COVID-19 Drug Repurposing: A Network-Based Framework for Exploring Biomedical Literature and Clinical Trials for Possible Treatments
Abstract
:1. Introduction
1.1. Significance Statement
1.2. Computational Drug Repurposing Background
2. Materials and Methods
2.1. Datasets and Resources
2.2. Computational Approaches
2.2.1. Drug Name Extraction
2.2.2. Association Analysis and Network Construction
2.2.3. Clique Detection
2.2.4. Clinical Trials Analysis
2.2.5. Validation and Discovery
Algorithm 1 Search-n-Match. |
|
3. Results
4. Discussion
4.1. Two-Drug Combinations
- Estrogen (hormone) and estradiol (hormone) are not possible to combine. Estradiol is structurally identical (bioidentical) to estrogen produced in ovaries. Estradiol is one form of estrogen—there are others, too—and may be administered by a number of routes (e.g., by mouth, through the skin). It would not make sense to combine these two drugs together [43,44,45,46,47,48,49].
- Hydroxyethylidene, is etidronic acid, known as a drug its generic name is etidronate and azithromycin (macrolide antibiotic) are possible to combine. Azithromycin is an antibiotic (working against bacterial infections) that also has antiviral and anti-inflammatory properties. We found 1-hydroxyethylidene-1 listed as a synonym for Etidronic acid [50], the first generation bisphosphonate. Etidronate has been discontinued in the US though there are no drug interactions [51,52,53].
- Ruxolitinib (janus kinase inhibitor) and Colchicine (anti-gout) are possible to combine. Ruxolitinib (as the systemic treatment) is used for myelofibrosis (bone marrow cancer), polycythemia vera (a type of blood cancer), and graft-versus-host disease (a complication of bone marrow transplant). Colchicine is a medication to prevent and treat gout (too much uric acid). There are no reported drug interactions with this combination [59,60,61,62].
- Hydroxychloroquine (antimalarial) and favipiravir (antiviral) are possible to combine. Hydroxychloroquine is a medication used to treat malaria. Favipiravir is an antiviral developed for treating influenza [63]. It is not commercially available in the US. There are apparent drug interactions with this combination, although data are limited as favipiravir is not available [64,65,66,67].
- Hydroxychloroquine (antimalarial) and chloroquine (antimalarial) are not possible to combine. There is a known major drug interaction between them—increases QT-interval prolongation (causing irregular heartbeats). Hydroxychloroquine is an analog to chloroquine. They are different drugs, but essentially do the same thing. Clinically it would not make sense to combine them.
- Azithromycin (macrolide antibiotic) and ivermectin (anthelmintic) are possible to combine. Azithromycin is an antibiotic (working against bacterial infections) that also has antiviral and anti-inflammatory properties. Ivermectin is an antiparasitic (working against parasite infections). There are no known drug interactions with this combination.
- Hydroxychloroquine (antimalarial) and lopinavir (protease inhibitor) are probably not possible to combine. Hydroxychloroquine is a medication used to treat malaria. Lopinavir is a protease inhibitor used in the management of HIV. the UpToDate database [68] does not list major drug interactions. Unon searching Micromedex database [69] it indicated that there is a drug-drug interaction – the combination leads to a prolongation of QT interval.
- Hydroxychloroquine (antimalarial) and doxycycline (tetracycline antibiotic) are possible to combine. Hydroxychloroquine is a medication used to treat malaria. Doxycycline is an antibiotic used to treat bacterial infections. There are no reported drug interactions with this combination.
- Daclatasvir (antihepaciviral) and sofosbuvir (nonstructural protein 5B (NS5B) nucleoside polymerase inhibitor) are possible to combine, and their combination is already used in the treatment of hepatitis C. Daclatasvir is not available in the US, but the combination is marketed under the brand name Darvoni in other countries. There is a minor drug interaction; Daclatasvir may increase the concentration (the level in the body) of sofosbuvir.
4.2. Three or More Drugs Combination
- The three components hydroxychloroquine, azithromycin, and doxycycline match between four pairs of size-four cliques. This is due to the fact that the combination of hydroxychloroquine and azithromycin is possible and also the combination of hydroxychloroquine and doxycycline is possible, as indicated in Table 5. The evidence of using hydroxychloroquine and azithromycin is reported from the clinical trials [70,71,72,73]. Moreover, both hydroxychloroquine and ciprofloxacin doxycycline were commonly studied in clinical trials [74], where the results did not seem impressive and further investigations were recommended. There is no evidence that a combination of azithromycin and doxycycline has been investigated for COVID-19 treatment, although azithromycin may be used as an alternative to doxycycline for other infections (e.g., urogenital Chlamydia trachomatis infection) [75].
- The three components hydroxychloroquine, ritonavir, and favipiravir match between two pairs of size-four cliques. In Table 2 we reported the combination of hydroxychloroquine and favipiravir. This combination is particularly used as a home treatment of older people who are COVID-19 symptomatic. This recommendation for treatment is based on clinical trials that are still recruiting participants [76]. There was no evidence of combining ritonavir with favipiravir. There was, however, a comparison of efficacy between the two drugs, and the study concluded that “Favipiravir does not reduce the number of ICU admissions or intubations or in-hospital mortality” [77]. It is important to note that both lopinavir and ritonavir are used interchangeably due to the fact that they are both sold under the brand name Kaletra and, therefore the cliques that contain one also contain the other.
