen, W.J. Long-term endothelial dysfunction is more pronounced after stenting than after balloon angioplasty in porcine coronary arteries. J. Am. Coll. Cardiol. 1998, 32, 1109–1117. [Google Scholar] [CrossRef] [Green Version]
- Fuke, S.; Maekawa, K.; Kawamoto, K.; Saito, H.; Sato, T.; Hioka, T.; Ohe, T. Impaired endothelial vasomotor function after sirolimus-eluting stent implantation. Circ. J. 2007, 71, 220–225. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; John, J.M.; Chew, D.P.; Lee, D.S.; Ellis, S.G.; Bhatt, D.L. Bare metal stent restenosis is not a benign clinical entity. Am. Heart J. 2006, 151, 1260–1264. [Google Scholar] [CrossRef] [PubMed]
- Shlofmitz, E.; Lantorno, M.; Waksman, R. Restenosis of drug-eluting stents, A new classification system based on disease mechanism to guide treatment and state-of-the-art review. Circ. Cardiovasc. Interv. 2019, 12, e007023. [Google Scholar] [CrossRef]
- Tada, T.; Byrne, R.; Simunovic, I.; King, L.A.; Cassese, S.; Joner, M.; Fusaro, M.; Schneider, S.; Schulz, S.; Ibrahim, T.; et al. Risk of stent thrombosis among bare-metal stents, first-generation drug-eluting stents, and second-generation drug-eluting stents. JACC Cardiovasc. Interv. 2013, 6, 1267–1274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freixo, C.; Ferreira, V.; Martins, J.; Almeida, R.; Caldeira, D.; Rosa, M.; Costa, J.; Ferreira, J. Efficacy and safety of sirolimus in the treatment of vascular anomalies: A systematic review. J. Vasc. Surg. 2020, 71, 328. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Li, X.; Le, Y. Amorphous nanoparticulate formulation of sirolimus and its tablets. Pharmaceutics 2018, 10, 155. [Google Scholar] [CrossRef] [Green Version]
- Srdanovic, I. Factors influencing 1st and 2nd generation drug-eluting stent performance: Understanding the basic pharmaceutical drug-in-polymer formulation factors contributing to stent thrombosis do we really need to eliminate the polymer? J. Pharm. Pharm. Sci. 2021, 24, 435–461. [Google Scholar] [CrossRef]
- Galløe, A.M.; Kelbæk, H.; Thuesen, L.; Hansen, H.S.; Ravkilde, J.; Hansen, P.R.; Christiansen, E.H.; Abildgaard, U.; Stephansen, G.; Lassen, J.F.; et al. 10-Year clinical outcome after randomization to treatment by sirolimus- or paclitaxel-eluting coronary stents. J. Am. Coll. Cardiol. 2017, 69, 616–624. [Google Scholar] [CrossRef]
- Nakazawa, G.; Otsuka, F.; Nakano, M.; Vorpahl, M.; Yazdani, S.K.; Ladich, E.; Kolodgie, F.D.; Finn, A.V.; Virmani, R. The pathology of neoatherosclerosis in human coronary implants: Bare-metal and drug-eluting stents. J. Am. Coll. Cardiol. 2011, 57, 1314–1322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collet, C.; de Winter, R.J.; Onuma, Y.; Serruys, P.W. The absorb bioresorbable vascular scaffold for the treatment of coronary artery disease. Expert Opin. Drug Deliv. 2016, 13, 1489–1499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimura, T.; Morimoto, T.; Nakagawa, Y.; Kawai, K.; Miyazaki, S.; Muramatsu, T.; Shiode, N.; Namura, M.; Sone, T.; Oshima, S.; et al. Very late stent thrombosis and late target lesion revascularization after sirolimus-eluting stent implantation. Circulation 2012, 125, 584–591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stone, G.W.; Midei, M.; Newman, W.; Sanz, M.; Hermiller, J.B.; Williams, J.; Farhat, N.; Mahaffey, K.W.; Cutlip, D.E.; Fitzgerald, P.J.; et al. Comparison of an everolimus-eluting stent and a paclitaxel-eluting stent in patients with coronary artery disease. JAMA 2008, 299, 1903–1913. [Google Scholar] [CrossRef]
