Therapeutic Strategies and Chemoprevention of Atherosclerosis: What Do We Know and Where Do We Go?
Abstract
:1. Introduction
2. Pathogenesis of Atherosclerosis
2.1. Endothelial Cells
2.2. Inflammatory Cells
2.3. Vascular Smooth Muscle Cells (VSMCs)
2.4. Risk Factors
2.4.1. Classical Risk Factors
Hypercholesterolemia
2.4.2. Non-Classical Risk Factors
2.5. Groups Prone to Atherosclerosis
3. Current Pharmacotherapy in Atherosclerosis
3.1. Statins
3.2. Fibrates
3.3. Cholesterol Absorption Inhibitors
3.4. Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK-9) Inhibitors
3.5. Renin–Angiotensin System (RAS) Inhibitors
4. Emerging Therapies
4.1. Cytokine-Targeting Therapy
4.1.1. Anti-IL-1β Agents
4.1.2. Anti-IL-6 Agents
4.1.3. Anti-TNF-α Agents
4.2. Anti-P-Selectin Therapy
4.3. Angiopoietin Like (ANGPTL3) Targeting Agents
4.4. Photodynamic Therapy (PDT)
4.5. Theranostics
5. Natural Products with Anti-Atherosclerotic Properties
6. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moriya, J. Critical roles of inflammation in atherosclerosis. J. Cardiol. 2019, 73, 22–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glass, C.K.; Witztum, J.L. Atherosclerosis: The road ahead. Cell 2001, 104, 503–516. [Google Scholar] [CrossRef] [Green Version]
- Mota, R.; Homeister, J.W.; Willis, M.S.; Bahnson, E.M. Atherosclerosis: Pathogenesis, genetics and experimental models. In Encyclopedia of Life Sciences; Cooper, D., Ed.; John Wiley, Ltd.: Chichester, UK, 2017; pp. 1–10. [Google Scholar]
- Pahwa, R.; Jialal, I. Atherosclerosis; StatPearls Publishing: Treasure Island, FL, USA, 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK507799/ (accessed on 15 February 2022).
- Garcia, C.; Blesso, C.N. Antioxidant properties of anthocyanins and their mechanism of action in atherosclerosis. Free. Radic. Biol. Med. 2021, 172, 152–166. [Google Scholar] [CrossRef] [PubMed]
- Surma, S.; Banach, M. Fibrinogen and atherosclerotic cardiovascular diseases-review of the literature and clinical studies. Int. J. Mol. Sci. 2022, 23, 193. [Google Scholar] [CrossRef]
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019: Update from the GBD 2019 Study. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef] [PubMed]
- Libby, P. The biology of atherosclerosis comes full circle: Lessons for conquering cardiovascular disease. Nat. Rev. Cardiol. 2021, 18, 683–684. [Google Scholar] [CrossRef] [PubMed]
- Ilias, N.; Hamzah, H.; Ismail, I.S.; Mohidin, T.B.M.; Idris, M.F.; Ajat, M. An insight on the future therapeutic application potential of Stevia rebaudiana Bertoni for atherosclerosis and cardiovascular diseases. Biomed. Pharmacother. 2021, 143, 112207. [Google Scholar] [CrossRef]
- Duan, H.; Zhang, Q.; Liu, J.; Li, R.; Wang, D.; Peng, W.; Wu, C. Suppression of apoptosis in vascular endothelial cell, the promising way for natural medicines to treat atherosclerosis. Pharmacol. Res. 2021, 168, 105599. [Google Scholar] [CrossRef]
- Libby, P. The changing landscape of atherosclerosis. Nature 2021, 592, 524–533. [Google Scholar] [CrossRef] [PubMed]
- Gluba-Brzózka, A.; Franczyk, B.; Rysz-Górzyńska, M.; Ławiński, J.; Rysz, J. Emerging anti-atherosclerotic therapies. Int. J. Mol. Sci. 2021, 22, 12109. [Google Scholar] [CrossRef] [PubMed]
- Gopalan, C.; Kirk, E. Atherosclerosis. In Biology of Cardiovascular and Metabolic Diseases; Gopalan, C., Kirk, E., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 85–101. [Google Scholar]
- Wang, T.; Butany, J. Pathogenesis of atherosclerosis. Diagn. Histopathol. 2017, 23, 473–478. [Google Scholar] [CrossRef]
- Deanfield, J.E.; Halcox, J.P.; Rabelink, T.J. Endothelial function and dysfunction. Testing and clinical relevance. Circulation 2007, 115, 1285–1295. [Google Scholar] [CrossRef] [PubMed]
- Gimbrone, M.A., Jr.; García-Cardeña, G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ. Res. 2016, 118, 620–636. [Google Scholar] [CrossRef] [Green Version]
- Daiber, A.; Chlopicki, S. Revisiting pharmacology of oxidative stress and endothelial dysfunction in cardiovascular disease: Evidence for redox-based therapies. Free Radic. Biol. Med. 2020, 157, 15–37. [Google Scholar] [CrossRef]
- Wang, T.; Palucci, D.; Law, K.; Yanagawa, B.; Yam, J.; Butany, J. Atherosclerosis: Pathogenesis and pathology. Diagn. Histopathol. 2012, 18, 461–467. [Google Scholar] [CrossRef]
- Raggi, P.; Genest, J.; Giles, J.T.; Rayner, K.J.; Dwivedi, G.; Beanlands, R.S.; Gupta, M. Role of inflammation in the pathogenesis of atherosclerosis and therapeutic interventions. Atherosclerosis 2018, 276, 98–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falk, E. Pathogenesis of atherosclerosis. J. Am. Coll. Cardiol. 2006, 47 (Suppl. S8), C7–C12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alfarisi, H.A.H.l.; Mohamed, Z.B.H.; Ibrahim, M.B. Basic pathogenic mechanisms of atherosclerosis. Egypt J. Basic Appl. Sci. 2020, 7, 116–125. [Google Scholar] [CrossRef]
- Mehu, M.; Narasimhulu, C.A.; Singla, D.K. Inflammatory Cells in Atherosclerosis. Antioxidants 2022, 11, 233. [Google Scholar] [CrossRef] [PubMed]
- Farahi, L.; Sinha, S.K.; Lusis, A.J. Roles of macrophages in atherogenesis. Front Pharmacol. 2021, 12, 785220. [Google Scholar] [CrossRef] [PubMed]
