Therapeutic Treatment Plan Optimization during the COVID-19 Pandemic: A Comprehensive Physicochemical Compatibility Study of Intensive Care Units Selected Drugs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Chemicals and Reagents
2.1.2. Instrumentation
2.2. Methodology
2.2.1. Stress Testing and High Performance LC Method Optimization and Validation
Degradation Protocol
Method Optimization
Method Validation
- (a)
- Validation protocol
- (b)
- Stability study
3. Results
3.1. Method Validation
3.1.1. Specificity
3.1.2. Linearity, Accuracy, and Precision
3.2. Impact of Stress Conditions on the Drugs’ Stability
3.2.1. Physical Stability
3.2.2. Chemical Degradation
Acidic and Basic Hydrolysis
Thermal Degradation
Oxidative Degradation
3.3. Compatibility Study
3.3.1. Content Variation
3.3.2. pH and Visual Control
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Public Health (France). Epidemiological Update—Situation on March 15, 2020 at Midnight. Available online: https://www.santepubliquefrance.fr/maladies-et-traumatismes/maladies-et-infections-respiratoires/infection-a-coronavirus/documents/bulletin-national/covid-19-point-epidemiologique-du-15-mars-2020 (accessed on 1 October 2020).
- Karlage, K.; Earhart, Z.; Green-Boesen, K.; Myrdal, P.B. Stability of midazolam hydrochloride injection 1-mg/mL solutions in polyvinyl chloride and polyolefin bags. Am. J. Health-Syst. Pharm. 2011, 68, 1537–1540. [Google Scholar] [CrossRef]
- de Diego, M.; Godoy, G.; Mennickent, S. Chemical stability of midazolam injection by high performance liquid chromatography. J. Sep. Sci. 2007, 30, 1833–1838. [Google Scholar] [CrossRef] [PubMed]
- Donnelly, R.F. Stability of diluted ketamine packaged in glass vials. Can. J. Hosp. Pharm. 2013, 66, 198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Potier, A.; Voyat, J.; Nicolas, A. Stability study of a clonidine oral solution in a novel vehicle designed for pediatric patients. Pharm. Dev. Technol. 2018, 23, 1067–1076. [Google Scholar] [CrossRef] [PubMed]
- Jäppinen, A.; Turpeinen, M.; Kokki, H.; Rasi, A.; Ojanen, T.; Pelkonen, O.; Naaranlahti, T. Stability of sufentanil and levobupivacaine solutions and a mixture in a 0.9% sodium chloride infusion stored in polypropylene syringes. Eur. J. Pharm. Sci. 2003, 19, 31–36. [Google Scholar] [CrossRef]
- ICH. Stability Testing of New Drug Substances and Products Q1A (R2). International Conference on Harmonisation of Technical Requirement for Registration of Pharmaceuticals for Human Use. March 2003. Available online: https://www.ema.europa.eu/en/ich-q2-r1-validation-analytical-procedures-text-methodology (accessed on 9 September 2021).
- Hubert, P.; Nguyen-Huu, J.J.; Boulanger, B.; Chapuzet, E.; Cohen, N.; Compagnon, P.A.; Dewé, W.; Feinberg, M.; Laurentie, M.; Mercier, N.; et al. Quantative analytical procedures: Harmonization of the approaches: Part II—Statistics. STP Pharma Prat. 2006, 16, 30–60. [Google Scholar]
- ICH Q3B (R2). Impurities in New Drug Products. June 2006. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/ich-q-3-b-r2-impurities-new-drug-products-step-5_en.pdf (accessed on 9 September 2021).
