Second-Order Scattering Quenching in Fluorescence Spectra of Natural Humates as a Tracer of Formation Stable Supramolecular System for the Delivery of Poorly Soluble Antiviral Drugs on the Example of Mangiferin and Favipiravir
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.1.1. HAs
2.1.2. Bovine Serum Albumin (BSA)
2.1.3. Pharmaceutical Substances
2.2. Fluorescence and Scattering Spectroscopy
2.3. Dynamic Light Scattering (DLS)
2.4. Data Processing
3. Results and Discussion
3.1. Dispersion Analysis of the Supramolecular Structure of Aqueous Dilutions of the HC by the DLS Method
3.2. Fluorescence and Scattering Quenching in Solutions of HC Supramolecular Structures
3.3. Complexation of Liquid HC (Dilution 1:2000) with Antiviral Drugs
3.4. Second-Order Scattering Quenching as a Method for Evaluating the Process of Incorporation of Mangiferin and Favipiravir into the HC System
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.; Chan, H.F.; Leong, K.W. Advanced materials and processing for drug delivery: The past and the future. Adv. Drug Deliv. Rev. 2013, 65, 104–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124. [Google Scholar] [CrossRef] [PubMed]
- Varol, C.; Mildner, A.; Jung, S. Macrophages: Development and tissue specialization. Annu. Rev. Immunol. 2015, 33, 643–675. [Google Scholar] [CrossRef] [PubMed]
- Svenson, S.; Tomalia, D.A. Dendrimers in biomedical applications—Reflections on the field. Adv. Drug Deliv. Rev. 2012, 64, 102–115. [Google Scholar] [CrossRef]
- Gupta, U.; Agashe, H.B.; Asthana, A.; Jain, N.K. A review of in vitro–in vivo investigations on dendrimers: The novel nano-scopic drug carriers. Nanomed. Nanotechnol. Biol. Med. 2006, 2, 66–73. [Google Scholar] [CrossRef]
- Trucillo, P. Drug carriers: Classification, administration, release profiles, and industrial approach. Processes 2021, 9, 470. [Google Scholar] [CrossRef]
- Tong, X.; Pan, W.; Su, T.; Zhang, M.; Dong, W.; Qi, X. Recent advances in natural polymer-based drug delivery systems. React. Funct. Polym. 2020, 148, 104501. [Google Scholar] [CrossRef]
- Jain, A.; Singh, S.K.; Arya, S.K.; Kundu, S.C.; Kapoor, S. Protein nanoparticles: Promising platforms for drug delivery applications. ACS Biomater. Sci. Eng. 2018, 4, 3939–3961. [Google Scholar] [CrossRef]
- Bahvalov, A.; Rozanova, M.; Trofimov, S. The elemental composition and amphiphilic properties of humic acids in southern taiga soils. Moscow Univ. Soil Sci Bulletin 2010, 65, 168–171. [Google Scholar] [CrossRef]
- Tomaszewski, J.E.; Schwarzenbach, R.P.; Sander, M. Protein encapsulation by humic substances. Sci. Technol. 2011, 45, 6003–6010. [Google Scholar] [CrossRef]
- Kala, K.J.; Prashob, P.K.J.; Chandramohanakumar, N. Humic substances as a potent biomaterials for therapeutic and drug delivery system—A review. Int. J. Appl. Pharm. 2019, 11, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Mirza, M.A.; Agarwal, S.P.; Rahman, M.A.; Rauf, A.; Ahmad, N.; Alam, A.; Iqbal, Z. Role of humic acid on oral drug delivery of an antiepileptic drug. Drug Dev. Ind. Pharm. 2011, 37, 310–319. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.P.; Ansari, S.H.; Karmarkar, R.R. Enhancement of the dissolution rate of ketoconazole through a novel complexation with humic acid extracted from shilajit. Asian J. Chem. 2008, 20, 879–888. [Google Scholar]
- Khilko, S.L.; Semenova, R.G. Interaction of humic acid salts with drug preparations. Solid Fuel Chem. 2016, 50, 390–394. [Google Scholar] [CrossRef]