- Hai, Z.; Zuo, W. Aberrant DNA methylation in the pathogenesis of atherosclerosis. Clin. Chim. Acta 2016, 456, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, D.; Sata, M. Role of bone marrow renin-angiotensin system in the pathogenesis of atherosclerosis. Pharmacol. Ther. 2008, 118, 268–276. [Google Scholar] [CrossRef] [PubMed]
- Poznyak, A.V.; Nikiforov, N.G.; Starodubova, A.V.; Popkova, T.V.; Orekhov, A.N. Macrophages and foam cells: Brief overview of their role, linkage, and targeting potential in atherosclerosis. Biomedicines 2021, 9, 1221. [Google Scholar] [CrossRef]
- Tabas, I.; Lichtman, A.H. Monocyte-Macrophages and T Cells in Atherosclerosis. Immunity 2017, 47, 621–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bobryshev, Y.V.; Ivanova, E.A.; Chistiakov, D.A.; Nikiforov, N.G.; Orekhov, A.N. Macrophages and their role in atherosclerosis: Pathophysiology and transcriptome analysis. BioMed Res. Int. 2016, 2016, 9582430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedicino, D.; Giglio, A.F.; Ruggio, A.; Massaro, G.; D’Aiello, A.; Trotta, F.; Lucci, C.; Graziani, F.; Biasucci, L.M.; Crea, F.; et al. Inflammasome, T lymphocytes and innate-adaptive immunity crosstalk: Role in cardiovascular disease and therapeutic perspectives. Thromb. Haemost. 2018, 118, 1352–1369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ilhan, F.; Kalkanli, S.T. Atherosclerosis and the role of immune cells. World J. Clin. Cases. 2015, 3, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Malat, Z.; Taleb, S.; Ait-Oufella, H.L.; Tegdui, A. The role of adaptative T cell immunity in atherosclerosis. J. Lipid Res. 2009, 50, S364–S369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Bruggen, N.; Ouyang, W. Th17 cells at the crossroads of autoimmunity, inflammation, and atherosclerosis. Immunity 2014, 40, 10–12. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Zhang, J.; Zhang, W.; Xy, Y. A myriad of roles of dendritic cells in atherosclerosis. Clin. Exp. Immunol. 2021, 206, 12–27. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, M.; Tabas, I. Dendritic cells in atherosclerosis. Semin. Immunopathol. 2014, 36, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Hou, H.; Zhao, H. Epigenetic factors in atherosclerosis: DNA methylation, folic acid metabolism, and intestinal microbiota. Clin. Chim. Acta 2021, 512, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Xu, L.; Geng, Z.; Liu, J.; Zhang, L.; Wu, Y.; He, D.; Qu, P. The role of non-coding RNA network in atherosclerosis. Life Sci. 2021, 265, 118756. [Google Scholar] [CrossRef] [PubMed]
- Frolich, J.; Lear, S.A. Old and new risk factors for atherosclerosis and development of treatment recommendations. Clin. Exp. Pharmacol. Physiol. 2002, 29, 838–842. [Google Scholar] [CrossRef] [PubMed]
- Fruchart, J.C.; Nierman, M.C.; Stroes, E.S.; Kastelein, J.J.; Duriez, P. New risk factors for atherosclerosis and patient risk assessment. Circulation 2004, 109, III15–III19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tada, H.; Takamura, M.; Kawashiri, M. Familial hypercholesterolemia: A narrative review on diagnosis and management strategies for children and adolescents. Vasc. Health Risk Manag. 2021, 17, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Turgeon, R.D.; Barry, A.R.; Pearson, G.J. Familial hypercholesterolemia. Review of diagnosis, screening, and treatment. Can. Fam. Physician 2016, 62, 32–37. [Google Scholar] [PubMed]
- Vogel, R.A. Coronary risk factors, endothelial function, and atherosclerosis: A review. Clin Cardiol. 1997, 20, 426–432. [Google Scholar] [CrossRef] [PubMed]
- Chobanian, A.V.; Alexander, R.W. Exacerbation of atherosclerosis by hypertension: Potential mechanisms and clinical implications. Arch. Intern. Med. 1996, 156, 1952–1956. [Google Scholar] [CrossRef]
- Kirabo, A.; Harrison, D.G. Hypertension as a risk factor for atherosclerosis. In Atherosclerosis: Risks, Mechanisms, and Therapies; Wang, H., Patterson, C., Eds.; John Wiley & Sons, Inc.: New York, NY, USA, 2015; pp. 63–75. [Google Scholar]
- Poznyak, A.V.; Bharadwaj, D.; Prasad, G.; Grechko, A.V.; Sazonova, M.A.; Orekhov, A.N. Renin-angiotensin system in pathogenesis of atherosclerosis and treatment of CVD. Int. J. Mol. Sci. 2021, 22, 6702. [Google Scholar] [CrossRef] [PubMed]
- Poznyak, A.; Grechko, A.V.; Poggio, P.; Myasoedova, V.A.; Alfieri, V.; Orekhov, A.N. The diabetes mellitus-atherosclerosis connection: The role of lipid and glucose metabolism and chronic inflammation. Int. J. Mol. Sci. 2020, 21, 1835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beckman, J.A.; Creager, M.A.; Libby, P. Diabetes and atherosclerosis: Epidemiology, pathophysiology, and management. JAMA 2002, 287, 2570–2581. [Google Scholar] [CrossRef]
- Liang, Y.; Wang, M.; Wang, C.; Liu, Y.; Naruse, K.; Takahashi, K. The mechanisms of the development of atherosclerosis in prediabetes. Int. J. Mol. Sci. 2021, 22, 4108. [Google Scholar] [CrossRef] [PubMed]
- Kuk, M.; Ward, N.C.; Dwivedi, G. Extrinsic and intrinsic responses in the development and progression of atherosclerosis. Heart Lung Circ. 2021, 30, 807–816. [Google Scholar] [CrossRef] [PubMed]
- Ambrose, J.A.; Barua, R.S. The pathophysiology of cigarette smoking and cardiovascular disease: An update. J. Am. Coll. Cardiol. 2004, 43, 1731–1737. [Google Scholar] [CrossRef] [Green Version]