- The three components hydroxychloroquine, azithromycin, and ivermectin match between two pairs of size-four cliques. A combination of hydroxychloroquine and azithromycin was discussed above. Azithromycin and ivermectin are new components in these cliques. Both are co-administered for other conditions (scabies and impetigo) [78]. Recently, a study recommended adding ivermectin as a solution to the COVID-19 treatment protocol that combines hydroxychloroquine, favipiravir, and azithromycin [79].
- The three components hydroxychloroquine, lopinavir, and ritonavir. Both hydroxychloroquine and lopinavir have been explained in the second item of this list. As for lopinavir and ritonavir, they both explained earlier and commercialized under the brand name Kaltera.
4.3. Clinical Trials Supporting Evidence and Stats
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
Abbreviations
COVID-19 | Coronavirus disease of 2019 |
SARS | Severe acute respiratory syndrome |
ChEBI | Chemical Entities of Biological Interest |
FDA | Food and Drug Administration |
AI | Artificial intelligence |
ML | Machine learning |
NCT | National Clinical Trial |
ANN | Artificial neural networks |
References
- Melo-González, F.; Soto, J.A.; González, L.A.; Fernández, J.; Duarte, L.F.; Schultz, B.M.; Gálvez, N.M.; Pacheco, G.A.; Ríos, M.; Vázquez, Y.; et al. Recognition of Variants of Concern by Antibodies and T Cells Induced by a SARS-CoV-2 Inactivated Vaccine. Front. Immunol. 2021, 12, 747830. [Google Scholar] [CrossRef] [PubMed]
- Dyer, O. COVID-19: South Africa’s surge in cases deepens alarm over omicron variant. BMJ 2021, 375, n3013. [Google Scholar] [CrossRef] [PubMed]
- Jayk Bernal, A.; Gomes da Silva, M.M.; Musungaie, D.B.; Kovalchuk, E.; Gonzalez, A.; Delos Reyes, V.; Martín-Quirós, A.; Caraco, Y.; Williams-Diaz, A.; Brown, M.L.; et al. Molnupiravir for oral treatment of COVID-19 in nonhospitalized patients. N. Engl. J. Med. 2022, 386, 509–520. [Google Scholar] [CrossRef] [PubMed]
- Pavan, M.; Bolcato, G.; Bassani, D.; Sturlese, M.; Moro, S. Supervised Molecular Dynamics (SuMD) Insights into the mechanism of action of SARS-CoV-2 main protease inhibitor PF-07321332. J. Enzym. Inhib. Med. Chem. 2021, 36, 1645–1649. [Google Scholar] [CrossRef] [PubMed]
- Couzin-Frankel, J. Pfizer Antiviral Slashes COVID-19 Hospitalizations. 2021. Available online: https://www.science.org/toc/science/374/6569 (accessed on 1 March 2022). [CrossRef]
- Gates, L.E.; Hamed, A.A. The anatomy of the SARS-CoV-2 biomedical literature: Introducing the CovidX network algorithm for drug repurposing recommendation. J. Med. Internet Res. 2020, 22, e21169. [Google Scholar] [CrossRef]
- Zumla, A.; Chan, J.F.; Azhar, E.I.; Hui, D.S.; Yuen, K.Y. Coronaviruses—Drug discovery and therapeutic options. Nat. Rev. Drug Discov. 2016, 15, 327–347. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, T.; Krammer, F.; Iwasaki, A. The first 12 months of COVID-19: A timeline of immunological insights. Nat. Rev. Immunol. 2021, 21, 245–256. [Google Scholar] [CrossRef]
- Farha, M.A.; Brown, E.D. Drug repurposing for antimicrobial discovery. Nat. Microbiol. 2019, 4, 565–577. [Google Scholar] [CrossRef]
- Langedijk, J.; Mantel-Teeuwisse, A.K.; Slijkerman, D.S.; Schutjens, M.H.D. Drug repositioning and repurposing: Terminology and definitions in literature. Drug Discov. Today 2015, 20, 1027–1034. [Google Scholar] [CrossRef]
- Tobinick, E.L. The value of drug repositioning in the current pharmaceutical market. Drug News Perspect 2009, 22, 119–125. [Google Scholar] [CrossRef]
- Hameed, P.N.; Verspoor, K.; Kusljic, S.; Halgamuge, S. A two-tiered unsupervised clustering approach for drug repositioning through heterogeneous data integration. BMC Bioinform. 2018, 19, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Usha, T.; Middha, S.K.; Kukanur, A.A.; Shravani, R.V.; Anupama, M.N.; Harshitha, N.; Rahamath, A.; Kulkarni, S.S.; Goyal, A.K. Drug Repurposing Approaches: Existing Leads for Novel Threats and Drug Targets. Curr. Protein Pept. Sci. 2021, 22, 251–271. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wang, F.; Tang, J.; Nussinov, R.; Cheng, F. Artificial intelligence in COVID-19 drug repurposing. Lancet Digit. Health 2020, 2, e667–e676. [Google Scholar] [CrossRef]