- Von Birgelen, C.; Basalus, M.W.; Tandjung, K.; van Houwelingen, K.G.; Stoel, M.G.; Louwerenburg, J.W.; Linssen, G.C.; Saïd, S.A.; Kleijne, M.A.; Sen, H.; et al. A randomized controlled trial in second-generation zotarolimus-eluting resolute stents versus everolimus-eluting xience v stents in real-world patients: The twente trial. J. Am. Coll. Cardiol. 2012, 59, 1350–1361. [Google Scholar] [CrossRef] [Green Version]
- Kolandaivelu, K.; Swaminathan, R.; Gibson, W.J.; Kolachalama, V.B.; Nguyen-Ehrenreich, K.; Giddings, V.L.; Coleman, L.; Wong, G.K.; Edelman, E.R. Stent Thrombogenicity Early in High-Risk Interventional Settings Is Driven by Stent Design and Deployment and Protected by Polymer-Drug Coatings. Circulation 2011, 123, 1400–1409. [Google Scholar] [CrossRef] [Green Version]
- Paramasivam, G.; Devasia, T.; Ubaid, S.; Shetty, A.; Nayak, K.; Pai, U.; Rao, M.S. In-stent restenosis of drug-eluting stents: Clinical presentation and outcomes in a real-world scenario. Egypt Heart J. 2019, 71, 28. [Google Scholar] [CrossRef]
- Savonitto, S.; Caracciolo, M.; Cattaneo, M.; de Servi, S. Management of patients with recently implanted coronary stents on dual antiplatelet therapy who need to undergo major surgery. J. Thromb. Haemost. 2011, 9, 2133–2142. [Google Scholar] [CrossRef]
- Song, R.; Murphy, M.; Li, C.; Ting, K.; Soo, C.; Zheng, Z. Current development of biodegradable polymeric materials for biomedical applications. Drug Des. Devel. Ther. 2018, 12, 3117–3145. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.-S.; Kang, J.; Hwang, D.; Han, J.-K.; Yang, H.-M.; Kang, H.-J.; Koo, B.-K.; Kim, S.Y.; Park, K.-H.; Rha, S.-W.; et al. Durable polymer versus biodegradable polymer drug-eluting stents after percutaneous coronary intervention in patients with acute coronary syndrome. Circulation 2021, 143, 1081–1091. [Google Scholar] [CrossRef]
- Bedair, T.M.; EINaggar, M.A.; Joung, Y.K.; Han, D.K. Recent advances to accelerate re-endothelialization for vascular stents. J. Tissue. Eng. 2017, 8, 2041731417731546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Visan, A.I.; Popescu-Pelin, G.; Socol, G. Degradation behavior of polymers used as coating materials for drug delivery-A basic review. Polymers 2021, 13, 1272. [Google Scholar] [CrossRef] [PubMed]
- MacKeigan, J.P.; Krueger, D.A. Differentiating the mTOR inhibitors everolimus and sirolimus in the treatment of tuberous sclerosis complex. Neuro-Oncology 2015, 17, 1550–1559. [Google Scholar] [CrossRef] [PubMed]
- Jensen, L.O.; Thayssen, P.; Christiansen, E.H.; Maeng, M.; Ravkilde, J.; Hansen, K.N.; Hansen, H.S.; Krusell, L.; Kaltoft, A.; Tilsted, H.H.; et al. Safety and efficacy of everolimus-versus sirolimus-eluting stents: 5-year results from SORT OUT IV. J. Am. Coll. Cardiol. 2016, 23, 751–762. [Google Scholar] [CrossRef] [PubMed]
- Maqsood, M.; Seide, G. Biodegradable flame retardants for biodegradable polymer. Biomolecules 2020, 10, 1038. [Google Scholar] [CrossRef]
- Hawker, C.J.; Wooley, K.L. The Convergence of Synthetic Organic and Polymer Chemistries. Science 2005, 309, 1200–1205. [Google Scholar] [CrossRef] [Green Version]
- Balla, E.; Daniilidis, V.; Karlioti, G.; Kalamas, T.; Stefanidou, M.; Bikiaris, N.D.; Vlachopoulos, A.; Koumentakou, I.; Bikiaris, D.N. Poly(lactic Acid): A versatile biobased polymer for the future with multifunctional properties—From monomer synthesis, polymerization techniques and molecular weight increase to PLA applications. Polymers 2021, 13, 1822. [Google Scholar] [CrossRef]