- Tyrrell, D.J.; Goldstein, D.R. Ageing and atherosclerosis: Vascular intrinsic and extrinsic factors and potential role of IL-6. Nat. Rev. Cardiol. 2021, 18, 58–68. [Google Scholar] [CrossRef]
- Wang, J.C.; Bennett, M. Aging and atherosclerosis: Mechanisms, functional consequences, and potential therapeutics for cellular senescence. Circ. Res. 2012, 111, 245–259. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Chen, H.; Liu, N.; Chen, J.; Gu, Y.; Chen, J.; Yang, K. Role of hyperhomocysteinemia and hyperuricemia in pathogenesis of atherosclerosis. J. Stroke Cerebrovasc. Dis. 2017, 26, 2695–2699. [Google Scholar] [CrossRef]
- Stein, J.H.; McBride, P.E. Hyperhomocysteinemia and atherosclerotic vascular disease: Pathophysiology, screening, and treatment. Arch. Intern. Med. 1998, 158, 1301–1306. [Google Scholar] [CrossRef] [Green Version]
- Ganguly, P.; Alam, S.F. Role of homocysteine in the development of cardiovascular disease. Nutr. J. 2015, 14, 6. [Google Scholar] [CrossRef] [Green Version]
- Szwed, P.; Gąsecka, A.; Zawadka, M.; Eyileten, C.; Postuła, M.; Mazurek, T.; Szarpak, Ł.; Filipiak, K.J. Infections as novel risk factors of atherosclerotic cardiovascular diseases: Pathophysiological links and therapeutic implications. J. Clin. Med. 2021, 10, 2539. [Google Scholar] [CrossRef]
- Bevan, G.H.; Al-Kindi, S.G.; Brook, R.D.; Münzel, T.; Rajagopalan, S. Ambient air pollution and atherosclerosis: Insights into dose, time, and mechanisms. Arterioscler. Thromb. Vasc. Biol. 2021, 41, 628–637. [Google Scholar] [CrossRef] [PubMed]
- Nasser, S.A.; Afify, E.A.; Kobeissy, F.; Hamam, B.; Eid, A.H.; El-Mas, M.M. Inflammatory basis of atherosclerosis: Modulation 678 by sex hormones. Curr. Pharm. Des. 2021, 27, 2099–2111. [Google Scholar] [CrossRef] [PubMed]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. ESC Scientific Document Group. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef] [PubMed]
- Gupta, K.K.; Ali, S.; Sanghera, R.S. Pharmacological options in atherosclerosis: A review of the existing evidence. Cardiol. Ther. 2019, 8, 5–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ward, N.C.; Watts, G.F.; Eckel, R.H. Statin toxicity mechanistic insights and clinical implications. Circ. Res. 2019, 124, 328–350. [Google Scholar] [CrossRef] [PubMed]
- Davignon, J. Beneficial cardiovascular pleiotropic effects of statins. Circulation 2004, 109 (Suppl. SIII), III39–III43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McFarland, A.J.; Anoopkumar-Dukie, S.; Arora, D.S.; Grant, G.D.; McDermott, C.; Perkins, A.V.; Davey, A.K. Molecular mechanisms underlying the effects of statins in the central nervous system. Int. J. Mol. Sci. 2014, 15, 20607–20637. [Google Scholar] [CrossRef] [Green Version]
- Libby, P.; Aikawa, M. Mechanisms of plaque stabilization with statins. Am. J. Cardiol. 2003, 91, 4B–8B. [Google Scholar] [CrossRef]
- Zinellu, A.; Mangoni, A.A. A systematic review and meta-analysis of the effect of statins on glutathione peroxidase, superoxide dismutase, and catalase. Antioxidants 2021, 10, 1841. [Google Scholar] [CrossRef]
- Cai, T.; Abel, L.; Langford, O.; Monaghan, G.; Aronson, J.K.; Stevens, R.J.; Lay-Flurrie, S.; Koshiaris, C.; McManus, R.J.; Hobbs, R.D.F.; et al. Associations between statins and adverse events in primary prevention of cardiovascular disease: Systematic review with pairwise, network, and dose-response meta-analyses. BMJ 2021, 374, n1537. [Google Scholar] [CrossRef]
- Chapman, M.J. Fibrates in 2003: Therapeutic action in atherogenic dyslipidaemia and future perspectives. Atherosclerosis 2003, 171, 1–13. [Google Scholar] [CrossRef]
- Kim, N.H.; Kim, S.G. Fibrates revisited: Potential role in cardiovascular risk reduction. Diabetes Metab. J. 2020, 44, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Kersten, S. Integrated physiology and systems biology of PPARα. Mol. Metab. 2014, 3, 354–371. [Google Scholar] [CrossRef]
- Inaba, T.; Yagyu, H.; Itabashi, N.; Tazoe, F.; Fujita, N.; Nagashima, S.; Okada, K.; Okazaki, M.; Furukawa, Y.; Ishibashi, S. Cholesterol reduction and atherosclerosis inhibition by bezafibrate in low-density lipoprotein receptor knockout mice. Hypertens. Res. 2008, 31, 999–1005. [Google Scholar] [CrossRef] [PubMed]
- Catapano, A.L. Ezetimibe: A selective inhibitor of cholesterol absorption. Eur. Heart J. 2001, 3 (Suppl. SE), E6–E10. [Google Scholar] [CrossRef]
- Jia, L.; Betters, J.L.; Yu, L. Niemann-pick C1-like 1 (NPC1L1) protein in intestinal and hepatic cholesterol transport. Annu. Rev. Physiol. 2011, 73, 239–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dyrbuś, K.; Mariusz, G.; Penson, P.; Ray, K.K.; Banach, M. Inclisiran new hope in the management of lipid disorders? J. Clin. Lipidol. 2019, 14, 16–27. [Google Scholar] [CrossRef]
- Lu, H.; Balakrishnan, A.; Howatt, D.A.; Wu, C.; Charnigo, R.; Liau, G.; Cassis, L.A.; Daugherty, A. Comparative effects of different modes of renin angiotensin system inhibition on hypercholesterolaemia-induced atherosclerosis. Br. J. Pharmacol. 2012, 165, 2000–2008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrario, C.M. Use of angiotensin II receptor blockers in animal models of atherosclerosis. Am. J. Hypertens. 2002, 15, 9S–13S. [Google Scholar] [CrossRef] [Green Version]
