Why Use Adipose-Derived Mesenchymal Stem Cells in Tendinopathic Patients: A Systematic Review
Abstract
:1. Introduction
2. Methods
2.1. Eligibility Criteria
2.2. Information Sources and Search Strategy
2.3. Study Selection and Data Collection Process
2.4. Data Items and Quality Assessment
3. Results
3.1. Study Design and Methods
Reference | Study | Diagnosis of Tendinopathy | Adipose Tissue | Cell Fraction from Adipose Tissue | Treatment | Final Follow-Up and Relative Outcomes |
---|---|---|---|---|---|---|
Kim et al. 2017 [55] | Cohort study (Korea) | Rotator cuff disease (MRI) | Lipoaspirated autologous adipose tissue from buttocks, enzymatically digested | ASCs | Intratendinous injections of ASCs (4.46 × 106 cells) during arthroscopic rotator cuff repair | 28 months VAS ROM Constant score UCLA score MRI |
Jo et al. 2018 [56] | First-in human trial (Korea) | Rotator cuff disease (MRI) | Lipoaspirated autologous abdominal subcutaneous adipose tissue, enzymatically digested | ASCs | Ultrasound-guided intratendinous injection of 3 mL of ASCs at low-(1.0 × 107 cells), mid-(5.0 × 107) and high-dose (1.0 × 108) | 6 months SPADI Constant score VAS MRI |
Usuelli et al. 2018 [58] | Randomized clinical trial (Italy) | Unilateral or bilateral chronic Achilles tendinopathy (MRI, US) | Lipoaspirated autologous abdominal subcutaneous adipose tissue, processed with Fasti kit System | ASCs in SVF | Ultrasound-guided intratendinous injection of 4 mL of SVF (1.0 × 108) | 6 months VAS AOFAS VISA-A SF-36 MRI |
Lee et al. 2015 [57] | Open-label study (Korea) | Chronic lateral epicondylosis (US) | Lipoaspirated allogeneic human subcutaneous adipose tissue, enzymatically digested | allo-ASCs | Ultrasound-guided intratendinous injection of in 1 mL allo-ASCs (106 or 107 cells) mixed with fibrin glue | 13 months VAS MEPI US |
Khoury et al. 2021a [59] | Prospective longitudinal case series exploratory study (Argentina) | Chronic insertional patellar tendinopathy (MRI) | Lipoaspirated autologous adipose tissue from the periumbilical zone, enzymatically digested | ASCs expanded in vitro | Ultrasound-guided intratendinous injection of 6 × 106 ASCs | 12 months VAS knee VISA-P Tegner score MRI |
Khoury et al. 2021b [60] | Prospective longitudinal case series exploratory study (Argentina) | Chronic lateral elbow tendinopathy (MRI) | Lipoaspirated autologous adipose tissue from the periumbilical zone, enzymatically digested | ASCs expanded in vitro | Ultrasound-guided intratendinous injection of 8 × 106 ASCs | 12 months VAS QuickDASH-Compulsory score QuickDASH-Sport score MRI |
Freitag et al. 2020 [61] | Case report (Australia) | Elbow tendinopathy (US) | Lipoaspirated autologous abdominal subcutaneous adipose tissue, enzymatically digested | ASCs | Ultrasound-guided intratendinous injection of 1 × 109 ASCs (1 mL) combined with 1 mL autologous PRP in tendon fibril discontinuity/tearing | 30 months NPRS PRTEE |
3.2. Characteristics of Tendinopathic Patients
3.3. Therapeutic Efficacy and Adverse Reactions to ASCs Intratendinous Injections
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maffulli, N.; Khan, K.M.; Puddu, G. Overuse tendon conditions: Time to change a confusing terminology. Arthrosc. J. Arthrosc. Relat. Surg. 1998, 14, 840–843. [Google Scholar] [CrossRef]