- Levin, J.M.; Oprea, T.I.; Davidovich, S.; Clozel, T.; Overington, J.P.; Vanhaelen, Q.; Cantor, C.R.; Bischof, E.; Zhavoronkov, A. Artificial intelligence, drug repurposing and peer review. Nat. Biotechnol. 2020, 38, 1127–1131. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Guan, Y. COVID-19 drug repurposing: A review of computational screening methods, clinical trials, and protein interaction assays. Med. Res. Rev. 2021, 41, 5–28. [Google Scholar] [CrossRef]
- Wang, J. Fast identification of possible drug treatment of coronavirus disease-19 (COVID-19) through computational drug repurposing study. J. Chem. Inf. Model. 2020, 60, 3277–3286. [Google Scholar] [CrossRef]
- Gysi, D.M.; Do Valle, Í.; Zitnik, M.; Ameli, A.; Gan, X.; Varol, O.; Ghiassian, S.D.; Patten, J.; Davey, R.A.; Loscalzo, J.; et al. Network medicine framework for identifying drug-repurposing opportunities for COVID-19. Proc. Natl. Acad. Sci. USA 2021, 118, e2025581118. [Google Scholar] [CrossRef]
- Karaman, B.; Sippl, W. Computational drug repurposing: Current trends. Curr. Med. Chem. 2019, 26, 5389–5409. [Google Scholar] [CrossRef]
- Karatzas, E.; Kolios, G.; Spyrou, G.M. An Application of Computational Drug Repurposing Based on Transcriptomic Signatures. In Computational Methods for Drug Repurposing; Springer: New York, NY, USA, 2019; pp. 149–177. [Google Scholar]
- Loging, W.; Rodriguez-Esteban, R.; Hill, J.; Freeman, T.; Miglietta, J. Cheminformatic/bioinformatic analysis of large corporate databases: Application to drug repurposing. Drug Discov. Today Ther. Strateg. 2011, 8, 109–116. [Google Scholar] [CrossRef]
- Ulm, J.W.; Nelson, S.F. COVID-19 drug repurposing: Summary statistics on current clinical trials and promising untested candidates. Transbound. Emerg. Dis. 2021, 68, 313–317. [Google Scholar] [CrossRef]
- Xue, H.; Li, J.; Xie, H.; Wang, Y. Review of drug repositioning approaches and resources. Int. J. Biol. Sci. 2018, 14, 1232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.L.; Lo, K. Text mining approaches for dealing with the rapidly expanding literature on COVID-19. Briefings Bioinform. 2021, 22, 781–799. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yu, J.; Zhang, Z.; Ren, J.; Peluffo, A.E.; Zhang, W.; Zhao, Y.; Wu, J.; Yan, K.; Cohen, D.; et al. Network bioinformatics analysis provides insight into drug repurposing for COVID-19. Med. Drug Discov. 2021, 10, 100090. [Google Scholar] [CrossRef] [PubMed]
- Sargsyan, A.; Kodamullil, A.T.; Baksi, S.; Darms, J.; Madan, S.; Gebel, S.; Keminer, O.; Jose, G.M.; Balabin, H.; DeLong, L.N.; et al. The COVID-19 ontology. Bioinformatics 2020, 36, 5703–5705. [Google Scholar] [CrossRef] [PubMed]
- Kuusisto, F.; Page, D.; Stewart, R. Word embedding mining for SARS-CoV-2 and COVID-19 drug repurposing. F1000Research 2020, 9, 585. [Google Scholar] [CrossRef]
- Zhou, Z.; Qiu, Y.; Ge, X. The taxonomy, host range and pathogenicity of coronaviruses and other viruses in the Nidovirales order. Anim. Dis. 2021, 1, 1–28. [Google Scholar] [CrossRef]
- Baker, N.; Williams, A.J.; Tropsha, A.; Ekins, S. Repurposing quaternary ammonium compounds as potential treatments for COVID-19. Pharm. Res. 2020, 37, 1–4. [Google Scholar] [CrossRef]
- Muramatsu, T.; Tanokura, M. A novel method of literature mining to identify candidate COVID-19 drugs. Bioinform. Adv. 2021, 1, vbab013. [Google Scholar] [CrossRef]
- Tworowski, D.; Gorohovski, A.; Mukherjee, S.; Carmi, G.; Levy, E.; Detroja, R.; Mukherjee, S.B.; Frenkel-Morgenstern, M. COVID19 Drug Repository: Text-mining the literature in search of putative COVID19 therapeutics. Nucleic Acids Res. 2021, 49, D1113–D1121. [Google Scholar] [CrossRef]
- Galindez, G.; Matschinske, J.; Rose, T.D.; Sadegh, S.; Salgado-Albarrán, M.; Späth, J.; Baumbach, J.; Pauling, J.K. Lessons from the COVID-19 pandemic for advancing computational drug repurposing strategies. Nat. Comput. Sci. 2021, 1, 33–41. [Google Scholar] [CrossRef]