- Lonn, E. Angiotensin-converting enzyme inhibitors and angiotensin receptor blockers in atherosclerosis. Curr. Atheroscler. Rep. 2002, 4, 363–372. [Google Scholar] [CrossRef] [PubMed]
- Ambrosioni, E.; Bacchelli, S.; Degli Esposti, D.; Borghi, C. ACE-inhibitors and atherosclerosis. Eur. J. Epidemiol. 1992, 8, 129–133. [Google Scholar] [CrossRef] [PubMed]
- Curzen, N.P.; Fox, K.M. Do ACE inhibitors modulate atherosclerosis? Eur. Heart J. 1997, 18, 1530–1535. [Google Scholar] [CrossRef]
- Poznyak, A.V.; Bharadwaj, D.; Prasad, G.; Grechko, A.V.; Sazonova, M.A.; Orekhov, A.N. Anti-inflammatory therapy for atherosclerosis: Focusing on cytokines. Int. J. Mol. Sci. 2021, 22, 7061. [Google Scholar] [CrossRef] [PubMed]
- Mai, W.; Liao, Y. Targeting IL-1β in the treatment of atherosclerosis. Front Immunol. 2020, 11, 589654. [Google Scholar] [CrossRef] [PubMed]
- Gram, H. The long and winding road in pharmaceutical development of canakinumab from rare genetic autoinflammatory syndromes to myocardial infarction and cancer. Pharmacol. Res. 2020, 154, 104139. [Google Scholar] [CrossRef] [PubMed]
- Soehnlein, O.; Libby, P. Targeting inflammation in atherosclerosis-from experimental insights to the clinic. Nat. Rev. 2021, 20, 589–610. [Google Scholar] [CrossRef] [PubMed]
- Lindmark, E.; Diderholm, E.; Wallentin, L.; Siegbahn, A. Relationship between interleukin 6 and mortality in patients with unstable coronary artery disease: Effects of an early invasive or noninvasive strategy. JAMA 2001, 286, 2107–2113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reiss, A.B.; Siegart, N.M.; De Leon, J. Interleukin-6 in atherosclerosis: Atherogenic or atheroprotective? Clin. Lipidol. 2017, 12, 14–23. [Google Scholar]
- Broch, K.; Anstensrud, A.K.; Woxholt, S.; Sharma, K.; Tøllefsen, I.M.; Bendz, B.; Aakhus, S.; Ueland, T.; Amundsen, B.H.; Damås, J.K.; et al. Randomized trial of interleukin-6 receptor inhibition in patients with acute ST-Segment Elevation Myocardial Infarction. J. Am. Coll. Cardiol. 2021, 77, 1845–1855. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; Devalaraja, M.; Baeres, F.M.M.; Engelmann, M.D.M.; Hovingh, G.K.; Ivkovic, M.; Lo, L.; Kling, D.; Pergola, P.; Raj, D.; et al. IL-6 inhibition with ziltivekimab in patients at high atherosclerotic risck (RESCUE): A double-blind, randomized, placebo-controlled, phase 2 trial. Lancet 2021, 397, 2060–2069. [Google Scholar] [CrossRef]
- Urschel, K.; Cicha, I. TNF-α in the cardiovascular system: From physiology to therapy. Int. J. Interferon Cytokine Mediat. Res. 2015, 7, 9–25. [Google Scholar]
- Ji, E.; Lee, S. Antibody-based therapeutics for atherosclerosis and cardiovascular diseases. Int. J. Mol. Sci. 2021, 22, 5770. [Google Scholar] [CrossRef] [PubMed]
- Tousoulis, D.; Oikonomou, E.; Economou, E.E.; Crea, F.; Kaski, J.C. Inflammatory cytokines in atherosclerosis: Current therapeutic approaches. Eur. Heart J. 2016, 37, 1723–1735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woollard, K.J.; Chin-Dusting, J. Therapeutic targeting of p-selectin in atherosclerosis. Inflamm. Allergy Drug Targets 2007, 6, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Geng, X.; Mihaila, R.; Yuan, Y.; Strutt, S.; Benz, J.; Tang, T.; Mayer, C.; Oksenberg, D. Inclacumab, a fully human anti-P-selectin antibody, directly binds to PSGL-1 binding region and demonstrates robust and durable inhibition of cell adhesion. Blood 2020, 136 (Suppl. S1), 10–11. [Google Scholar] [CrossRef]
- Ruhanen, H.; Haridas, P.A.N.; Jauhiainen, M.; Olkkonen, V.M. Angiopoietin-like protein 3, an emerging cardiometabolic therapy target with systemic and cell-autonomous functions. Biochim. Biophys. Acta Mol. Cell. Biol. Lipids 2020, 1865, 158791. [Google Scholar] [CrossRef] [PubMed]
- Stitziel, N.O.; Khera, A.V.; Wang, X.; Bierhals, A.J.; Vourakis, A.C.; Sperry, A.E.; Natarajan, P.; Klarin, D.; Emdin, C.A.; Zekavat, S.M.; et al. PROMIS and Myocardial Infarction Genetics Consortium Investigators. ANGPTL3 deficiency and protection against coronary artery disease. J. Am. Coll. Cardiol. 2017, 69, 2054–2063. [Google Scholar] [CrossRef]
- European Medicines Agency. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/evkeeza (accessed on 8 February 2022).
- Pouwer, M.G.; Pieterman, E.J.; Worms, N.; Keijzer, N.; Jukema, J.W.; Gromada, J.; Gusarova, V.; Princen, H.M.G. Alirocumab, evinacumab, and atorvastatin triple therapy regresses plaque lesions and improves lesion composition in mice. J. Lipid Res. 2020, 61, 365–375. [Google Scholar] [CrossRef] [Green Version]
- Gaudet, D.; Karwatowska-Prokopczuk, E.; Baum, S.J.; Hurh, E.; Kingsbury, J.; Bartlet, V.J.; Figueroa, A.L.; Piscitelli, P.; Singleton, W.; Witztum, J.L.; et al. Vupanorsen, an N-acetyl galactosamine-conjugated antisense drug to ANGPTL3 mRNA, lowers triglycerides and atherogenic lipoproteins in patients with diabetes, hepatic steatosis, and hypertriglyceridaemia. Eur. Heart J. 2020, 41, 3936–3945. [Google Scholar] [CrossRef]
- Pharmaceutical INN. Available online: https://investingnews.com/pfizer-and-ionis-announce-discontinuation-of-vupanorsen-clinical-development-program/ (accessed on 8 February 2022).