- Beauson, J.; Schillani, G.; der Schueren, L.V.; Goutianos, S. The effect of processing conditions and polymer crystallinity on the mechanical properties of unidirectional self-reinforced PLA composites. Compos. Part A Appl. Sci. Manuf. 2022, 152, 106668. [Google Scholar] [CrossRef]
- Pauck, R.G.; Reddy, B.D. Computational analysis of the radial mechanical performance of PLLA coronary artery stents. Med. Eng. Phys. 2015, 37, 7–12. [Google Scholar] [CrossRef]
- Lincoff, A.M.; Furst, J.G.; Ellis, S.G.; Tuch, R.J.; Topol, E.J. Sustained local delivery of dexamethasone by a novel intravascular eluting stent to prevent restenosis in the porcine coronary injury model. J. Am. Coll. Cardiol. 1997, 29, 808–816. [Google Scholar] [CrossRef] [Green Version]
- Langer, R.; Anderson, D.G.; Farah, S. Physical and mechanical properties of PLA, and their functions in widespread applications-A comprehensive review. Adv. Drug Deliv. Rev. 2016, 107, 367–392. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Jing, Q.; Li, Y.; Yang, L.; Liu, H.; Shang, X.; Jiang, T.; Li, Z.; Zhang, H. Sustained clinical safety and efficacy of a biodegradable-polymer coated sirolimus-eluting stent in “real-world” practice: Three-year outcomes of the CREATE (multi-center registry of Excel biodegradable polymer drug eluting stents) study. Catheter. Cardiovasc. Interv. 2012, 79, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Bangalore, S.; Toklu, B.; Patel, N.; Feit, F.; Stone, G.W. Newer-generation ultrathin strut drug-eluting stents versus older second-generation thicker strut drug-eluting stents for coronary artery disease. Circulation 2018, 138, 2216–2226. [Google Scholar] [CrossRef]
- Xu, W.; Yagoshi, K.; Koga, Y.; Sasaki, M.; Niidome, T. Optimized polymer coating for magnesium alloy-based bioresorbable scaffolds for long-lasting drug release and corrosion resistance. Colloids. Surf. B 2018, 163, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Illner, S.; Kohse, S.; Michaelis, C.; Reske, T.; Eickner, T.; Schmitz, K.; Grabow, N. In vitro study of sirolimus release from nonwoven PLLA matrices. Curr. Direc. Biomed. Eng. 2018, 4, 591–594. [Google Scholar] [CrossRef]
- Nishio, S.; Kosuga, K.; Igaki, K.; Okada, M.; Kyo, E.; Tsuji, T.; Takeuchi, E.; Inuzuka, Y.; Takeda, S.; Hata, T.; et al. Long-term (>10 years) clinical outcomes of first-in-man biodegradable poly-l-lactic acid coronary stents: Igaki-Tamai stents. Circulation 2012, 125, 2343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuwabara, K.; Zen, K.; Yashige, M.; Ito, N.; Kadoya, Y.; Wakana, N.; Yanishi, K.; Matoba, S. Comparative analysis of the paclitaxel-eluting peripheral igaki-tamai stent and the drug-free Igaki-Tamai stent using optical coherence tomography and histological analysis in a porcine iliac artery model. Circ. J. 2020, 84, 799–805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, L.; Wang, Q.; Wu, Y.; Hu, X.; Xie, J.; Ge, J. Short-term effects of fully bioabsorbable PLLA coronary stents in a porcine model. Polym. Bull. 2012, 68, 1171–1181. [Google Scholar] [CrossRef]
- Kaul, U. Fully Bioresorbable PLA-Based Sirolimus-Eluting MeRes 100 Scaffold (Meril Life Science); Asia PCR: Singapore, 2016; Available online: https://media.pcronline.com/diapos/AsiaPCR2016/45-20160121_1741_Room_336_Kaul_Upendra_1111_(2000)/Kaul_Upendra_20160121_1705_Room_336.pdf (accessed on 21 January 2016).