- Zhernov, Y.V.; Konstantinov, A.I.; Zherebker, A.; Nikolaev, E.; Orlov, A.; Savinykh, M.I.; Kornilaeva, G.V.; Karamov, E.V.; Perminova, I.V. Antiviral activity of natural humic substances and shilajit materials against HIV-1: Relation to structure. Environ. Res. 2021, 193, 110312. [Google Scholar] [CrossRef] [PubMed]
- Uspenskaya, E.V.; Syroeshkin, A.V.; Pleteneva, T.V.; Kazimova, I.V.; Grebennikova, T.V.; Fedyakina, I.T.; Lebedeva, V.V.; Latyshev, O.E.; Eliseeva, O.V.; Larichev, V.F.; et al. Nanodispersions of polyelectrolytes based on humic substances: Isolation, physico-chemical characterization and evaluation of biological activity. Pharmaceutics 2021, 13, 1954. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Wang, T.; Song, J.; Pu, D.; He, D.; Li, J.; Yang, J.; Li, K.; Zhong, C.; Zhang, J. Antiviral drug delivery system for enhanced bioactivity, better metabolism and pharmacokinetic characteristics. Int. J. Nanomed. 2021, 16, 4959–4984. [Google Scholar] [CrossRef]
- Jomah, S.; Asdaq, S.M.B.; Al-Yamani, M.J. Clinical efficacy of antivirals against novel coronavirus (COVID-19): A review. J. Infect. Public Health 2020, 13, 1187–1195. [Google Scholar] [CrossRef]
- Srinivasan, K.; Rao, M. Understanding the clinical utility of favipiravir (T-705) in coronavirus disease of 2019: A review. Ther. Adv. Infect. Dis. 2021, 8, 20499361211063016. [Google Scholar] [CrossRef]
- Brown, L.K.; Freemantle, N.; Breuer, J.; Dehbi, H.M.; Chowdhury, K.; Jones, G.; Ikeji, F.; Ndoutoumou, A.; Santhirakumar, K.; Longley, N.; et al. Early antiviral treatment in outpatients with COVID-19 (FLARE): A structured summary of a study protocol for a randomised controlled trial. Trials 2021, 22, 193. [Google Scholar] [CrossRef]
- Hanna, C.R.; Blyth, K.G.; Burley, G.; Carmichael, S.; Evans, C.; Hinsley, S.; Khadra, I.; Khoo, S.; Lewsley, L.A.; Jones, R.R.; et al. Glasgow early treatment arm favirpiravir (GETAFIX) for adults with early stage COVID-19: A structured summary of a study protocol for a randomised controlled trial. Trials 2020, 21, 935. [Google Scholar] [CrossRef] [PubMed]
- Santhi, V.P.; Masilamani, P.; Sriramavaratharajan, V.; Murugan, R.; Gurav, S.S.; Sarasu, V.P.; Parthiban, S.; Ayyanar, M. Therapeutic potential of phytoconstituents of edible fruits in combating emerging viral infections. J. Food Biochem. 2021, 45, e13851. [Google Scholar] [CrossRef] [PubMed]
- Junior, A.G.; Tolouei, S.E.L.; dos Reis Lívero, F.A.; Gasparotto, F.; Boeing, T.; de Souza, P. Natural agents modulating ACE-2: A review of compounds with potential against SARS-CoV-2 infections. Curr. Pharm. Des. 2021, 27, 1588–1596. [Google Scholar] [CrossRef] [PubMed]
- Umar, H.I.; Josiah, S.S.; Saliu, T.P.; Jimoh, T.O.; Ajayi, A.; Danjuma, J.B. In-silico analysis of the inhibition of the SARS-CoV-2 main protease by some active compounds from selected African plants. J. Taibah Univ. Med. Sci. 2021, 16, 162–176. [Google Scholar] [CrossRef]
- Li, N.; Xiong, R.; He, R.; Liu, B.; Wang, B.; Geng, Q. Mangiferin mitigates lipopolysaccharide-induced lung injury by inhibiting NLRP3 inflammasome activation. J. Inflamm. Res. 2021, 14, 2289–2300. [Google Scholar] [CrossRef]
- Timalsina, D.; Pokhrel, K.P.; Bhusal, D. Pharmacologic activities of plant-derived natural products on respiratory diseases and inflammations. Biomed. Res. Int. 2021, 2021, 1636816. [Google Scholar] [CrossRef]