- Cantürk, S.; Singh, A.; St-Amant, P.; Behrmann, J. Machine-learning driven drug repurposing for COVID-19. arXiv 2020, arXiv:2006.14707. [Google Scholar]
- Aghdam, R.; Habibi, M.; Taheri, G. Using informative features in machine learning based method for COVID-19 drug repurposing. J. Cheminform. 2021, 13, 1–14. [Google Scholar] [CrossRef]
- Suvarna, K.; Biswas, D.; Pai, M.G.J.; Acharjee, A.; Bankar, R.; Palanivel, V.; Salkar, A.; Verma, A.; Mukherjee, A.; Choudhury, M.; et al. Proteomics and machine learning approaches reveal a set of prognostic markers for COVID-19 severity With drug repurposing potential. Front. Physiol. 2021, 12, 432. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Shan, G.; Chu, B.; Wang, H.; Wang, Z.; Gao, S.; Zhou, W. Accelerating drug repurposing for COVID-19 treatment by modeling mechanisms of action using cell image features and machine learning. Cogn. Neurodynamics 2021. [Google Scholar] [CrossRef]
- Hastings, J.; de Matos, P.; Dekker, A.; Ennis, M.; Harsha, B.; Kale, N.; Muthukrishnan, V.; Owen, G.; Turner, S.; Williams, M.; et al. The ChEBI reference database and ontology for biologically relevant chemistry: Enhancements for 2013. Nucleic Acids Res. 2012, 41, D456–D463. [Google Scholar] [CrossRef] [PubMed]
- Funk, C.; Baumgartner, W.; Garcia, B.; Roeder, C.; Bada, M.; Cohen, K.B.; Hunter, L.E.; Verspoor, K. Large-scale biomedical concept recognition: An evaluation of current automatic annotators and their parameters. BMC Bioinform. 2014, 15, 1–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agrawal, R.; Srikant, R. Fast Algorithms for Mining Association Rules. In Proceedings of the 20th International Conference on Very Large Data Bases, San Francisco, CA, USA, 12–15 September 1994; Volume 1215, pp. 487–499. [Google Scholar]
- Hagberg, A.; Conway, D. NetworkX: Network Analysis with Python. Available online: https://networkx.org/ (accessed on 1 March 2022).
- Ouyang, Q.; Kaplan, P.D.; Liu, S.; Libchaber, A. DNA solution of the maximal clique problem. Science 1997, 278, 446–449. [Google Scholar] [CrossRef] [Green Version]
- Jaccard, P. The distribution of the flora in the alpine zone. 1. New Phytol. 1912, 11, 37–50. [Google Scholar] [CrossRef]
- Allegretti, M.; Cesta, M.C.; Zippoli, M.; Beccari, A.; Talarico, C.; Mantelli, F.; Bucci, E.M.; Scorzolini, L.; Nicastri, E. Repurposing the estrogen receptor modulator raloxifene to treat SARS-CoV-2 infection. Cell Death Differ. 2022, 29, 156–166. [Google Scholar] [CrossRef]
- Lovre, D.; Bateman, K.; Sherman, M.; Fonseca, V.A.; Lefante, J.; Mauvais-Jarvis, F. Acute estradiol and progesterone therapy in hospitalised adults to reduce COVID-19 severity: A randomised control trial. BMJ Open 2021, 11, e053684. [Google Scholar] [CrossRef]
- Youn, J.Y.; Zhang, Y.; Wu, Y.; Cannesson, M.; Cai, H. Therapeutic application of estrogen for COVID-19: Attenuation of SARS-CoV-2 spike protein and il-6 stimulated, ACE2-dependent NOX2 activation, ROS production and MCP-1 upregulation in endothelial cells. Redox Biol. 2021, 46, 102099. [Google Scholar] [CrossRef] [PubMed]
- Seeland, U.; Coluzzi, F.; Simmaco, M.; Mura, C.; Bourne, P.E.; Heiland, M.; Preissner, R.; Preissner, S. Evidence for treatment with estradiol for women with SARS-CoV-2 infection. BMC Med. 2020, 18, 369. [Google Scholar] [CrossRef] [PubMed]
- Mauvais-Jarvis, F.; Klein, S.L.; Levin, E.R. Estradiol, progesterone, immunomodulation, and COVID-19 outcomes. Endocrinology 2020, 161, bqaa127. [Google Scholar] [CrossRef] [PubMed]
- Breithaupt-Faloppa, A.C.; Correia, C.d.J.; Prado, C.M.; Stilhano, R.S.; Ureshino, R.P.; Moreira, L.F.P. 17β-Estradiol, a potential ally to alleviate SARS-CoV-2 infection. Clinics 2020, 75. [Google Scholar] [CrossRef] [PubMed]
- Antonello, R.M.; Dal Bo, E.; De Cristofaro, P.; Luzzati, R.; Di Bella, S. The seXY side of COVID-19: What is behind female protection. InfezMed 2020, 28, 288–289. [Google Scholar]
- NCBI. PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Etidronic-acid (accessed on 1 March 2022).