- Ang, H.Y.; Huang, Y.Y.; Lim, S.T.; Wong, P.; Joner, M.; Foin, N. Mechanical behavior of polymer-based vs. metallic-based bioresorbable stents. J. Tborac. Dis. 2017, 9, 923–934. [Google Scholar] [CrossRef] [Green Version]
- Kharlamov, A.N. Undiscovered pathology of transient scaffolding remains a driver of failures in clinical trials. World J. Cardiol. 2018, 10, 165–186. [Google Scholar] [CrossRef]
- Valenti, S.; Diaz, A.; Romanini, M.; del Valle, L.J.; Puiggali, J.; Tamarit, J.L.; Macovez, R. Amorphous binary dispersions of chloramphenicol in enantiomeric pure and racemic poly-lactic acid: Morphology, molecular relaxations, and controlled drug release. Int. J. Pharm. 2019, 568, 118565. [Google Scholar] [CrossRef]
- Kadota, K.; Muramatsu, T.; Iwabuchi, M.; Saito, S.; Hayashi, Y.; Ikari, Y.; Nanto, S.; Fujii, K.; Inoue, N.; Namiki, A.; et al. Randomized comparison of the nobori biolimus A9-eluting stent with the sirolimus-eluting stent in patients with stenosis in native coronary arteries. Catheter. Cardiovasc. Interv. 2012, 80, 789–796. [Google Scholar] [CrossRef] [PubMed]
- Mori, M.; Sakata, K.; Yokawa, J.; Nakanishi, C.; Murai, K.; Okada, H.; Shimojima, M.; Yoshida, S.; Yoshioka, K.; Takuwa, Y.; et al. Everolimus-eluting biodegradable abluminal coating stent versus durable conformal coating stent: Termination of the inflammatory response associated with neointimal healing in a porcine coronary model. J. Interven. Cardiol. 2020, 2020, 1956015. [Google Scholar] [CrossRef] [PubMed]
- Noori, M.; Christiansen, E.; Raungaard, B.; Junker, A.; Christensen, M.K.; Kahlert, J.; Jakobsen, L.; Freeman, P.; Hansen, K.; Terkelsen, C.; et al. TCT-278 Five-Year Outcomes After Revascularization with the Biodegradable Polymer Ultrathin Strut Sirolimus-Eluting Orsiro Stent or the Biodegradable Polymer Biolimus-Eluting Nobori Stent in Patients with and Without Acute Coronary Syndromes: From the SORT OUT VII Trial. J. Am. Coll. Cardiol. 2021, 78, B114. [Google Scholar]
- Verma, B.; Patel, A.; Katyal, D.; Singh, V.R.; Singh, A.K.; Singh, A.; Kumar, M.; Nagarkoti, P. Real world experience of a biodegradable polymer sirolimus-eluting stent (Yukon choice PC elite) in patients with acute ST-segment elevation myocardial infarction undergoing primary angioplasty: A multicentric observational study (The elite India study). Open Access Maced. J. Med. Sci. 2019, 7, 1103–1109. [Google Scholar] [CrossRef]
- Li, C.; Guan, C.; Zhang, R.; Yang, Y.; Ma, C.; Li, H.; Chen, S.; Han, Y.; Xu, B.; Gao, R. Safety and efficacy of a novel abluminal groove-filled biodegradable polymer sirolimus-eluting stent for the treatment of de novo coronary lesions: Final five-year results of the patient-level pooled analysis from the TARGET I and TARGET II trials. Cardiac. Cardiovascular. Interv. 2019, 93, 818–824. [Google Scholar] [CrossRef] [PubMed]