- Moshikur, R.M.; Ali, M.K.; Wakabayashi, R.; Moniruzzaman, M.; Goto, M. Favipiravir-based ionic liquids as potent antiviral drugs for oral delivery: Synthesis, solubility, and pharmacokinetic evaluation. Mol. Pharm. 2021, 18, 3108–3115. [Google Scholar] [CrossRef]
- Khurana, R.K.; Gaspar, B.L.; Welsby, G.; Katare, O.P.; Singh, K.K.; Singh, B. Improving the biopharmaceutical attributes of mangiferin using vitamin E-TPGS co-loaded self-assembled phosholipidic nano-mixed micellar systems. Drug Deliv. Transl. Res. 2018, 8, 617–632. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Li, Y.; Ge, Y.; Zhong, Z.; Wang, Z.; Wu, T.; Zhao, X.; Zu, Y. Solubility, antioxidation, and oral bioavailability improvement of mangiferin microparticles prepared using the supercritical antisolvent method. Pharmaceutics 2020, 12, 90. [Google Scholar] [CrossRef] [Green Version]
- Seda Timur, S.; Ataşoğlu, M.; Öner, Y.; Ceren Karabulut, T.; Eroğlu, H. In vitro studies for BCS classification of an antiviral agent, favipiravir. J. Res. Pharm. 2021, 25, 944–952. [Google Scholar] [CrossRef]
- Tejaswi, P.; Devashish, K.; Prasad, R.R. Pharmacological effects of favipiravir on coronavirus: An update. Biomed. Pharmacol. J. 2021, 14, 1087–1096. [Google Scholar] [CrossRef]
- Möller, M.; Denicola, A. Protein tryptophan accessibility studied by fluorescence quenching. Biochem. Mol. Biol. Educ. 2002, 3, 175–178. [Google Scholar] [CrossRef]
- Sierra, M.M.D.; Giovanela, M.; Parlanti, E.; Soriano-Sierra, E.J. Fluorescence fingerprint of fulvic and humic acids from varied origins as viewed by single-scan and excitation/emission matrix techniques. Chemosphere 2005, 58, 715–733. [Google Scholar] [CrossRef] [PubMed]
- Lorber, B.; Fischer, F.; Bailly, M.; Roy, H.; Kern, D. Protein analysis by dynamic light scattering: Methods and techniques for students. Biochem. Mol. Biol. Educ. 2012, 40, 372–382. [Google Scholar] [CrossRef]
- Stetefeld, J.; McKenna, S.A.; Patel, T.R. Dynamic light scattering: A practical guide and applications in biomedical sciences. Biophys. Rev. 2016, 8, 409–427. [Google Scholar] [CrossRef]
- Piccolo, A. The supramolecular structure of humic substances: A novel understanding of humus chemistry and implications in soil science. Adv. Agron. 2002, 75, 57–134. [Google Scholar] [CrossRef]
- Piccolo, A. The supramolecular structure of humic substances. Soil Sci. 2001, 166, 810–832. [Google Scholar] [CrossRef] [Green Version]
- Palmer, N.E.; von Wandruszka, R. Dynamic light scattering measurements of particle size development in aqueous humic materials. Fresenius J. Anal. Chem. 2001, 371, 951–954. [Google Scholar] [CrossRef]
- Gerke, J. Concepts and misconceptions of humic substances as the stable part of soil organic matter: A review. Agronomy 2018, 8, 76. [Google Scholar] [CrossRef] [Green Version]
- Hurija, D.C.; Matic, B.V.; Vojko, V.; Miha, L. Phase stability of aqueous mixtures of bovine serum albumin with low molecular mass salts in presence of polyethylene glycol. J. Mol. Liq. 2022, 349, 118477. [Google Scholar] [CrossRef]
- Singh, P.; Singh, H.; Castro-Aceituno, V.; Ahn, S.; Kim, Y.J.; Yang, D.C. Bovine serum albumin as a nanocarrier for the efficient delivery of ginsenoside compound K: Preparation, physicochemical characterizations and in vitro biological studies. RSC Adv. 2017, 7, 15397–15407. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Yang, G.; Mei, Z. Spectroscopic and dynamic light scattering studies of the interaction between pterodontic acid and bovine serum albumin. Acta Pharm. Sin. B 2012, 2, 53–59. [Google Scholar] [CrossRef] [Green Version]