- Jain, M.; Zellweger, M.; Wagnières, G.; van den Bergh, H.; Cook, S.; Giraud, M.N. Photodynamic therapy for the treatment of atherosclerotic plaque: Lost in translation? Cardiovasc. Ther. 2017, 35, 12238. [Google Scholar] [CrossRef] [PubMed]
- Benov, L. Photodynamic therapy: Current status and future directions. Med. Princ. Pract. 2015, 24 (Suppl. S1), 14–28. [Google Scholar] [CrossRef] [PubMed]
- Houthoofd, S.; Vuylsteke, M.; Mordon, S.; Fourneau, I. Photodynamic therapy for atherosclerosis. The potential of indocyanine green. Photodiagn. Photodyn. Ther. 2020, 29, 101568. [Google Scholar] [CrossRef] [PubMed]
- Correaia, J.H.; Rodrigues, J.A.; Pimenta, S.; Dong, T.; Yang, Z. Photodynamic therapy review: Principles, photosensitizers, applications, and future directions. Pharmaceutics 2021, 13, 1332. [Google Scholar] [CrossRef] [PubMed]
- Hsiang, Y.N.; Fragoso, M.; Tsang, V.; Schereiber, W.E. Determining the optimal dose of Photofrin in miniswine atherosclerotic plaque. Photochem. Photobiol. 1993, 57, 518–525. [Google Scholar] [CrossRef] [PubMed]
- Spokojni, A.M.; Serur, J.R.; Skilman, J.; Spears, J.R. Uptake of hematoporphyrin-derivative by atheromatous plaques: Studies in human in vitro and rabbit in vivo. J. Am. Coll. Cardiol. 1986, 8, 1386–1392. [Google Scholar] [CrossRef] [Green Version]
- Hsiang, Y.N.; Crespo, M.T.; Richter, A.M.; Jain, A.K.; Fragoso, M.; Levy, J.G. In vitro and in vivo uptake of benzoporphyrin derivative into human and miniswine atherosclerotic plaque. Photochem. Photobiol. 1993, 5, 670–674. [Google Scholar] [CrossRef] [PubMed]
- Jain, M.; Zellweger, M.; Frobert, A.; Valentin, J.; van den Bergh, H.; Wagnières, G.; Cook, S.; Giraud, M.N. Intra-arterial drug and light delivery for photodynamic therapy using Visudyne®: Implication for atherosclerotic plaque treatment. Front. Physiol. 2016, 7, 400. [Google Scholar] [CrossRef] [Green Version]
- Nyamekye, I.; Buonaccorsi, G.; McEwan, J.; MacRobert, A.; Bown, S.; Bishop, C. Inhibition of intimal hyperplasia in balloon injured arteries with adjunctive phthalocyanine sensitised photodynamic therapy. Eur. J. Vasc. Endovasc. Surg. 1996, 11, 19–28. [Google Scholar] [CrossRef] [Green Version]
- Nagae, T.; Aizawa, K.; Uchimura, N.; Tani, D.; Abe, M.; Fujishima, K.; Wilson, S.E.; Ishimaru, S. Endovascular photodynamic therapy using mono-L-aspartyl-chlorin e6 to inhibit intimal hyperplasia in balloon-injured rabbit arteries. Lasers Surg. Med. 2001, 28, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, M.P.; Buonaccorsi, G.; MacRobert, A.; Bishop, C.C.; Bown, S.G.; McEwan, J.R. Intra-arterial photodynamic therapy using 5-ALA in a swine model. Eur. J. Vasc. Endovasc. Surg. 1998, 16, 284–291. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, M.P.; Buonaccorsi, G.A.; Mansfield, R.; Bishop, C.C.R.; Bown, S.G.; McEwan, J.R. Reduction in the response to coronary and iliac artery injury with photodynamic therapy using 5-aminolaevulinic acid. Cardiovasc. Res. 2000, 45, 478–485. [Google Scholar] [CrossRef] [Green Version]
- Hayase, M.; Woodbum, K.W.; Perlroth, J.; Miller, R.A.; Baumgardner, W.; Yock, P.G.; Yeung, A. Photoangioplasty with local motexafin lutetium delivery reduces macrophages in a rabbit post-balloon injury model. Cardiovasc. Res. 2001, 49, 449–455. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, A.; Woodburn, K.W.; Hayase, M.; Robbins, R.C. Reduction of vein graft disease using photodynamic therapy with motexafin lutetium in a rodent isograft model. Circulation 2000, 102, III275–III280. [Google Scholar] [CrossRef] [PubMed]
- Geetha Bai, R.; Muthoosamy, K.; Manickam, S. Nanomedicine in theranostics. In Nanotechnology Applications for Tissue Engineering; Thomas, S., Grohens, Y., Ninan, N., Eds.; William Andrew Publishing: Norwich, CT, USA, 2015; pp. 195–213. [Google Scholar]
- Zhang, Y.; Koradia, A.; Kamato, D.; Popat, A.; Little, P.J.; Ta, H.T. Treatment of atherosclerotic plaque: Perspectives on theranostics. J. Pharm. Pharmacol. 2019, 71, 1029–1043. [Google Scholar] [CrossRef] [Green Version]
- Bejarano, J.; Navarro-Marquez, M.; Morales-Zavala, F.; Morales, J.O.; Garcia-Carvajal, I.; Araya-Fuentes, E.; Flores, Y.; Verdejo, H.E.; Castro, P.F.; Lavandero, S.; et al. Nanoparticles for diagnosis and therapy of atherosclerosis and myocardial infarction: Evolution toward prospective theranostic approaches. Theranostics 2018, 8, 4710–4732. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, S.; Nooti, S.K.; Singh, H.; Rai, V. Nanomaterial-mediated theranostics for vascular diseases. J. Nanotheranostics 2021, 2, 1–15. [Google Scholar] [CrossRef]
- Wu, Y.; Vazquez-Prada, K.X.; Liu, Y.; Whittaker, A.K.; Zhang, R.; Ta, H.T. Recent advances in the development of theranostic nanoparticles for cardiovascular diseases. Nanotheranostics 2021, 5, 499–514. [Google Scholar] [CrossRef]
- Evans, R.J.; Lavin, B.; Phinikaridou, A.; Chooi, K.Y.; Mohri, Z.; Wong, E.; Boyle, J.J.; Krams, R.; Botnar, R.; Long, N.J. Targeted molecular iron oxide contrast agents for imaging atherosclerotic plaque. Nanotheranostics 2020, 4, 184–194. [Google Scholar] [CrossRef]