- Chevalier, B.; Smits, P.C.; Carrié, D.; Mehilli, J.; Van Boven, A.J.; Regar, E.; Sawaya, F.J.; Chamié, D.; Kraaijeveld, A.O.; Hovasse, T.; et al. Serial assessment of strut coverage of biodegradable polymer drug-eluting stent at 1, 2, and 3 months after stent implantation by optical frequency domain imaging. Circulation 2017, 10, e004801. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Sato, K.; Koga, Y.; Sasaki, M.; Niidome, T. Corrosion resistance of HF-treated Mg alloy stent following balloon expansion and its improvement through biodegradable polymer coating. J. Coat. Technol. Res. 2020, 17, 1023–1032. [Google Scholar] [CrossRef]
- Colombo, A.; Chandrasekhar, J.; Aquino, M.; Ong, T.K.; Sartori, S.; Baber, U.; Lee, M.; Iniguez, A.; Hajek, P.; Borisov, B.; et al. Safety and efficacy of the COMBO bio-engineered stent in an all-comer PCI cohort: 1-Year final clinical outcomes from the MASCOT post-marketing registry. Int. J. Cardiol. 2019, 283, 67–72. [Google Scholar] [CrossRef]
- Li, F.; Gu, Y.; Hua, R.; Ni, Z.; Zhao, G. In vitro release study of sirolimus from a PDLLA matrix on a bioresorbable drug-eluting stent. J. Drug Deliv. Sci. Technol. 2018, 48, 88–95. [Google Scholar] [CrossRef]
- Kim, S.M.; Park, S.B.; Bedair, T.M.; Kim, M.H.; Park, B.J.; Joung, Y.K.; Han, D.K. The effect of solvents and hydrophilic additice on stable coating and controllable sirolimus release system for drug-eluting stent. Mater. Sci. Eng. C 2017, 78, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Biocompatibility, biodegradation and biomedical applications of poly(lactic acid)/poly(lactic-co-glycolic acid) micro and nanoparticles. J. Pharm. Investig. 2019, 49, 347–380. [CrossRef]
- Gentile, P.; Chiono, V.; Carmagnola, I.; Hatton, P.V. An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int. J. Mol. Sci. 2014, 15, 3640–3659. [Google Scholar] [CrossRef]
- Han, Y.; Xu, B.; Jing, Q.; Lu, S.; Yang, L.; Xu, K.; Li, Y.; Li, J.; Guan, C.; Kirtane, A.J.; et al. A randomized comparison of novel biodegradable polymer- and durable polymer-coated cobalt-chromium sirolimus-eluting stents. J. Am. Coll. Cardiol. Intv. 2014, 7, 1352–1360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.; Shen, L.; Yin, J.; Chen, J.; Qian, J.; Ge, L.; Ge, J. Twelve-month angiographic and clinical outcomes of the Xinsorb bioresorbable sirolimus-eluting scaffold and a metallic stent in patients with coronary artery disease. Int. J. Cardiol. 2019, 293, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Bennett, J.; Dubois, C. A novel platinum chromium everolimus-eluting stent for the treatment of coronary artery disease. Biologics 2013, 7, 149–159. [Google Scholar] [CrossRef] [Green Version]
- Sarno, G.; Lagerqvist, B.; Olivecrona, G.; Varenhorst, C.; Danielewicz, M.; Hambraeus, K.; Lindholm, D.; Ramunddal, T.; Witt, N.; James, S. Real-life clinical outcomes with everolimus eluting platinum chromium stent with an abluminal biodegradable polymer in patients from the Swedish coronary angiography and angioplasty registry (SCAAR). Catheter. Cardiovasc. Interv. 2017, 90, 881–887. [Google Scholar] [CrossRef]
- Tzafriri, A.R.; Garcia-Polite, F.; Li, X.; Keating, J.; Balaguer, J.M.; Zani, B.; Bailey, L.; Markham, P.; Kiorpes, T.C.; Carlyle, W.; et al. Defining drug and target protein distributions after stent-based drug release: Durable versus deployable coatings. J. Control. Rel. 2018, 274, 102–108. [Google Scholar] [CrossRef]