- Marti, J.L.G.; Brufsky, A.M. Considerations of the effects of commonly investigated drugs for COVID-19 in the cholesterol synthesis pathway. Expert Opin. Pharmacother. 2021, 22, 947–952. [Google Scholar] [CrossRef]
- Wang, H.L.; Weber, D.; McCauley, L.K. Effect of long-term oral bisphosphonates on implant wound healing: Literature review and a case report. J. Periodontol. 2007, 78, 584–594. [Google Scholar] [CrossRef]
- Aljuhani, F.; Tournadre, A.; Tatar, Z.; Couderc, M.; Mathieu, S.; Malochet-Guinamand, S.; Soubrier, M.; Dubost, J.J. The SAPHO syndrome: A single-center study of 41 adult patients. J. Rheumatol. 2015, 42, 329–334. [Google Scholar] [CrossRef] [Green Version]
- Hung, I.F.N.; Lung, K.C.; Tso, E.Y.K.; Liu, R.; Chung, T.W.H.; Chu, M.Y.; Ng, Y.Y.; Lo, J.; Chan, J.; Tam, A.R.; et al. Triple combination of interferon beta-1b, lopinavir–ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: An open-label, randomised, phase 2 trial. Lancet 2020, 395, 1695–1704. [Google Scholar] [CrossRef]
- Uzunova, K.; Filipova, E.; Pavlova, V.; Vekov, T. Insights into antiviral mechanisms of remdesivir, lopinavir/ritonavir and chloroquine/hydroxychloroquine affecting the new SARS-CoV-2. Biomed. Pharmacother. 2020, 131, 110668. [Google Scholar] [CrossRef]
- Sheahan, T.P.; Sims, A.C.; Leist, S.R.; Schäfer, A.; Won, J.; Brown, A.J.; Montgomery, S.A.; Hogg, A.; Babusis, D.; Clarke, M.O.; et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat. Commun. 2020, 11, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siemieniuk, R.A.; Bartoszko, J.J.; Ge, L.; Zeraatkar, D.; Izcovich, A.; Kum, E.; Pardo-Hernandez, H.; Qasim, A.; Martinez, J.P.D.; Rochwerg, B.; et al. Drug treatments for covid-19: Living systematic review and network meta-analysis. BMJ 2020, 370. [Google Scholar] [CrossRef] [PubMed]
- Zequn, Z.; Yujia, W.; Dingding, Q.; Jiangfang, L. Off-label use of chloroquine, hydroxychloroquine, azithromycin and lopinavir/ritonavir in COVID-19 risks prolonging the QT interval by targeting the hERG channel. Eur. J. Pharmacol. 2021, 893, 173813. [Google Scholar] [CrossRef]
- Rizk, J.G.; Kalantar-Zadeh, K.; Mehra, M.R.; Lavie, C.J.; Rizk, Y.; Forthal, D.N. Pharmaco-immunomodulatory therapy in COVID-19. Drugs 2020, 80, 1267–1292. [Google Scholar] [CrossRef]
- Mareev, V.Y.; Orlova, Y.A.; Pavlikova, E.; Akopyan, Z.; Matskeplishvili, S.; Plisyk, A.; Seredenina, E.; Potapenko, A.; Malakhov, P.; Samokhodskaya, L.; et al. Proactive anti-inflammatory and anticoagulant therapy in the treatment of advanced stages of novel coronavirus infection (COVID-19). Case Series and Study Design: COLchicine versus ruxolitinib and secukinumab in open prospective randomIzed trial (COLORIT). Kardiologiia 2020, 60, 4–21. [Google Scholar] [CrossRef] [PubMed]
- Hossen, M.S.; Barek, M.A.; Jahan, N.; Islam, M.S. A review on current repurposing drugs for the treatment of COVID-19: Reality and challenges. SN Compr. Clin. Med. 2020, 2, 1777–1789. [Google Scholar] [CrossRef]
- Di Lorenzo, G.; Di Trolio, R.; Kozlakidis, Z.; Busto, G.; Ingenito, C.; Buonerba, L.; Ferrara, C.; Libroia, A.; Ragone, G.; dello Ioio, C.; et al. COVID 19 therapies and anti-cancer drugs: A systematic review of recent literature. Crit. Rev. Oncol./Hematol. 2020, 152, 102991. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, U.; Raju, R.; Udwadia, Z.F. Favipiravir: A new and emerging antiviral option in COVID-19. Med. J. Armed Forces India 2020, 76, 370–376. [Google Scholar] [CrossRef]
- Costanzo, M.; De Giglio, M.A.; Roviello, G.N. SARS-CoV-2: Recent reports on antiviral therapies based on lopinavir/ritonavir, darunavir/umifenovir, hydroxychloroquine, remdesivir, favipiravir and other drugs for the treatment of the new coronavirus. Curr. Med. Chem. 2020, 27, 4536–4541. [Google Scholar] [CrossRef]
- Kaptein, S.J.; Jacobs, S.; Langendries, L.; Seldeslachts, L.; Ter Horst, S.; Liesenborghs, L.; Hens, B.; Vergote, V.; Heylen, E.; Barthelemy, K.; et al. Favipiravir at high doses has potent antiviral activity in SARS-CoV-2- infected hamsters, whereas hydroxychloroquine lacks activity. Proc. Natl. Acad. Sci. USA 2020, 117, 26955–26965. [Google Scholar] [CrossRef]
