Nanomicelle-Microsphere Composite as a Drug Carrier to Improve Lung-Targeting Specificity for Lung Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Spm-PEG-PCL Copolymer
2.3. Characterization of the Polymers
2.4. Preparation of DOX-Loaded Micelles
2.5. Characterization of Micelles
2.6. Drug Loading Capacity (LC) and Encapsulation Efficiency (EE) of Micelles
2.7. Preparation of PLGA Microspheres
2.8. Combination of the Nanomicelles and Microspheres Characterization of Micelles
2.9. Characterization of the Microspheres and Nanomicelle-Microsphere Complex
2.10. In Vitro Drug Release
2.11. Detachment of the Nanomicelles from PLGA Microspheres
2.12. Cytotoxicity Assays
2.13. Cellular Uptake Study
2.13.1. Flow Cytometry
2.13.2. Confocal Laser Scanning Microscopy
2.14. Mechanism of Cellular Internalization
2.15. Orthotopic Lung Cancer Model in Mice
2.16. In Vivo Biodistribution
2.17. Statistical Analysis
3. Results and Discussion
3.1. Synthesis of Spm-PEG-PCL
3.2. Characterization of the Micelles
3.3. Characterization of the PLGA Microspheres and the Nanomicelle-Microsphere Complex
3.4. In Vitro Drug Release
3.5. Detachment of the Micelles from PLGA Microspheres
3.6. Cytotoxicity Assays
3.7. Cellular Uptake Study
3.7.1. Flow Cytometry
3.7.2. Confocal Laser Scanning Microscopy
3.8. Mechanism of Cellular Internalization
3.9. In Vivo Biodistribution
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviations | Full names |
CLSM | Confocal laser microscopy |
DLS | Dynamic light scattering |
DMF | Dimethylformamide |
DMSO | Dimethyl sulfoxide |
DOX·HCL | Doxorubicin Hydrochloride |
EE | The drug encapsulation efficiency |
EPR effect | The enhanced permeability and retention effect |
FBS | Fetal Bovine Serum |
FCM | Flow cytometry |
IC50 | Half maximal inhibitory concentration |
LC | The drug loading capacity |
LLC cells | Lewis lung carcinoma cells |
NPs | Nanoparticles |
PBS | Phosphate buffer saline |
PEG-PCL | Poly (ethylene glycol)-Poly (ε-caprolactone) |
PEMA | Poly(ethylene-alt-maleic anhydride) |
PLGA | Poly (lactic-co-glycolic acid) |
PTS | Polyamine transport system |
PVA | Poly(vinyl alcohol) |
RSD | Relative standard deviation |
SEM | Scanning electron microscopy |
Spm | Spermine |
TEM | Transmission electron microscopy |
References
- Bade, B.C.; Dela Cruz, C.S. Lung Cancer 2020: Epidemiology, Etiology, and Prevention. Clin. Chest Med. 2020, 41, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Ramalingam, S.S.; Owonikoko, T.K.; Khuri, F.R. Lung cancer: New biological insights and recent therapeutic advances. CA Cancer J. Clin. 2011, 61, 91–112. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Canales, J.; Parra-Cuentas, E.; Wistuba, I.I. Diagnosis and Molecular Classification of Lung Cancer. Cancer Treat. Res. 2016, 170, 25–46. [Google Scholar] [CrossRef] [PubMed]
- Nasim, F.; Sabath, B.F.; Eapen, G.A. Lung Cancer. Med. Clin. N. Am. 2019, 103, 463–473. [Google Scholar] [CrossRef] [PubMed]
- Jyoti, K.; Pandey, R.S.; Kush, P.; Kaushik, D.; Jain, U.K.; Madan, J. Inhalable bioresponsive chitosan microspheres of doxorubicin and soluble curcumin augmented drug delivery in lung cancer cells. Int. J. Biol. Macromol. 2017, 98, 50–58. [Google Scholar] [CrossRef]