- Takahashi, K.; Serruys, P.W.; Kogame, N.; Buszman, P.; Lurz, P.; Jessurun, G.A.; Koch, K.T.; Troquay, R.P.; Hamer, B.; Ophuis, T.O.; et al. Final 3-year outcomes of MiStent biodegradable polymer crystalline sirolimus-eluting stent versus Xience permanent polymer everolimus-eluting stent. Circ. Cardiovasc. Interv. 2020, 13, e008737. [Google Scholar] [CrossRef]
- Xu, B.; Gao, R.; Yang, Y.; Cao, X.; Qin, L.; Li, Y.; Li, Z.; Li, X.; Lin, H.; Guo, Y.; et al. Biodegradable polymer-based sirolimus-eluting stents with differing elution and absorption kinetics. J. Am. Coll. Cardiol. 2016, 67, 2249–2258. [Google Scholar] [CrossRef]
- Jia, S.; Guan, C.; Yuan, J.; Cao, X.; Qin, L.; Li, Y.; Li, Z.; Nie, S.; Hou, S.; Zhang, M.; et al. Two-year safety evaluation of a biodegradable polymer sirolimus-eluting stent with increased drug elution and polymer absorption kinetics in complex patient and lesion cohort. Catheter. Cardiovasc. Interv. 2020, 95, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Pappalardo, D.; Mathisen, T.; Wistrand, A.F. Biocompatibility of resorbable polymers: A historical perspective and framework for the future. Biomacromolecules 2019, 20, 1465–1477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makadia, H.K.; Siegel, S.J. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 2011, 3, 1377–1397. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Braatz, R.D. A mechanistic model for drug release in PLGA biodegradable stent coatings coupled with polymer degradation and erosion. J. Biomed. Mater. Res. A 2014, 103, 2269–2279. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Q.; Chu, Z.; Li, X.; Kang, H.; Yang, X.; Fan, Y. The effect of fluid shear stress on the in vitro release kinetics of sirolimus from PLGA films. Polymers 2017, 9, 618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbasnezhad, N.; Zirak, N.; Shirinbayan, M.; Tcharkhtchi, A.; Bakir, F. On the importance physical and mechanical properties of PLGA films during drug release. J. Drug Deliv. Sci. Technol. 2021, 63, 102446. [Google Scholar] [CrossRef]
- Kamaly, N.; Yameen, B.; Wu, J.; Farokhzad, O.C. Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release. Chem. Rev. 2016, 116, 2602–2663. [Google Scholar] [CrossRef] [Green Version]
- Abbasnezhad, N.; Kebdani, M.; Shirinbayan, M.; Champmartin, S.; Tcharkhtchi, A.; Kouidri, S.; Bakir, F. Development of a model based on physical mechanisms for the explanation of drug release: Application to diclofenac release from polyurethane films. Polymers 2021, 13, 1230. [Google Scholar] [CrossRef]
- Reddy, M.S.B.; Ponnamma, D.; Choudhary, R.; Sadasivuni, K.K. A Comparative Review of Natural and Synthetic Biopolymer Composite Scaffolds. Polymers 2021, 12, 1105. [Google Scholar] [CrossRef]
- Bealer, E.J.; Onissema-Karimu, S.; Rivera-Galletti, A.; Francis, M.; Wilkowski, J.; Salas-de la Cruz, D.; Hu, X. Protein-polysaccharide composite materials: Fabrication and applications. Polymers 2020, 12, 464. [Google Scholar] [CrossRef] [Green Version]