- Habler, K.; Brügel, M.; Teupser, D.; Liebchen, U.; Scharf, C.; Schönermarck, U.; Vogeser, M.; Paal, M. Simultaneous quantification of seven repurposed COVID-19 drugs remdesivir (plus metabolite GS-441524), chloroquine, hydroxychloroquine, lopinavir, ritonavir, favipiravir and azithromycin by a two-dimensional isotope dilution LC–MS/MS method in human serum. J. Pharm. Biomed. Anal. 2021, 196, 113935. [Google Scholar] [CrossRef] [PubMed]
- Parlak, C.; Alver, Ö.; Ouma, C.N.M.; Rhyman, L.; Ramasami, P. Interaction between favipiravir and hydroxychloroquine and their combined drug assessment: In silico investigations. Chem. Pap. 2022, 76, 1471–1478. [Google Scholar] [CrossRef] [PubMed]
- Fox, G.N.; Moawad, N.S. UpToDate: A comprehensive clinical database. J. Fam. Pract. 2003, 52, 706–710. [Google Scholar] [PubMed]
- Chatfield, A.J. Lexicomp online and Micromedex 2.0. J. Med. Libr. Assoc. JMLA 2015, 103, 112. [Google Scholar] [CrossRef] [Green Version]
- Gautret, P.; Lagier, J.C.; Parola, P.; Meddeb, L.; Mailhe, M.; Doudier, B.; Courjon, J.; Giordanengo, V.; Vieira, V.E.; Dupont, H.T.; et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents 2020, 56, 105949. [Google Scholar] [CrossRef]
- Fiolet, T.; Guihur, A.; Rebeaud, M.E.; Mulot, M.; Peiffer-Smadja, N.; Mahamat-Saleh, Y. Effect of hydroxychloroquine with or without azithromycin on the mortality of coronavirus disease 2019 (COVID-19) patients: A systematic review and meta-analysis. Clin. Microbiol. Infect. 2021, 27, 19–27. [Google Scholar] [CrossRef]
- Bakadia, B.M.; He, F.; Souho, T.; Lamboni, L.; Ullah, M.W.; Boni, B.O.; Ahmed, A.A.Q.; Mukole, B.M.; Yang, G. Prevention and treatment of COVID-19: Focus on interferons, chloroquine/hydroxychloroquine, azithromycin, and vaccine. Biomed. Pharmacother. 2021, 133, 111008. [Google Scholar] [CrossRef]
- Castillo, M.E.; Costa, L.M.E.; Barrios, J.M.V.; Díaz, J.F.A.; Miranda, J.L.; Bouillon, R.; Gomez, J.M.Q. Effect of calcifediol treatment and best available therapy versus best available therapy on intensive care unit admission and mortality among patients hospitalized for COVID-19: A pilot randomized clinical study. J. Steroid Biochem. Mol. Biol. 2020, 203, 105751. [Google Scholar] [CrossRef]
- Rhodes, J.M.; Subramanian, S.; Flanagan, P.K.; Horgan, G.W.; Martin, K.; Mansfield, J.; Parkes, M.; Hart, A.; Dallal, H.; Iqbal, T.; et al. Randomized Trial of Ciprofloxacin Doxycycline and Hydroxychloroquine Versus Budesonide in Active Crohn’s Disease. Dig. Dis. Sci. 2021, 66, 2700–2711. [Google Scholar] [CrossRef]
- Geisler, W.M.; Uniyal, A.; Lee, J.Y.; Lensing, S.Y.; Johnson, S.; Perry, R.C.; Kadrnka, C.M.; Kerndt, P.R. Azithromycin versus doxycycline for urogenital Chlamydia trachomatis infection. N. Engl. J. Med. 2015, 373, 2512–2521. [Google Scholar] [CrossRef]
- Duvignaud, A.; Lhomme, E.; Pistone, T.; Onaisi, R.; Sitta, R.; Journot, V.; Nguyen, D.; Peiffer-Smadja, N.; Crémer, A.; Bouchet, S.; et al. Home treatment of older people with symptomatic SARS-CoV-2 infection (COVID-19): A structured summary of a study protocol for a multi-arm multi-stage (mams) randomized trial to evaluate the efficacy and tolerability of several experimental treatments to reduce the risk of hospitalisation or death in outpatients aged 65 years or older (coverage trial). Trials 2020, 21, 846. [Google Scholar] [PubMed]
- Solaymani-Dodaran, M.; Ghanei, M.; Bagheri, M.; Qazvini, A.; Vahedi, E.; Saadat, S.H.; Setarehdan, S.A.; Ansarifar, A.; Biganeh, H.; Mohazzab, A.; et al. Safety and efficacy of Favipiravir in moderate to severe SARS-CoV-2 pneumonia. Int. Immunopharmacol. 2021, 95, 107522. [Google Scholar] [CrossRef] [PubMed]
- Romani, L.; Marks, M.; Sokana, O.; Nasi, T.; Kamoriki, B.; Cordell, B.; Wand, H.; Whitfeld, M.J.; Engelman, D.; Solomon, A.W.; et al. Efficacy of mass drug administration with ivermectin for control of scabies and impetigo, with coadministration of azithromycin: A single-arm community intervention trial. Lancet Infect. Dis. 2019, 19, 510–518. [Google Scholar] [CrossRef] [Green Version]
- Okumuş, N.; Demirtürk, N.; Çetinkaya, R.A.; Güner, R.; Avcı, İ.Y.; Orhan, S.; Konya, P.; Şaylan, B.; Karalezli, A.; Yamanel, L.; et al. Evaluation of the effectiveness and safety of adding ivermectin to treatment in severe COVID-19 patients. BMC Infect. Dis. 2021, 21, 411. [Google Scholar] [CrossRef]