- Smejkalova, D.; Nesporova, K.; Hermannova, M.; Huerta-Angeles, G.; Cozikova, D.; Vistejnova, L.; Safrankova, B.; Novotny, J.; Kucerik, J.; Velebny, V. Paclitaxel isomerisation in polymeric micelles based on hydrophobized hyaluronic acid. Int. J. Pharm. 2014, 466, 147–155. [Google Scholar] [CrossRef]
- Zhao, D.; Wu, J.; Li, C.; Zhang, H.; Li, Z.; Luan, Y. Precise ratiometric loading of PTX and DOX based on redox-sensitive mixed micelles for cancer therapy. Colloids Surf. B Biointerfaces 2017, 155, 51–60. [Google Scholar] [CrossRef]
- Diao, Y.Y.; Li, H.Y.; Fu, Y.H.; Han, M.; Hu, Y.L.; Jiang, H.L.; Tsutsumi, Y.; Wei, Q.C.; Chen, D.W.; Gao, J.Q. Doxorubicin-loaded PEG-PCL copolymer micelles enhance cytotoxicity and intracellular accumulation of doxorubicin in adriamycin-resistant tumor cells. Int. J. Nanomed. 2011, 6, 1955–1962. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Zhang, J.; Meng, F.; Deng, C.; Cheng, R.; Feijen, J.; Zhong, Z. cRGD-functionalized reduction-sensitive shell-sheddable biodegradable micelles mediate enhanced doxorubicin delivery to human glioma xenografts in vivo. J. Control. Release 2016, 233, 29–38. [Google Scholar] [CrossRef]
- Pegg, A.E.; Casero, R.A., Jr. Current status of the polyamine research field. Methods Mol Biol. 2011, 720, 3–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdulhussein, A.A.; Wallace, H.M. Polyamines and membrane transporters. Amino Acids 2014, 46, 655–660. [Google Scholar] [CrossRef] [PubMed]
- Kruczynski, A.; Vandenberghe, I.; Pillon, A.; Pesnel, S.; Goetsch, L.; Barret, J.M.; Guminski, Y.; Le Pape, A.; Imbert, T.; Bailly, C.; et al. Preclinical activity of F14512, designed to target tumors expressing an active polyamine transport system. Investig. New Drugs 2011, 29, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Alliot, J.; Theodorou, I.; Duconge, F.; Gravel, E.; Doris, E. Polyamine transport system-targeted nanometric micelles assembled from epipodophyllotoxin-amphiphiles. Chem. Commun. Camb. 2019, 55, 14968–14971. [Google Scholar] [CrossRef] [PubMed]
- Kruczynski, A.; Pillon, A.; Creancier, L.; Vandenberghe, I.; Gomes, B.; Brel, V.; Fournier, E.; Annereau, J.P.; Currie, E.; Guminski, Y.; et al. F14512, a polyamine-vectorized anti-cancer drug, currently in clinical trials exhibits a marked preclinical anti-leukemic activity. Leukemia 2013, 27, 2139–2148. [Google Scholar] [CrossRef]
- Li, J.; Mao, J.; Tang, J.; Li, G.; Fang, F.; Tang, Y.; Ding, J. Surface spermidine functionalized PEGylated poly(lactide-co-glycolide) nanoparticles for tumor-targeted drug delivery. RSC Adv. 2017, 7, 22954–22963. [Google Scholar] [CrossRef] [Green Version]
- Tavares, A.J.; Poon, W.; Zhang, Y.N.; Dai, Q.; Besla, R.; Ding, D.; Ouyang, B.; Li, A.; Chen, J.; Zheng, G.; et al. Effect of removing Kupffer cells on nanoparticle tumor delivery. Proc. Natl. Acad. Sci. USA 2017, 114, E10871–E10880. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.N.; Poon, W.; Tavares, A.J.; McGilvray, I.D.; Chan, W.C.W. Nanoparticle-liver interactions: Cellular uptake and hepatobiliary elimination. J. Control. Release 2016, 240, 332–348. [Google Scholar] [CrossRef]