- Scott, A.; Squier, K.; Alfredson, H.; Bahr, R.; Cook, J.L.; Coombes, B.; de Vos, R.-J.; Fu, S.N.; Grimaldi, A.; Lewis, J.S.; et al. ICON 2019: International scientific tendinopathy symposium consensus: Clinical terminology. Br. J. Sports Med. 2020, 54, 260–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Massoud, E.I.E. Healing of subcutaneous tendons: Influence of the mechanical environment at the suture line on the healing process. World J. Orthop. 2013, 4, 229–240. [Google Scholar] [CrossRef] [PubMed]
- Kaux, J.-F.; Forthomme, B.; Goff, C.L.; Crielaard, J.-M.; Croisier, J.-L. Current opinions on tendinopathy. J. Sports Sci. Med. 2011, 10, 238–253. [Google Scholar]
- Hopkins, C.; Fu, S.-C.; Chua, E.; Hu, X.; Rolf, C.; Mattila, V.M.; Qin, L.; Yung, P.S.-H.; Chan, K.-M. Critical review on the socio-economic impact of tendinopathy. Asia-Pac. J. Sports Med. Arthrosc. Rehabil. Technol. 2016, 4, 9–20. [Google Scholar] [CrossRef] [Green Version]
- Dean, B.J.F.; Dakin, S.G.; Millar, N.L.; Carr, A.J. Review: Emerging concepts in the pathogenesis of tendinopathy. Surg. J. R. Coll. Surg. Edinb. Irel. 2017, 15, 349–354. [Google Scholar] [CrossRef]
- D’Amora, M.; Mondillo, F.; Cantalupo, T.; Toro, G.; Iannelli, M.; Toro, G. Achilles tendinopathy and patellar tendon: Integrated imaging. Minerva Ortop. E Traumatol. 2021, 71, 204–210. [Google Scholar] [CrossRef]
- Petrillo, S.; Longo, U.G.; Margiotti, K.; Candela, V.; Fusilli, C.; Rizzello, G.; De Luca, A.; Denaro, V. Genetic factors in rotator cuff pathology: Potential influence of Col 5A1 polymorphism in outcomes of rotator cuff repair. BMC Med. Genet. 2020, 21, 82–87. [Google Scholar] [CrossRef]
- Magra, M.; Maffulli, N. Genetic aspects of tendinopathy. J. Sci. Med. Sport 2008, 11, 243–247. [Google Scholar] [CrossRef]
- Aicale, R.; Tarantino, D.; Maffulli, N. Surgery in tendinopathies. Sports Med. Arthrosc. Rev. 2018, 26, 200–202. [Google Scholar] [CrossRef]
- Magnusson, S.P.; Langberg, H.; Kjaer, M. The pathogenesis of tendinopathy: Balancing the response to loading. Nat. Rev. Rheumatol. 2010, 6, 262–268. [Google Scholar] [CrossRef] [PubMed]
- Burton, I.; McCormack, A. The implementation of resistance training principles in exercise interventions for lower limb tendinopathy: A systematic review. Phys. Ther. Sport 2021, 50, 97–113. [Google Scholar] [CrossRef] [PubMed]
- Oliva, F.; Piccirilli, E.; Berardi, A.C.; Frizziero, A.; Tarantino, U.; Maffulli, N. Hormones and tendinopathies: The current evidence. Br. Med. Bull. 2016, 117, 39–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, R.J.; Hah, Y.-S.; Gwark, J.-Y.; Park, H.B. N-acetylcysteine reduces glutamate-induced cytotoxicity to fibroblasts of rat supraspinatus tendons. Connect. Tissue Res. 2019, 60, 431–443. [Google Scholar] [CrossRef] [PubMed]
- Cannata, F.; Vadalà, G.; Ambrosio, L.; Napoli, N.; Papalia, R.; Denaro, V.; Pozzilli, P. The impact of type 2 diabetes on the development of tendinopathy. Diabetes Metab. Res. Rev. 2021, 37, e3417. [Google Scholar] [CrossRef]
- Taylor, B.; Cheema, A.; Soslowsky, L. Tendon pathology in hypercholesterolemia and familial hypercholesterolemia. Curr. Rheumatol. Rep. 2017, 19, 76. [Google Scholar] [CrossRef]
- Dean, B.J.F.; Snelling, S.J.B.; Dakin, S.G.; Murphy, R.J.; Javaid, M.K.; Carr, A.J. Differences in glutamate receptors and inflammatory cell numbers are associated with the resolution of pain in human rotator cuff tendinopathy. Arthritis Res. Ther. 2015, 17, 176. [Google Scholar] [CrossRef] [Green Version]
- Schizas, N.; Lian, Ø.; Frihagen, F.; Engebretsen, L.; Bahr, R.; Ackermann, P.W. Coexistence of up-regulated NMDA receptor 1 and glutamate on nerves, vessels and transformed tenocytes in tendinopathy: Up-regulation of NMDAR1 in tendinopathy. Scand. J. Med. Sci. Sports 2009, 20, 208–215. [Google Scholar] [CrossRef]