- León-López, A.; Morales-Peñaloza, A.; Martínez-Juárez, V.M.; Vargas-Torres, A.; Zeugolis, D.I.; Aguirre-Álvarez, G. Hydrolyzed Collagen—Sources and Applications. Molecules 2019, 24, 4031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jafari, H.; Lista, A.; Siekapen, M.M.; Ghaffari-Bohlouli, P.; Nie, L.; Alimoradi, H.; Shavandi, A. Fish collagen: Extraction, characterization, and applications for biomaterials engineering. Polymers 2020, 12, 2230. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Yan, J.; Qiu, F.; Song, X.; Fu, G.; Ji, J. Heparin/collagen multilayer as a thromboresistant and endothelial favorable coating for intravascular stent. J. Biomed. Mater. Res. A 2011, 96, 132–141. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.C.; Liang, H.F.; Chiu, Y.L.; Chang, Y.; Wei, H.J.; Sung, H.W. A novel drug-eluting stent spray-coated with multi-layers of collagen and sirolimus. J. Control. Rel. 2005, 108, 178–189. [Google Scholar] [CrossRef]
- Wallace, D.G.; Rosenblatt, J. Collagen gel systems for sustained delivery and tissue engineering. Adv. Drug Deliv. Rev. 2003, 55, 1631–1649. [Google Scholar] [CrossRef]
- An, B.; Lin, Y.S.; Brodsky, B. Collagen interactions: Drug design and delivery. Adv. Drug Deliv. Rev. 2016, 97, 69–84. [Google Scholar] [CrossRef]
- Jung, S.H.; Han, J.H.; Park, H.S.; Lee, J.J.; Yang, S.Y.; Kim, Y.H.; Heo, K.S.; Myung, C.S. Inhibition of collagen-induced platelet aggregation by the Secobutanolide Secolincomolide A from Lindera obtusiloba Blume. Front Pharmacol. 2017, 8, 560. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Wu, H.; Lu, L.; He, Q.; Xi, B.; Yu, H.; Luo, R.; Wang, Y.; Zhang, X. A tailored extracellular matrix (ECM)—Mimetic coating for cardiovascular stents by stepwise assembly of hyaluronic acid and recombinant human type III collagen. Biomaterials 2021, 276, 121055. [Google Scholar] [CrossRef]
- Asakura, T.; Okushita, K.; Williamson, M.P. Analysis of the structure of Bombyx mori silk fibroin by NMR. Macromolecules 2015, 48, 2345–2357. [Google Scholar] [CrossRef]
- Asakura, T.; Tanaka, T.; Tanaka, R. Advanced silk fibroin biomaterials and application to small-diameter silk vascular grafts. ACS Biomater. Sci. Eng. 2019, 5, 5561–5577. [Google Scholar] [CrossRef]
- Xu, W.; Yagoshi, K.; Asakura, T.; Sasaki, M.; Niidome, T. Silk fibroin as a coating polymer for sirolimus-eluting magnesium alloy stents. ACS Appl. Bio. Mater. 2020, 3, 531–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terada, D.; Yokoyama, Y.; Hattori, S.; Kobayashi, H.; Tamada, Y. The outermost surface properties of silk fibroin films reflect ethanol-treatment conditions used in biomaterials preparation. Mater. Sci. Eng. C 2016, 58, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Jang, E.H.; Kim, J.H.; Park, S.H.; Kang, Y.; Park, S.; Lee, K.J.; Kim, J.H.; Youn, Y.N.; Ryu, W.H. Highly flexible and porous silk fibroin microneedle wraps for perivascular drug delivery. J. Control. Rel. 2021, 340, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Canup, B.S.B.; Tong, X.; Dai, F.; Xiao, B. Multi-responsive silk fibroin-based nanoparticles for drug delivery. Front Chem. 2020, 8, 585077. [Google Scholar] [CrossRef]