- Brahma, A.; Mandal, C.; Bhattacharyya, D. Characterization of a dimeric unfolding intermediate of bovine serum albumin under mildly acidic condition. Biochim. Biophys. Acta 2005, 1751, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Squire, P.G.; Moser, P.; O’Konski, C.T. Hydrodynamic properties of bovine serum albumin monomer and dimer. Biochemistry 1968, 7, 4261–4272. [Google Scholar] [CrossRef] [PubMed]
- Phan, H.T.M.; Bartelt-Hunt, S.; Rodenhausen, K.B.; Schubert, M.; Bartz, J.C. Investigation of bovine serum albumin (BSA) attachment onto selfassembled monolayers (SAMs) using combinatorial quartz crystal microbalance with dissipation (QCMD) and spectroscopic ellipsometry (SE). PLoS ONE 2015, 10, e0141282. [Google Scholar] [CrossRef]
- Raghuwanshi, V.S.; Yu, B.; Browne, C.; Garnier, G. Reversible pH responsive bovine serum albumin hydrogel sponge nanolayer. Front. Bioeng. Biotechnol. 2020, 8, 573. [Google Scholar] [CrossRef]
- Koly, S.F.; Kundu, S.P.; Kabir, S.; Amran, M.S.; Sultan, M.Z. Analysis of aceclofenac and bovine serum albumin interaction using fluorescence quenching method for predictive, preventive, and personalized medicine. EPMA J. 2015, 14, 24. [Google Scholar] [CrossRef] [Green Version]
- Rizvi, S.B.; Ghaderi, S.; Keshtgar, M.; Seifalian, A.M. Semiconductor quantum dots as fluorescent probes for in vitro and in vivo bio-molecular and cellular imaging. Nano Rev. 2010, 1, 5161. [Google Scholar] [CrossRef]
- Dogra, N.; Li, X.; Kohli, P. Investigating ligand-receptor interactions at bilayer surface using electronic absorption spectroscopy and fluorescence resonance energy transfer. Langmuir 2012, 28, 12989–12998. [Google Scholar] [CrossRef] [Green Version]
- Marqués-Gallego, P.; de Kroon, A.I.P.M. Ligation strategies for targeting liposomal nanocarriers. Biomed. Res. Int. 2014, 2014, 129458. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.Y.; Yang, Q.P.; Tian, S.J.; Song, F.H.; Guo, F.; Huang, N.N.; Tan, W.Q.; Bai, Y.C. Photochemical reactivity of humic substances in an aquatic system revealed by excitation-emission matrix fluorescence. Front. Chem. 2021, 9, 679286. [Google Scholar] [CrossRef] [PubMed]
- Heo, J.; Yoon, Y.; Kim, D.-H.; Lee, H.; Lee, D.; Her, N. A new fluorescence index with a fluorescence excitation-emission matrix for dissolved organic matter (DOM) characterization. Desalination Water Treat. 2015, 57, 20270–20282. [Google Scholar] [CrossRef]
- Liu, D.; Yu, H.; Yang, F.; Liu, L.; Gao, H.; Cui, B. Characterizing humic substances from native halophyte soils by fluorescence spectroscopy combined with parallel factor analysis and canonical correlation analysis. Sustainability 2020, 12, 9787. [Google Scholar] [CrossRef]
- Yu, D.; Liu, S.; Zhang, L.; Yang, J. A study on resonance Rayleigh scattering spectra of Humic Acid (HA). Chin. J. Geochem. 2012, 31, 24–29. [Google Scholar] [CrossRef]
- Zhou, J.-F.; Li, N.-B.; Luo, H.-Q. Analytical application of resonance rayleigh scattering, frequency doubling scattering, and second-order scattering spectra for the sodium alginate-CTAB system. Anal. Lett. 2011, 44, 637–647. [Google Scholar] [CrossRef]