- Vazquez-Prada, K.X.; Lam, J.; Kamato, D.; Xu, Z.P.; Little, P.J.; Ta, H.T. Targeted molecular imaging of cardiovascular diseases by iron oxide nanoparticles. Arterioscler. Thromb. Vasc. Biol. 2021, 41, 601–613. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-X.J. Supermagnetic iron oxide based MRI contrast agents: Current status of clinical application. Quant. Imaging Med. Surg. 2011, 1, 35–44. [Google Scholar] [PubMed]
- Winter, P.M.; Neubauer, A.M.; Caruthers, S.D.; Harris, T.D.; Robertson, J.D.; Williams, T.A.; Schmieder, A.H.; Hu, G.; Allen, J.S.; Lacy, E.K.; et al. Endothelial ανβ3 integrin–targeted fumagillin nanoparticles inhibit angiogenesis in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 2103–2109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.; Yang, Y.; Zhao, W.; Xu, Z.P.; Little, P.J.; Whittaker, A.K.; Zhang, R.; Ta, H.T. Novel iron oxide-cerium oxide core-shell nanoparticles as a potential theranostic material for ROS related inflammatory diseases. J. Mater. Chem. B 2018, 6, 4937–4951. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.W.; Hwang, B.H.; Moon, H.; Kang, J.; Park, E.H.; Ihm, S.H.; Chang, K.; Hong, K.S. In vivo MRI detection of intraplaque macrophages with biocompatible silica-coated iron oxide nanoparticles in murine atherosclerosis. J. Appl. Biomater. Funct. Mater. 2021, 19, 1014751. [Google Scholar] [CrossRef] [PubMed]
- Oumzil, K.; Ramin, M.A.; Lorenzato, C.; Hémadou, A.; Laroche, J.; Jacobin-Valat, M.J.; Mornet, S.; Roy, C.E.; Kauss, T.; Gaudin, K.; et al. Solid lipid nanoparticles for image-guided therapy of atherosclerosis. Bioconjug. Chem. 2016, 27, 569–575. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhang, X.; Millican, R.; Creutzmann, J.E.; Martin, S.; Jun, H.W. High density lipoprotein mimicking nanoparticles for atherosclerosis. Nano. Converg. 2020, 7, 6. [Google Scholar] [CrossRef] [Green Version]
- Nandwana, V.; Ryoo, S.-R.; Kanthala, S.; McMahon, K.M.; Rink, J.S.; Li, Y.; Venkatraman, S.S.; Thaxton, C.S.; Dravid, V.P. High-density lipoprotein-like magnetic nanostructures (HDL-MNS): Theranostic agents for cardiovascular disease. Chem. Mater. 2017, 29, 2276–2282. [Google Scholar] [CrossRef]
- Kelly, K.A.; Allport, J.R.; Tsourkas, A.; Shinde-Patil, V.R.; Josephson, L.; Weissleder, R. Detection of vascular adhesion molecule-1 expression using a novel multimodal nanoparticle. Circ. Res. 2005, 96, 327–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nahrendorf, M.; Zhang, H.; Hembrador, S.; Panizzi, P.; Sosnovik, D.E.; Aikawa, E.; Libby, P.; Swirski, F.K.; Weissleder, R. Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis. Circulation 2008, 117, 379–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cormode, D.P.; Skajaa, T.; van Schooneveld, M.M.; Koole, R.; Jarzyna, P.; Lobatto, M.E.; Calcagno, C.; Barazza, A.; Gordon, R.E.; Zanzonico, P.; et al. Nanocrystal core high-density lipoproteins: A multimodal molecular imaging contrast agent platform. Nano Lett. 2008, 8, 3715–3723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirichenko, T.V.; Sukhorukov, V.N.; Markin, A.M.; Nikiforov, N.G.; Liu, P.-Y.; Sobenin, I.A.; Tarasov, V.V.; Orekhov, A.N.; Aliev, G. Medicinal plants as a potential and successful treatment option in the context of atherosclerosis. Front. Pharmacol. 2020, 11, 403. [Google Scholar] [CrossRef]
- Zhao, X.; Oduro, P.K.; Tong, W.; Wang, Y.; Gao, X.; Wang, Q. Therapeutic potential of natural products against atherosclerosis: Targeting on gut microbiota. Pharmacol. Res. 2021, 163, 105362. [Google Scholar] [CrossRef] [PubMed]
- Sobenin, I.A.; Myasoedova, V.A.; Iltchuk, M.I.; Zhang, D.-W.; Orekhov, A.N. Therapeutic effects of garlic in cardiovascular atherosclerotic disease. Chin. J. Nat. Med. 2019, 17, 721–728. [Google Scholar] [CrossRef]
- Aviello, G.; Abenavoli, L.; Borrelli, F.; Capasso, R.; Izzo, A.A.; Lembo, F.; Romano, B.; Capasso, F. Garlic: Empiricism or science? Nat. Prod. Commun. 2009, 4, 1785–1796. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.; Yang, S.; Wang, S.; Cao, Y.; Zhao, R.; Li, X.; Xing, Y.; Liu, L. Effect of berberine on atherosclerosis and gut microbiota modulation and their correlation in high-fat diet-fed ApoE−/− mice. Front. Pharmacol. 2020, 11, 223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rui, R.; Yang, H.; Liu, Y.; Zhou, Y.; Xy, X.; Li, C.; Liu, S. Effects of berberine on atherosclerosis. Front. Pharmacol. 2021, 12, 764175. [Google Scholar] [CrossRef] [PubMed]
- Jian, X.; Liu, Y.; Zhao, Z.; Zhao, L.; Wang, D.; Liu, Q. The role of traditional Chinese medicine in the treatment of atherosclerosis through the regulation of macrophage activity. Biomed. Pharmacother. 2019, 118, 109375. [Google Scholar] [CrossRef] [PubMed]
- Pagliaro, B.; Santolamazza, C.; Simonelli, F.; Rubattu, S. Phytochemical compounds and protection from cardiovascular diseases: A state of the art. Biomed. Res. Int. 2015, 2015, 918069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stamenkovska, M.; Hadzi-Petrushev, N.; Nikodinovski, A.; Gagov, H.; Atanasova-Panchevska, N.; Mitrokhin, V.; Kamkin, A.; Mladenov, M. Application of curcumine and its derivatives in the treatment of cardiovascular diseases: A review. Int. J. Food Prop. 2021, 24, 1510–1528. [Google Scholar] [CrossRef]