- Lambropoulos, J.; Spanos, G.A.; Lazaridis, N.V. Development and validation of an HPLC assay for fentanyl, alfentanil, and sufentanil in swab samples. J. Pharm. Biomed. Anal. 2000, 23, 421–428. [Google Scholar] [CrossRef]
- Ma, C.; Decarie, D.; Ensom, H.H.M. Stability of Clonidine suspension in oral plastic syringes. Am. J. Health-Syst. Pharm. 2014, 71, 657–661. [Google Scholar] [CrossRef] [PubMed]
- Roos, P.J.; Glerum, J.H.; Meilink, J.W. Stability of Sufentanil citrate in a portable pump reservoir, a glass container and a polyethylene container. Pharm. Weekblad 1992, 14, 196–200. [Google Scholar] [CrossRef] [PubMed]
- Good, P.D.; Schneider, J.J.; Ravenscroft, P.J. The compatibility and stability of midazolam and dexamethasone in infusion solutions. J. Pain Symptom Manag. 2004, 27, 471–475. [Google Scholar] [CrossRef] [PubMed]
- Sadou Yayé, H.; Secrétan, P.H.; Henriet, T.; Bernard, M.; Amrani, F.; Akrout, W.; Tilleul, P.; Yagoubi, N.; Do, B. Identification of the major degradation pathways of ticagrelor. J. Pharm. Biomed. Anal. 2015, 105, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Sanderson, P.E.; Zheng, W. Drug combination therapy increases successful drug repositioning. Drug Discov. Today 2016, 21, 1189–1195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foucquier, J.; Guedj, M. Analysis of drug combinations: Current methodological landscape. Pharmacol. Res. Perspect. 2015, 3, e00149. [Google Scholar] [CrossRef] [PubMed]
Drug Product | Route of Administration | Concentration | Excipients | Laboratory | API Structure | logP | pKa1 | pKa2 |
---|---|---|---|---|---|---|---|---|
Ketamine Chlorhydrate | Intramuscular or intravenous | 50 mg mL−1 | Chlorobutanol, water for injection | Panpharma | Ketamine | 2.65 | 7.16 | - |
Midazolam Chlorhydrate | Intramuscular, intravenous or rectal | 5 mg mL−1 | NaOH, NaCl, HCl, water for injection | Mylan | Midazolam | 3.33 | 3.48 | 6.57 |
Clonidine chlorhydrate (Catapressan®) | Intramuscularor intravenous | 0.15 mg mL−1 | NaCl, HCl, water for injection | Boehring | Clonidine | 2.49 | 8.16 | - |
Sufentanil Citrate | Intravenous and epidural | 5 μg mL−1 | NaOH, NaCl, HCl, water for injection | Mylan | Sufentanil | 3.61 | 8.86 | - |
Loxapine (Loxapac®) | Intramuscular | 25 mg mL−1 | Polysorbate 80, Propylene glycol, HCl, water for injection | EISAI | Loxapine | 3.46 | 1.02 | 7.18 |
Mixture n° | Composition | Mixture n° | Composition |
---|---|---|---|
M1 | Sufentanil + Clonidine | M14 | Loxapine + Clonidine + Midazolam |
M2 | Sufentanil + Ketamine | M15 | Loxapine + Sufentanil + Ketamine |
M3 | Sufentanil + Loxapine | M16 | Loxapine + Sufentanil + Clonidine |
M4 | Sufentanil + Midazolam | M17 | Loxapine + Clonidine + Ketamine |
M5 | Clonidine + Ketamine | M18 | Midazolam + Sufentanil + Ketamine |
M6 | Clonidine + Loxapine | M19 | Midazolam + Sufentanil + Clonidine |
M7 | Clonidine + Midazolam | M20 | Midazolam + Clonidine + Ketamine |
M8 | Ketamine + Loxapine | M21 | Sufentanil + Ketamine + Clonidine |
M9 | Ketamine + Midazolam | M22 | Loxapine + Midazolam + Sufentanil + Ketamine |
M10 | Loxapine + Midazolam | M23 | Loxapine + Midazolam + Sufentanil + Clonidine |
M11 | Midazolam + Loxapine + Clonidine + Ketamine + Sufentanil | M24 | Loxapine + Midazolam + Ketamine + Clonidine |
M12 | Loxapine + Midazolam + Sufentanil | M25 | Loxapine + Sufentanil + Ketamine + Clonidine |
M13 | Loxapine + Ketamine + Midazolam | M26 | Midazolam + Sufentanil + Ketamine + Clonidine |
Drug | Step 1: Drug Products Compatibility and Stability Study | Step 2: Stability Study in Clinical Use | ||||