- Bazile, D.; Prud’homme, C.; Bassoullet, M.T.; Marlard, M.; Spenlehauer, G.; Veillard, M. Stealth Me.PEG-PLA nanoparticles avoid uptake by the mononuclear phagocytes system. J. Pharm. Sci. 1995, 84, 493–498. [Google Scholar] [CrossRef]
- Pelaz, B.; del Pino, P.; Maffre, P.; Hartmann, R.; Gallego, M.; Rivera-Fernandez, S.; de la Fuente, J.M.; Nienhaus, G.U.; Parak, W.J. Surface Functionalization of Nanoparticles with Polyethylene Glycol: Effects on Protein Adsorption and Cellular Uptake. ACS Nano 2015, 9, 6996–7008. [Google Scholar] [CrossRef]
- Saadati, R.; Dadashzadeh, S.; Abbasian, Z.; Soleimanjahi, H. Accelerated blood clearance of PEGylated PLGA nanoparticles following repeated injections: Effects of polymer dose, PEG coating, and encapsulated anticancer drug. Pharm. Res. 2013, 30, 985–995. [Google Scholar] [CrossRef]
- Tang, Y.; Wang, X.; Li, J.; Nie, Y.; Liao, G.; Yu, Y.; Li, C. Overcoming the Reticuloendothelial System Barrier to Drug Delivery with a "Don’t-Eat-Us" Strategy. ACS Nano 2019, 13, 13015–13026. [Google Scholar] [CrossRef] [PubMed]
- Brenner, J.S.; Pan, D.C.; Myerson, J.W.; Marcos-Contreras, O.A.; Villa, C.H.; Patel, P.; Hekierski, H.; Chatterjee, S.; Tao, J.Q.; Parhiz, H.; et al. Red blood cell-hitchhiking boosts delivery of nanocarriers to chosen organs by orders of magnitude. Nat. Commun. 2018, 9, 2684. [Google Scholar] [CrossRef] [PubMed]
- Chambers, E.; Mitragotri, S. Prolonged circulation of large polymeric nanoparticles by non-covalent adsorption on erythrocytes. J. Control. Release 2004, 100, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Zelepukin, I.V.; Yaremenko, A.V.; Shipunova, V.O.; Babenyshev, A.V.; Balalaeva, I.V.; Nikitin, P.I.; Deyev, S.M.; Nikitin, M.P. Nanoparticle-based drug delivery via RBC-hitchhiking for the inhibition of lung metastases growth. Nanoscale 2019, 11, 1636–1646. [Google Scholar] [CrossRef] [PubMed]
- Qu, S.; Zhao, L.; Zhu, J.; Wang, C.; Dai, C.; Guo, H.; Hao, Z. Preparation and testing of cefquinome-loaded poly lactic-co-glycolic acid microspheres for lung targeting. Drug Deliv. 2017, 24, 745–751. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Xu, X.; Gong, J.; Mu, R.; Li, Y.; Wu, C.; Pang, J. Fabrication of chitosan-coated konjac glucomannan/sodium alginate/graphene oxide microspheres with enhanced colon-targeted delivery. Int. J. Biol. Macromol. 2019, 131, 209–217. [Google Scholar] [CrossRef]
- Huo, D.; Deng, S.; Li, L.; Ji, J. Studies on the poly(lactic-co-glycolic) acid microspheres of cisplatin for lung-targeting. Int. J. Pharm. 2005, 289, 63–67. [Google Scholar] [CrossRef]
- Wang, W.; Cai, Y.; Zhang, G.; Liu, Y.; Sui, H.; Park, K.; Wang, H. Sophoridine-loaded PLGA microspheres for lung targeting: Preparation, in vitro, and in vivo evaluation. Drug Deliv. 2016, 23, 3674–3680. [Google Scholar] [CrossRef] [Green Version]
- Anselmo, A.C.; Gupta, V.; Zern, B.J.; Pan, D.; Zakrewsky, M.; Muzykantov, V.; Mitragotri, S. Delivering nanoparticles to lungs while avoiding liver and spleen through adsorption on red blood cells. ACS Nano 2013, 7, 11129–11137. [Google Scholar] [CrossRef] [Green Version]