- Wang, L.L.; Lo, K.; Chandrasekhar, Y.; Reas, R.; Yang, J.; Eide, D.; Funk, K.; Kinney, R.; Liu, Z.; Merrill, W.; et al. Cord-19: The COVID-19 open research dataset. arXiv 2020, arXiv:2004.10706v2. [Google Scholar]
- Chen, Q.; Allot, A.; Lu, Z. LitCovid: An open database of COVID-19 literature. Nucleic Acids Res. 2020, 49, D1534–D1540. [Google Scholar] [CrossRef]
- Leaman, R.; Lu, Z. A Comprehensive Dictionary and Term Variation Analysis for COVID-19 and SARS-CoV-2. arXiv 2020, arXiv:2010.14588. [Google Scholar]
– | F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | F10 |
---|---|---|---|---|---|---|---|---|---|---|
Clique size: 2 | 120 | 135 | 118 | 296 | 139 | 132 | 126 | 126 | 141 | 126 |
Clique size: 3 | 101 | 134 | 169 | 163 | 137 | 136 | 132 | 132 | 45 | 43 |
Clique size: 4 | 68 | 81 | 97 | 130 | 86 | 53 | 67 | 67 | 0 | 9 |
Clique size: 5 | 32 | 27 | 78 | 108 | 54 | 0 | 16 | 16 | 1 | 2 |
Total | 321 | 377 | 462 | 697 | 416 | 321 | 341 | 341 | 187 | 180 |
Drug 1 | Drug 2 |
---|---|
ChEBI:63608_maraviroc | ChEBI:134722_favipiravir |
ChEBI:6970_mometasone | ChEBI:50858_corticosteroid |
ChEBI:72291_cobicistat | ChEBI:367163_darunavir |
ChEBI:28775_hesperidin | ChEBI:4631_diosmin |
ChEBI:85973_edoxaban | ChEBI:28304_heparin |
ChEBI:85973_edoxaban | ChEBI23359_colchicine |
ChEBI:85089_ledipasvir | ChEBI:85083_sofosbuvir |
ChEBI:23965_estradiol | ChEBI:17026_progesterone |
ChEBI:23965_estradiol | ChEBI:50114_estrogen |
ChEBI:6015_isoflurane | ChEBI:9130_sevoflurane |
Drug 1 | Drug 2 | Drug 3 |
---|---|---|
peroxide | cetylpyridinium | chlorhexidine |
l-arginine | atorvastatin | nicorandil |
hydroxychloroquine | azithromycin | mefloquine |
hydroxychloroquine | azithromycin | favipiravir |
hydroxychloroquine | azithromycin | glucose |
hydroxychloroquine | azithromycin | sirolimus |
hydroxychloroquine | azithromycin | levamisole |
hydroxychloroquine | chloroquine | favipiravir |
paracetamol | ivermectin | azithromycin |
Drug 1 | Drug 2 | Drug 3 | Drug 4 |
---|---|---|---|
omeprazole | rivaroxaban | clopidogrel | atorvastatin |
hydroxychloroquine | lopinavir | ritonavir | favipiravir |
hydroxychloroquine | azithromycin | doxycycline | ivermectin |
hydroxychloroquine | azithromycin | doxycycline | rivaroxaban |
Drug 1 | Drug 2 | Combineability |
---|---|---|
Estrogen (ChEBI:50114) | Estradiol (ChEBI:23965) | No |
Hydroxyethylidene(ChEBI:5801) | Azithromycin (ChEBI:2955) | Possible |
Lopinavir (ChEBI:31781) | Ritonavir (ChEBI:45409) | Yes |
Ruxolitinib(ChEBI:66919) | Colchicine (ChEBI:23359) | Possible |
Hydroxychloroquine (ChEBI:5801) | Favipiravir ChEBI:134722 | Possible |
Hydroxychloroquine (ChEBI:5801) | Chloroquine ChEBI:3638 | No |
Azithromycin (ChEBI:2955) | Ivermectin ChEBI:6078 | Possible |
Hydroxychloroquine (ChEBI:5801) | Lopinavir(ChEBI:31781) | Probably not |
Hydroxychloroquine (ChEBI:5801) | Doxycycline(ChEBI:50845) | Possible |
Daclatasvir (ChEBI:82977) | Sofosbuvir(ChEBI:85083) | Yes |
Source | Clique Components |
---|---|
Biomed pub | hydroxychloroquine, chloroquine, azithromycin, doxycycline |
Clinical trial | hydroxychloroquine, azithromycin, doxycycline, ivermectin |
Match | hydroxychloroquine, azithromycin, doxycycline |
Biomed pub | hydroxychloroquine, mycophenolate, azithromycin, doxycycline |
Clinical trial | hydroxychloroquine, azithromycin, doxycycline, ivermectin |
Match | hydroxychloroquine, azithromycin, doxycycline |
Biomed pub | hydroxychloroquine, chloroquine, azithromycin, doxycycline |
Clinical trial | hydroxychloroquine, azithromycin, doxycycline, rivaroxaban |
Match | hydroxychloroquine, azithromycin, doxycycline |
Biomed pub | hydroxychloroquine, mycophenolate, azithromycin, doxycycline |
Clinical trial | hydroxychloroquine, azithromycin, doxycycline, rivaroxaban |
Match | hydroxychloroquine, azithromycin, doxycycline |
Biomed pub | hydroxychloroquine, oseltamivir, ritonavir, favipiravir |
Clinical trial | hydroxychloroquine, lopinavir, ritonavir, favipiravir |
Match | hydroxychloroquine, ritonavir, favipiravir |
Biomed pub | hydroxychloroquine, ribavirin, ritonavir, favipiravir |