---|---|---|---|---|---|---|
Initial Cc (µg mL−1) | Final Cc 2 Drugs Comb (µg mL−1) | Final Cc 3 Drugs Comb (µg mL−1) | Final Cc 4 Drugs Comb (µg mL−1) | Final Cc 5 Drugs Comb (µg mL−1) | Concentration after Dilution with NaCl 0.9% or G5% (µg mL−1) | |
Ketamine | 50,000 | 25,000 | 16,670 | 12,500 | 10,000 | 500 |
Clonidine | 150 | 75 | 50 | 37.5 | 30 | 5 |
Loxapine | 25,000 | 12,500 | 8330 | 6250 | 5000 | 500 |
Midazolam | 5000 | 2500 | 1670 | 1250 | 1000 | 500 |
Sufentanil | 5 | 2.5 | 1.67 | 1.25 | 1 | 1 |
Paramethers | Ketamine | Ketamine * | Midazolam | Midazolam * | Loxapine | Loxapine * | Clonidine | Clonidine * | Sufentanil | Sufentanil * |
---|---|---|---|---|---|---|---|---|---|---|
Linearity | ||||||||||
Concentration range (µg mL−1) | 1 to 10 | 1 to 10 | 5 to 50 | 5 to 50 | 5 to 50 | 5 to 50 | 21 to 39 | 21 to 39 | 0.7 to 1.3 | 0.7 to 1.3 |
Slope | 2.78 | 2.52 | 3.82 | 4.26 | 4.21 | 4.20 | 6.16 | 6.21 | 14.44 | 14.41 |
SD Slope | 0.04 | 0.042 | 0.03 | 0.01 | 0.09 | 0.09 | 0,08 | 0.07 | 0.68 | 0.45 |
y-intercept | −1.41 | −0.87 | −14.15 | −8.66 | −20.01 | −22.23 | 1.40 | 3.80 | 19.67 | 23.04 |
SD y-intercept | 0.22 | 0.25 | 0.77 | 0.23 | 2.88 | 2.68 | 2.36 | 2.28 | 0.69 | 0.46 |
Correlation coefficient (R) | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.96 | 0.98 |
LOD (µg mL−1) | 0.30 | 0.30 | 1.0 | 1.0 | 1.0 | 1.0 | 0.20 | 0.20 | 0.002 | 0.002 |
LOQ (µg mL−1) | 0.90 | 0.90 | 3.0 | 3.0 | 3.0 | 3.0 | 0.60 | 0.60 | 0.006 | 0.006 |
Accuracy | ||||||||||
%Recovery | 99.14 | 101.26 | 99.60 | 99.75 | 97.64 | 100.67 | 100.07 | 99.93 | 99.97 | 99.96 |
SD | 4.62 | 3.88 | 2.74 | 1.34 | 2.49 | 3.23 | 1.20 | 1.01 | 4.34 | 3.09 |
Precision | ||||||||||
Repeatability | 3.17% | 1.46% | 1.68% | 0.73% | 1.31% | 2.40% | 1.55% | 2.36% | 2.33% | 2.68% |
Reproducibility | 2.89% | 1.33% | 1.54% | 0.67% | 1.50% | 3.10% | 1.42% | 2.15% | 2.13% | 2.45% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarantini, M.G.; Ramos, S.; Secrétan, P.-H.; Guichard, L.; Hassani, L.; Bellanger, A.; Mayaux, J.; Tilleul, P.; El Kouari, F.; Sadou Yayé, H. Therapeutic Treatment Plan Optimization during the COVID-19 Pandemic: A Comprehensive Physicochemical Compatibility Study of Intensive Care Units Selected Drugs. Pharmaceutics 2022, 14, 550. https://doi.org/10.3390/pharmaceutics14030550
Tarantini MG, Ramos S, Secrétan P-H, Guichard L, Hassani L, Bellanger A, Mayaux J, Tilleul P, El Kouari F, Sadou Yayé H. Therapeutic Treatment Plan Optimization during the COVID-19 Pandemic: A Comprehensive Physicochemical Compatibility Study of Intensive Care Units Selected Drugs. Pharmaceutics. 2022; 14(3):550. https://doi.org/10.3390/pharmaceutics14030550
Chicago/Turabian StyleTarantini, Maria Gloria, Stéphanie Ramos, Philippe-Henri Secrétan, Laura Guichard, Lamia Hassani, Agnès Bellanger, Julien Mayaux, Patrick Tilleul, Fadwa El Kouari, and Hassane Sadou Yayé. 2022. "Therapeutic Treatment Plan Optimization during the COVID-19 Pandemic: A Comprehensive Physicochemical Compatibility Study of Intensive Care Units Selected Drugs" Pharmaceutics 14, no. 3: 550. https://doi.org/10.3390/pharmaceutics14030550
APA StyleTarantini, M. G., Ramos, S., Secrétan, P.-H., Guichard, L., Hassani, L., Bellanger, A., Mayaux, J., Tilleul, P., El Kouari, F., & Sadou Yayé, H. (2022). Therapeutic Treatment Plan Optimization during the COVID-19 Pandemic: A Comprehensive Physicochemical Compatibility Study of Intensive Care Units Selected Drugs. Pharmaceutics, 14(3), 550. https://doi.org/10.3390/pharmaceutics14030550