- Ng, K.E.; Amin, M.C.; Katas, H.; Amjad, M.W.; Butt, A.M.; Kesharwani, P.; Iyer, A.K. pH-Responsive Triblock Copolymeric Micelles Decorated with a Cell-Penetrating Peptide Provide Efficient Doxorubicin Delivery. Nanoscale Res. Lett. 2016, 11, 539. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Yao, L.; Li, J.; Qin, X.; Qiu, Z.; Chen, W. Preparation of poly(lactide-co-glycolide) microspheres and evaluation of pharmacokinetics and tissue distribution of BDMC-PLGA-MS in rats. Asian J. Pharm. Sci. 2018, 13, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Alcala-Alcala, S.; Urban-Morlan, Z.; Aguilar-Rosas, I.; Quintanar-Guerrero, D. A biodegradable polymeric system for peptide-protein delivery assembled with porous microspheres and nanoparticles, using an adsorption/infiltration process. Int. J. Nanomed. 2013, 8, 2141–2151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, W.K.; Araki, Y.; Yokoi, A.; Kawamura, G.; Matsuda, A.; Muto, H. Micro- and Nano-assembly of Composite Particles by Electrostatic Adsorption. Nanoscale Res. Lett. 2019, 14, 297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, Y.; Li, J.; Li, Y.; Song, L.; Li, D.; Peng, L.; Wan, Y.; Hua, S. Nanomicelles loaded with doxorubicin and curcumin for alleviating multidrug resistance in lung cancer. Int. J. Nanomed. 2016, 11, 5757–5770. [Google Scholar] [CrossRef] [Green Version]
- Doki, Y.; Murakami, K.; Yamaura, T.; Sugiyama, S.; Misaki, T.; Saiki, I. Mediastinal lymph node metastasis model by orthotopic intrapulmonary implantation of Lewis lung carcinoma cells in mice. Br. J. Cancer 1999, 79, 1121–1126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitani, N.; Murakami, K.; Yamaura, T.; Ikeda, T.; Saiki, I. Inhibitory effect of berberine on the mediastinal lymph node metastasis produced by orthotopic implantation of Lewis lung carcinoma. Cancer Lett. 2001, 165, 35–42. [Google Scholar] [CrossRef]
- Takeda, T.; Hattori, N.; Tokuhara, T.; Nishimura, Y.; Yokoyama, M.; Miyake, M. Adenoviral transduction of MRP-1/CD9 and KAI1/CD82 inhibits lymph node metastasis in orthotopic lung cancer model. Cancer Res. 2007, 67, 1744–1749. [Google Scholar] [CrossRef] [Green Version]
- Lim, W.Q.; Phua, S.Z.F.; Chen, H.; Zhao, Y. An oxaliplatin(iv) prodrug-based supramolecular self-delivery nanocarrier for targeted colorectal cancer treatment. Chem. Commun. Camb. 2018, 54, 12762–12765. [Google Scholar] [CrossRef]
- Jamali, Z.; Khoobi, M.; Hejazi, S.M.; Eivazi, N.; Abdolahpour, S.; Imanparast, F.; Moradi-Sardareh, H.; Paknejad, M. Evaluation of targeted curcumin (CUR) loaded PLGA nanoparticles for in vitro photodynamic therapy on human glioblastoma cell line. Photodiagnosis Photodyn. Ther. 2018, 23, 190–201. [Google Scholar] [CrossRef]
- Kim, H.; Lee, J.; Kim, T.H.; Lee, E.S.; Oh, K.T.; Lee, D.H.; Park, E.S.; Bae, Y.H.; Lee, K.C.; Youn, Y.S. Albumin-coated porous hollow poly(lactic-co-glycolic acid) microparticles bound with palmityl-acylated exendin-4 as a long-acting inhalation delivery system for the treatment of diabetes. Pharm. Res. 2011, 28, 2008–2019. [Google Scholar] [CrossRef]