Stent | Platform | Coating | Drug | Drug-Release Rate | Absorption Time of the Polymer (Months) | Molecular Weight of PLLA | Ref. |
---|---|---|---|---|---|---|---|
Excel | 316L SS | PLLA | Sirolimus 14–15 µg/mm | 180 d, 100% | 6–9 | confidential | [32] |
BioMime | Co-Cr | PLLA + PLGA | Sirolimus 1.25 µg/mm2 | 30 d, 100% | 2 | confidential | [33] |
Orsiro | Co-Cr | Silicon carbide + PLLA | Sirolimus 1.4 µg/mm2 | 30 d, 45% | 14 | confidential |
Stent | Platform | Coating | Drug | Drug-Release Rate | Absorption Time of Polymer (Months) | Molecular Weight of PLLA | Ref. |
---|---|---|---|---|---|---|---|
Igaki-Tamai | PLLA | None | None | - | 24 | 183 kDa | [36] |
Xinsorb | PLLA | PLLA + PDLLA | Sirolimus 12 µg/mm | 28 d, 83% | 24–36 | 300 kDa | [37] |
MeRes 100 | PLLA | PDLLA | Sirolimus 1.25 µg/mm2 | 30 d, 82% | 24 | 200–220 kDa | [39] |
Absorb BVS | PLLA | PDLLA | Everolimus 100 µg/cm2 | 28 d, 80% | 24 | confidential | [41] |
Stent | Platform | Coating | Drug | Drug Release Rate | Absorption Time of Polymer (Months) | Ref. |
---|---|---|---|---|---|---|
Nobori | 316L SS | Palylene + PDLLA abluminal | Biolimus A9 15.6 µg/mm | 180 d, 100% | 6–9 | [43] |
Yukon choice PC | 316L SS | Shellac + PDLLA microporous | Sirolimus 4.8 µg/mm2 | 30 d, 90% | 2–3 | [46] |
Firehawk | Co-Cr | PDLLA abluminal-groove | Sirolimus 0.3 µg/mm2 | 30 d, 75% | 6–9 | [47] |
Ultimaster | Co-Cr | PDLLA-PCL gradient abluminal | Sirolimus 3.9 µg/mm | 90~120 d, 100% | 3–4 | [48] |
Combo | 316L SS | PDLLA + PLGA with anti-CD34+ abluminal | Sirolimus 5 µg/mm | 35 d, 100% | 3 | [50] |
Stent | Platform | Coating | Drug | Drug Release Rate | Absorption Time of Polymer (Months) | Ref. |
---|---|---|---|---|---|---|
Tivoli | Co-Cr | PLGA | Sirolimus 8 µg/mm | 30 d, 80% | 3–6 | [55] |
Synergy | Pt-Cr | PLGA abluminal-rollcoat | Everolimus 100 µg/cm2 | 90–120 d, 100% | 4 | [57] |
Mistent | Co-Cr | PLGA dry-powder electrostatic coating | Sirolimus 2.4 µg/mm2 | 45 d, 97% 270 d, 100% (in tissue) | 3 | [59] |
BuMa | 316L SS | PLGA electro-grafting | Sirolimus 1.4 µg/mm2 | 30 d, 100% | 2 | [61] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, W.; Sasaki, M.; Niidome, T. Sirolimus Release from Biodegradable Polymers for Coronary Stent Application: A Review. Pharmaceutics 2022, 14, 492. https://doi.org/10.3390/pharmaceutics14030492
Xu W, Sasaki M, Niidome T. Sirolimus Release from Biodegradable Polymers for Coronary Stent Application: A Review. Pharmaceutics. 2022; 14(3):492. https://doi.org/10.3390/pharmaceutics14030492
Chicago/Turabian StyleXu, Wei, Makoto Sasaki, and Takuro Niidome. 2022. "Sirolimus Release from Biodegradable Polymers for Coronary Stent Application: A Review" Pharmaceutics 14, no. 3: 492. https://doi.org/10.3390/pharmaceutics14030492
APA StyleXu, W., Sasaki, M., & Niidome, T. (2022). Sirolimus Release from Biodegradable Polymers for Coronary Stent Application: A Review. Pharmaceutics, 14(3), 492. https://doi.org/10.3390/pharmaceutics14030492