- Cox, F.F.; Misiou, A.; Vierkant, A.; Ale-Agha, N.; Grandoch, M.; Haendeler, J.; Altschmied, J. Protective effects of curcumin in cardiovascular diseases—Impact on oxidative stress and mitochondria. Cells 2022, 11, 342. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.-Y.; Zhao, C.-N.; Gan, R.-Y.; Xu, X.-Y.; Wei, X.-L.; Corke, H.; Atanasov, A.G.; Li, H.-B. Effects and mechanisms of tea and its bioactive compounds for the prevention and treatment of cardiovascular diseases: An updated review. Antioxidants 2019, 8, 166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thaipitakwong, T.; Numhom, S.; Aramwit, P. Mulberry leaves and their potential effects against cardiometabolic risks: A review of chemical compositions, biological properties and clinical efficacy. Pharm. Biol. 2018, 56, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Aramwit, P.; Supasyndh, O.; Siritienthong, T.; Bang, N. Mulberry leaf reduces oxidation and C-reactive protein level in patients with mild dyslipidemia. Biomed. Res. Int. 2013, 2013, 787981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, Q.; He, N.; Wang, Z.; Fu, X.; Aung, L.H.H.; Liu, Y.; Li, M.; Cho, J.Y.; Yang, Y.; Yu, T. Functional roles and mechanisms of ginsenosides from Panax ginseng in atherosclerosis. J. Ginseng Res. 2021, 45, 22–31. [Google Scholar] [CrossRef]
- Aminifard, T.; Razavi, B.M.; Hosseinzadeh, H. The effects of ginseng on the metabolic syndrome: An updated review. Food Sci. Nutr. 2021, 9, 5293–5311. [Google Scholar] [CrossRef]
- Buettner, C.; Yeh, G.Y.; Phillips, R.S.; Mittleman, M.A.; Kaptchuk, T.J. Systematic review of the effects of ginseng on cardiovascular risk factors. Ann. Pharmacother. 2006, 40, 83–95. [Google Scholar] [CrossRef]
- Aviram, M.; Rosenblat, M.; Gaitini, D.; Nitecki, S.; Hoffman, A.; Dornfeld, L.; Volkova, N.; Presser, D.; Attias, J.; Liker, H.; et al. Pomegranate juice consumption for 3 years by patients with carotid artery stenosis reduces common carotid intima-media thickness, blood pressure and LDL oxidation. Clin. Nutr. 2004, 23, 423–433. [Google Scholar] [CrossRef]
- Giménez-Bastida, J.A.; Ávila-Gálvez, M.A.; Espín, J.C.; González-Sarrías, A. Evidence for health properties of pomegranate juices and extracts beyond nutrition: A critical systematic review of human studies. Trends Food Sci. Technol. 2021, 114, 410–423. [Google Scholar] [CrossRef]
- Zordoky, B.N.; Robertson, I.M.; Dyck, J.R. Preclinical and clinical evidence for the role of resveratrol in the treatment of cardiovascular diseases. Biochim. Biophys. Acta 2015, 1852, 1155–1177. [Google Scholar] [CrossRef] [Green Version]
- Ren, J.; Fu, L.; Nile, S.H.; Zhang, J.; Kai, G. Salvia miltiorrhiza in treating cardiovascular diseases: A review on its pharmacological and clinical applications. Front. Pharmacol. 2019, 10, 753. [Google Scholar] [CrossRef]
- Santhakumar, A.B.; Battino, M.; Alvarez-Suarez, J.M. Dietary polyphenols: Structures, bioavailability and protective effects against atherosclerosis. Food Chem. Toxicol. 2018, 113, 49–65. [Google Scholar] [CrossRef] [PubMed]
- Grassi, D.; Desideri, G.; Di Giosia, P.; De Feo, M.; Fellini, E.; Cheli, P.; Ferri, L.; Ferri, C. Tea, flavonoids, and cardiovascular health: Endothelial protection. Am. J. Clin. Nutr. 2013, 98 (Suppl. S6), 1660S–1666S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Plant Products | Bioactives/Chemical Class | Anti-Atherosclerotic Effects | Putative Mechanisms | Clinical Studies | References |
---|---|---|---|---|---|
Allium sativum, garlic | Organo-sulfur derivatives | Lipid-lowering LDLc oxidation inhibition VSMC antiproliferative CIMT inhibition Inhibition of cholesterol accumulation in arterial wall Endothelial protective Anti-inflammatory Antithrombotic Antihypertensive | ↓ACC, ACAT, HMGR, (SREBP)-1c, G6PD ↓TNF-α, IL-1β, COX-2 ↓CAM-1, HLA-DR ↓TXB2, PGE2, leukotriene C4 ↓GPIIb/IIIa receptor, fibrinogen binding ↓sialidase Regulation of NO synthesis ↓AngII receptor | Heterogeneous results on blood lipid profile Reduction in LDLc, TC in patients with hypercholesterolemia if it is used for longer than 2 months Reduction (by 38%) in risk of coronary events Decrease of blood pressure in hypertensive subjects Decrease of CIMT and regression of plaque in patients with carotid atherosclerosis, coronary heart disease | [128,130,131] |
Berberine | Isoquinoline alkaloid | Endothelial protective Lipid regulator Plaque-stabilizing Decrease of foam cell formation Increase of macrophage autophagy Anti-inflammatory Gut microbiota modulation | ↑LDL receptors, apoE expression ↓HMGR ↓NF-κB, TNF-α, MCP-1, IL-6, MMP-9 ↓p38-MPK ↑LXR-α, ABCA1 ↑AMPK-SIRT1-PPARγ ↑AMPK/mTOR ↓PI3/Akt/mTOR | Reduction in serum cholesterol in patients with hypercholesterolemia Decrease of atherosclerotic area | [129,132,133] |