- Yan, M.; Zhu, Y.; Ge, S.; Dai, P.; Yu, J.; Chen, C. Determination of BSA by Its Enhancement Effect on Second Order Scattering of Chrome Azurol, S. In Proceedings of the 3rd International Conference on Bioinformatics and Biomedical Engineering, Beijing, China, 11–13 June 2009; pp. 1–3. [Google Scholar] [CrossRef]
- Liu, J.F.; Li, N.B.; Luo, H.Q. Resonance Rayleigh scattering, second-order scattering and frequency doubling scattering spectra for studying the interaction of erythrosine with Fe(phen)32+ and its analytical application. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2011, 79, 631–637. [Google Scholar] [CrossRef]
- Tan, M.; Liang, W.; Luo, X.; Gu, Y. Fluorescence spectroscopy study on the interaction between evodiamine and bovine serum albumin. J. Chem. 2013, 2013, 308054. [Google Scholar] [CrossRef]
- Masilamani, V.; Ghaithan, H.M.; Aljaafreh, M.J.; Ahmed, A.; al Thagafi, R.; Prasad, S.; Alsalhi, M.S. Using a spectrofluorometer for resonance raman spectra of organic molecules. J. Spectrosc. 2017, 2017, 7. [Google Scholar] [CrossRef]
- Yang, S.; Zhou, Q.; Zhang, B.; Yang, D.; Yang, H.; Du, G.; Lu, Y. Screening, characterization and evaluation of mangiferin polymorphs. Nat. Prod. Bioprospect. 2020, 10, 187–200. [Google Scholar] [CrossRef]
- Zou, W.; Song, M.; He, J.; Qiu, P.; Sun, Z.; Su, Z.; Bai, Y. A resonance Rayleigh scattering and fluorescence quenching dual-channel sensor for sensitive detection of chitosan based on Eosin Y. Anal. Bioanal. Chem. 2021, 413, 1429–1440. [Google Scholar] [CrossRef]
Substance | Maximum Concentration | |||
---|---|---|---|---|
In Water | In HC (1:2000) | |||
mg/mL | mmol/L | mg/mL | mmol/L | |
Mangiferin | 0.02 | 0.05 | 0.1 | 0.64 |
Favipiravir | 2 | 4.74 | 2 | 4.74 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morozova, M.A.; Tumasov, V.N.; Kazimova, I.V.; Maksimova, T.V.; Uspenskaya, E.V.; Syroeshkin, A.V. Second-Order Scattering Quenching in Fluorescence Spectra of Natural Humates as a Tracer of Formation Stable Supramolecular System for the Delivery of Poorly Soluble Antiviral Drugs on the Example of Mangiferin and Favipiravir. Pharmaceutics 2022, 14, 767. https://doi.org/10.3390/pharmaceutics14040767
Morozova MA, Tumasov VN, Kazimova IV, Maksimova TV, Uspenskaya EV, Syroeshkin AV. Second-Order Scattering Quenching in Fluorescence Spectra of Natural Humates as a Tracer of Formation Stable Supramolecular System for the Delivery of Poorly Soluble Antiviral Drugs on the Example of Mangiferin and Favipiravir. Pharmaceutics. 2022; 14(4):767. https://doi.org/10.3390/pharmaceutics14040767
Chicago/Turabian StyleMorozova, Mariya A., Vladimir N. Tumasov, Ilaha V. Kazimova, Tatiana V. Maksimova, Elena V. Uspenskaya, and Anton V. Syroeshkin. 2022. "Second-Order Scattering Quenching in Fluorescence Spectra of Natural Humates as a Tracer of Formation Stable Supramolecular System for the Delivery of Poorly Soluble Antiviral Drugs on the Example of Mangiferin and Favipiravir" Pharmaceutics 14, no. 4: 767. https://doi.org/10.3390/pharmaceutics14040767
APA StyleMorozova, M. A., Tumasov, V. N., Kazimova, I. V., Maksimova, T. V., Uspenskaya, E. V., & Syroeshkin, A. V. (2022). Second-Order Scattering Quenching in Fluorescence Spectra of Natural Humates as a Tracer of Formation Stable Supramolecular System for the Delivery of Poorly Soluble Antiviral Drugs on the Example of Mangiferin and Favipiravir. Pharmaceutics, 14(4), 767. https://doi.org/10.3390/pharmaceutics14040767