- Lo, C.T.; Van Tassel, P.R.; Saltzman, W.M. Simultaneous release of multiple molecules from poly(lactide-co-glycolide) nanoparticles assembled onto medical devices. Biomaterials 2009, 30, 4889–4897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, A.; Tsai, H.Y.; Yates, M.Z. Steric stabilization of thermally responsive N-isopropylacrylamide particles by poly(vinyl alcohol). Langmuir 2010, 26, 18055–18060. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Liu, Q.; Chen, L.; Li, M.; Yin, J.; Zhu, X.; Chen, D. A pH-Sensitive Self-Assembled and Carrier-Free Nanoparticle Based on Charge Reversal for Enhanced Synergetic Chemo-Phototherapy. Adv. Healthc. Mater. 2020, 9, e2000899. [Google Scholar] [CrossRef] [PubMed]
- Guan, S.; Zhang, Q.; Bao, J.; Duan, T.; Hu, R.; Czech, T.; Tang, J. Phosphatidylserine targeting peptide-functionalized pH sensitive mixed micelles for enhanced anti-tumor drug delivery. Eur. J. Pharm. Biopharm. 2020, 147, 87–101. [Google Scholar] [CrossRef] [PubMed]
- Safari, R.; Meuwissen, R. Practical use of advanced mouse models for lung cancer. Methods Mol. Biol. 2015, 1267, 93–124. [Google Scholar] [CrossRef] [PubMed]
Sample | Size (nm) | PDI | Zeta Potential (mV) | LC (%) | EE (%) |
---|---|---|---|---|---|
PEG-PCL/DOX | 122.93 ± 12.79 | 0.20 ± 0.01 | −9.26 ± 2.21 | 13.46 ± 0.20 | 66.27 ± 1.50 |
Spm-PEG-PCL/DOX | 110.91 ± 9.68 | 0.19 ± 0.01 | +6.25 ± 0.54 | 13.91 ± 0.64 | 69.34 ± 3.37 |
T (min) | DOX Release (%) | Accumulated DOX Release (%) |
---|---|---|
5 | 7.95 ± 1.15 | 7.95 ± 1.15 |
15 | 3.86 ± 0.52 | 11.81 ± 1.60 |
30 | 2.10 ± 0.76 | 13.90 ± 1.90 |
Treatment Compositions | PEG-PCL/DOX | Spm-PEG-PCL/DOX | DOX·HCL |
---|---|---|---|
IC50 | 14.86 ± 2.54 | 3.84 ± 0.51 ** | 1.18 ± 0.43 |
Sample | 0.5 h | 1 h | 2 h |
---|---|---|---|
PEG-PCL | 21,067.30 ± 434.41 | 26,685.73 ± 648.97 | 35,738.67 ± 999.51 |
Spm-PEG-PCL | 49,120.83 ± 287.79 *** | 58,360.47 ± 1046.97 *** | 88,030.03 ± 4192.13 *** |
Sample | Control | 4 °C | Spm |
---|---|---|---|
PEG-PCL | 20,327.90 ± 230.95 | 13,754.80 ± 335.41 *** | 20,890.97 ± 394.37 |
Spm-PEG-PCL | 52,038.40 ± 698.02 | 35,277.60 ± 534.46 *** | 47,577.60 ± 527.92 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Bao, J.; Duan, T.; Hu, M.; He, Y.; Wang, J.; Hu, R.; Tang, J. Nanomicelle-Microsphere Composite as a Drug Carrier to Improve Lung-Targeting Specificity for Lung Cancer. Pharmaceutics 2022, 14, 510. https://doi.org/10.3390/pharmaceutics14030510
Zhang Q, Bao J, Duan T, Hu M, He Y, Wang J, Hu R, Tang J. Nanomicelle-Microsphere Composite as a Drug Carrier to Improve Lung-Targeting Specificity for Lung Cancer. Pharmaceutics. 2022; 14(3):510. https://doi.org/10.3390/pharmaceutics14030510
Chicago/Turabian StyleZhang, Qianqian, Jianwei Bao, Tijie Duan, Minxing Hu, Yuting He, Junwei Wang, Rongfeng Hu, and Jihui Tang. 2022. "Nanomicelle-Microsphere Composite as a Drug Carrier to Improve Lung-Targeting Specificity for Lung Cancer" Pharmaceutics 14, no. 3: 510. https://doi.org/10.3390/pharmaceutics14030510
APA StyleZhang, Q., Bao, J., Duan, T., Hu, M., He, Y., Wang, J., Hu, R., & Tang, J. (2022). Nanomicelle-Microsphere Composite as a Drug Carrier to Improve Lung-Targeting Specificity for Lung Cancer. Pharmaceutics, 14(3), 510. https://doi.org/10.3390/pharmaceutics14030510