Clinical trial | hydroxychloroquine, lopinavir, ritonavir, favipiravir |
Match | hydroxychloroquine, ritonavir, favipiravir |
Biomed pub | hydroxychloroquine, azithromycin, macrolide, ivermectin |
Clinical trial | hydroxychloroquine, azithromycin, doxycycline, ivermectin |
Match | hydroxychloroquine, azithromycin, ivermectin |
Biomed pub | hydroxychloroquine, azithromycin, ivermectin, ritonavir |
Clinical trial | hydroxychloroquine, azithromycin, doxycycline, ivermectin |
Match | hydroxychloroquine, azithromycin, ivermectin |
Biomed pub | hydroxychloroquine, darunavir, lopinavir, favipiravir |
Clinical trial | hydroxychloroquine, lopinavir, ritonavir, favipiravir |
Match | hydroxychloroquine, lopinavir, favipiravir |
Biomed pub | hydroxychloroquine, ligand, lopinavir, ritonavir |
Clinical trial | hydroxychloroquine, lopinavir, ritonavir, favipiravir |
Match | hydroxychloroquine, lopinavir, ritonavir |
Drug Combination | Clinical Trial Status | # Trials |
---|---|---|
ritonavir and lopinavir | Recruiting | 20 |
ritonavir and lopinavir | Completed | 15 |
ritonavir and lopinavir | Active, not recruiting | 7 |
ruxolitinib and colchicine | Recruiting | 2 |
hydroxychloroquine and favipiravir | Completed | 13 |
hydroxychloroquine and favipiravir | Recruiting | 2 |
hydroxychloroquine and favipiravir | Active, not recruiting | 3 |
azithromycin and ivermectin | Completed | 6 |
azithromycin and ivermectin | Recruiting | 6 |
hydroxychloroquine and lopinavir | Recruiting | 18 |
hydroxychloroquine and lopinavir | Completed | 12 |
hydroxychloroquine and lopinavir | Active, not recruiting | 5 |
hydroxychloroquine and doxycycline | Completed | 4 |
hydroxychloroquine and doxycycline | Recruiting | 1 |
daclatasvir and sofosbuvir | Recruiting | 5 |
daclatasvir and sofosbuvir | Completed | 3 |
daclatasvir and sofosbuvir | Not recruiting yet | 1 |
hydroxychloroquine and chloroquine | Recruiting | 8 |
hydroxychloroquine and chloroquine | Completed | 16 |
hydroxychloroquine and chloroquine | Active, not recruiting | 5 |
hydroxychloroquine, lopinavir, ritonavir | Recruiting | 3 |
hydroxychloroquine, lopinavir, ritonavir | Recruiting | 9 |
hydroxychloroquine, lopinavir, ritonavir | Active, not recruiting | 3 |
hydroxychloroquine, lopinavir, ritonavir | Not recruiting yet | 3 |
hydroxychloroquine, lopinavir, favipiravir | Recruiting | 1 |
hydroxychloroquine, lopinavir, favipiravir | Completed | 5 |
hydroxychloroquine, lopinavir, favipiravir | Active, not recruiting | 1 |
hydroxychloroquine, azithromycin, ivermectin | Completed | 4 |
hydroxychloroquine, azithromycin, ivermectin | Active, not recruiting | 1 |
hydroxychloroquine, ritonavir, favipiravir | Recruiting | 1 |
hydroxychloroquine, ritonavir, favipiravir | Completed | 5 |
hydroxychloroquine, ritonavir, favipiravir | Active, not recruiting | 1 |
hydroxychloroquine, azithromycin, doxycycline | Recruiting | 1 |
hydroxychloroquine, azithromycin, doxycycline | Completed | 3 |
hydroxychloroquine, azithromycin, doxycycline | Not recruiting yet | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamed, A.A.; Fandy, T.E.; Tkaczuk, K.L.; Verspoor, K.; Lee, B.S. COVID-19 Drug Repurposing: A Network-Based Framework for Exploring Biomedical Literature and Clinical Trials for Possible Treatments. Pharmaceutics 2022, 14, 567. https://doi.org/10.3390/pharmaceutics14030567
Hamed AA, Fandy TE, Tkaczuk KL, Verspoor K, Lee BS. COVID-19 Drug Repurposing: A Network-Based Framework for Exploring Biomedical Literature and Clinical Trials for Possible Treatments. Pharmaceutics. 2022; 14(3):567. https://doi.org/10.3390/pharmaceutics14030567
Chicago/Turabian StyleHamed, Ahmed Abdeen, Tamer E. Fandy, Karolina L. Tkaczuk, Karin Verspoor, and Byung Suk Lee. 2022. "COVID-19 Drug Repurposing: A Network-Based Framework for Exploring Biomedical Literature and Clinical Trials for Possible Treatments" Pharmaceutics 14, no. 3: 567. https://doi.org/10.3390/pharmaceutics14030567
APA StyleHamed, A. A., Fandy, T. E., Tkaczuk, K. L., Verspoor, K., & Lee, B. S. (2022). COVID-19 Drug Repurposing: A Network-Based Framework for Exploring Biomedical Literature and Clinical Trials for Possible Treatments. Pharmaceutics, 14(3), 567. https://doi.org/10.3390/pharmaceutics14030567