Curcumin | Diarylheptanoids | Anti-inflammatory Endothelial protective Lipid-lowering and regulation of lipid metabolism Plaque stabilizing Reduction of foam cell formation Decrease of macrophage infiltration Modulation of macrophage polarization Decrease of atherosclerotic lesions Decrease of carotid artery neointima formation VSMC antiproliferative Antioxidant Antiplatelet | ↑cholesterol efflux ↑LXR-ABCA1/SR-BI ↑CD36 ↓TLR4 expression ↓oxLDL ↓NF-κB, TNF-α, IL-1β, IL-6, MCP-1, MMP-9, -13 ↓ICAM-1, VCAM-1 ↓Ang II ↑PPARγ ↑Nrf2 ↓PAF | Reduction of LDLc, TC in patients with acute coronary syndrome Decrease of hCRP, TG, TC and LDLc in patients with type 2 diabetes | [134,135,136,137] |
Green tea catechins | Polyphenols | Antioxidant Endothelial protective Anti-inflammatory Lipid lowering Inhibition of oxLDL VSMC antiproliferative Decrease of plaque formation | ↑Nrf2/HO-1 ↓NF-κB, TNF-α, IL-6 ↓CRP ↓TLR4 ↑IL-10 ↑AMPK/PPARγ ↑PPARα ↑markers of autophagy Regulation of LXRα, FAS, SIRT-1, Insig-1-SREBP-SCAP ↓Notch receptor ↓AngII receptor 1 | Improvement of blood lipid profile (↓TC, ↓LDLc, ↓TG) in patients with mild hypercholesterolemia Improvement of endothelial function in prehypertensive subjects | [138] |
Morus alba, mulberry | Phenolic acids Flavonoids Iminosugar alkaloids | Antihyperlipidemic LDL oxidation inhibition Decrease of lipid accumulation in foam cells Decrease of plaque volume Anti-inflammatory Antioxidant VSMC antiproliferative Antiplatelet | Regulation of FAS, GPAT, SREBP-1c, LXR ↑AMPK, PPARα AP-1, STAT3 signaling modulation ↓NF-κB, TNF-α, IL-1β, IL-6, COX-2 ↑SOD, GPx, glutathione-S-transferase ↓lipid peroxidation ↓sVCAM-1 ↓integrin αIIbβ3 secretion ↓TXA2 | Improvement of serum lipid profile (↓TC, ↓LDLc, ↓TG, ↑HDLc) in patients with early stage of dyslipidemia, type 2 diabetes and dyslipidemia, heart disease Reduction of atherosclerotic lesions and CIMT in patients with coronary heart disease ↓CRP levels in mild dyslipidemia | [129,139,140] |
Panax ginseng | Triterpenes (ginsenosides) | Enhancement of plaque stability Decrease of foam cell formation Reduction of plaque formation Increase of macrophage autophagy Decrease of monocyte adhesion events Decrease of vascular calcification Attenuation of neointimal hyperplasia VSMC antiproliferative Antioxidant | ↑AMPK/mTOR ↑GPER, p-PI3K ↓p38/JNK-MAPK ↑IL-4, STAT6 ↓oxLDL uptake ↑LXRα, ABCGA1 ↓NF-κB, TNF-α, MMP-2,-9 ↓VCAM-1, ICAM-1, E-selectin ↑Nrf2/HO-1, SOD | Attenuation of endothelial dysfunction in hypertensive patients Improvement of lipid profile in type 2 diabetic patients Inconsistent results in most of the studies | [129,140,141,142,143] |
Punica granatum, pomegranate | Tannins, Anthocyanins, Flavonoids | Antioxidant Anti-inflammatory Lipid-lowering Modulation of gut microbiota | ↑LXRα, ABCA1 ↓NF-κB, TNF-α ↑IL-10 | Blood lipid-lowering effects in hyperlipidemic, overweight and obese subjects but also discordant results in other studies Decrease (up to 30%) of CIMT in patients with carotid artery stenosis Reduction of blood pressure in hypertensive patients with mild/high cardiovascular risk | [129,144,145] |
Resveratrol | Stilbene | Antioxidant Anti-inflammatory Lipid regulator Decrease of LDLc oxidation Decrease of foam cell formation Reduction of plaque formation Vasoprotective Antiproliferative/antimineralizing | ↓NADPH oxidase ↓NF-κB, TNF-α, MCP-1, IL-6, IL-8 ↓ICAM-1, VCAM-1 ↓oxLDL uptake ↑LDL receptors expression ↑CYP7A1 expression ↓HMGR ↓LOX1 ↑AMPK-PPAR ↑PPARγ ↑LXRα, ABCA1 | Reduction in plasma TG in obese patients/smokers Reduction of LDLc in type 2 diabetes patients Reduction (20%) in oxLDL in patients with statins and high cardiovascular risk | [146] |
Salvia miltiorrhiza, Chinese sage, Danshen | Tanshinones Salvianolic acids | Antioxidant Endothelial protective Anti-inflammatory Lipid regulator Reduction of foam cell formation Inhibition of progression of atherosclerotic plaque Antithrombotic Antihypertensive | ↑SOD ↑NO ↓NF-κB, TNF-α, IL-1β, IL-6, MCP-1 ↓ICAM-1, VCAM-1, (MMP)-2,-3,-9 ↓oxLDL ↓CD36, PPARγ ↑ERK/Nrf2/HO-1 ↓CCl-20 ↓p38MAPKK ↑Prdx1/ABCA1 signaling ↓PI3K signaling | Improvement of blood lipid profile in patients with hyperlipidemia Reduction of blood pressure and pulse rate in hypertensive subjects Recovery of cardiac function in patients with myocardial infarction undergoing PCI | [129,147] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aprotosoaie, A.C.; Costache, A.-D.; Costache, I.-I. Therapeutic Strategies and Chemoprevention of Atherosclerosis: What Do We Know and Where Do We Go? Pharmaceutics 2022, 14, 722. https://doi.org/10.3390/pharmaceutics14040722
Aprotosoaie AC, Costache A-D, Costache I-I. Therapeutic Strategies and Chemoprevention of Atherosclerosis: What Do We Know and Where Do We Go? Pharmaceutics. 2022; 14(4):722. https://doi.org/10.3390/pharmaceutics14040722
Chicago/Turabian StyleAprotosoaie, Ana Clara, Alexandru-Dan Costache, and Irina-Iuliana Costache. 2022. "Therapeutic Strategies and Chemoprevention of Atherosclerosis: What Do We Know and Where Do We Go?" Pharmaceutics 14, no. 4: 722. https://doi.org/10.3390/pharmaceutics14040722