- Spang, C.; Harandi, V.M.; Alfredson, H.; Forsgren, S. Marked innervation but also signs of nerve degeneration in between the Achilles and Plantaris tendons and presence of innervation within the Plantaris tendon in midportion Achilles tendinopathy. J. Musculoskelet. Neuronal Interact. 2015, 15, 197–206. [Google Scholar]
- Bergqvist, F.; Carr, A.J.; Wheway, K.; Watkins, B.; Oppermann, U.; Jakobsson, P.-J.; Dakin, S.G. Divergent roles of prostacyclin and PGE2 in human tendinopathy. Arthritis Res. Ther. 2019, 21, 74. [Google Scholar] [CrossRef] [Green Version]
- Millar, N.L.; Silbernagel, K.G.; Thorborg, K.; Kirwan, P.D.; Galatz, L.M.; Abrams, G.D.; Murrell, G.A.C.; McInnes, I.B.; Rodeo, S.A. Author correction: Tendinopathy. Nat. Rev. Dis. Primer 2021, 7, 10. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Maffulli, N. Basic biology of tendon injury and healing. Surgeon 2005, 3, 309–316. [Google Scholar] [CrossRef]
- Childress, M.A.; Beutler, A. Management of chronic tendon injuries. Am. Fam. Physician 2013, 87, 486–490. [Google Scholar] [PubMed]
- Mehallo, C.J.; Drezner, J.A.; Bytomski, J.R. Practical management: Nonsteroidal antiinflammatory drug (NSAID) use in athletic injuries. Clin. J. Sport Med. 2006, 16, 170–174. [Google Scholar] [CrossRef]
- Gaujoux-Viala, C.; Dougados, M.; Gossec, L. Efficacy and safety of steroid injections for shoulder and elbow tendonitis: A meta-analysis of randomised controlled trials. Ann. Rheum. Dis. 2009, 68, 1843–1849. [Google Scholar] [CrossRef]
- Kane, S.F.; Olewinski, L.H.; Tamminga, K.S. Management of chronic tendon injuries. Am. Fam. Physician 2019, 100, 147–157. [Google Scholar]
- Crimaldi, S.; Liguori, S.; Tamburrino, P.; Moretti, A.; Paoletta, M.; Toro, G.; Iolascon, G. The role of hyaluronic acid in sport-related tendinopathies: A narrative review. Medicina 2021, 57, 1088. [Google Scholar] [CrossRef]
- Gervasi, M.; Barbieri, E.; Capparucci, I.; Annibalini, G.; Sisti, D.; Amatori, S.; Carrabs, V.; Valli, G.; Donati Zeppa, S.; Rocchi, M.B.L.; et al. Treatment of Achilles tendinopathy in recreational runners with peritendinous hyaluronic acid injections: A viscoelastometric, functional, and biochemical pilot study. J. Clin. Med. 2021, 10, 1397. [Google Scholar] [CrossRef]
- Muneta, T.; Koga, H.; Ju, Y.-J.; Mochizuki, T.; Sekiya, I. Hyaluronan injection therapy for Athletic patients with patellar tendinopathy. J. Orthop. Sci. 2012, 17, 425–431. [Google Scholar] [CrossRef]
- Merolla, G.; Bianchi, P.; Porcellini, G. Ultrasound-guided subacromial injections of sodium hyaluronate for the management of rotator cuff tendinopathy: A prospective comparative study with rehabilitation therapy. Musculoskelet. Surg. 2013, 97 (Suppl. S1), 49–56. [Google Scholar] [CrossRef]
- Scott, A.; Ashe, M.C. Common tendinopathies in the upper and lower extremities. Curr. Sports Med. Rep. 2006, 5, 233–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nourissat, G.; Berenbaum, F.; Duprez, D. Tendon injury: From biology to tendon repair. Nat. Rev. Rheumatol. 2015, 11, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Schneider, S.; Unger, M.; van Griensven, M.; Balmayor, E.R. Adipose-derived mesenchymal stem cells from liposuction and resected fat are feasible sources for regenerative medicine. Eur. J. Med. Res. 2017, 22, 17. [Google Scholar] [CrossRef] [PubMed]
- Schiavone Panni, A.; Vasso, M.; Braile, A.; Toro, G.; De Cicco, A.; Viggiano, D.; Lepore, F. Preliminary results of autologous adipose-derived stem cells in early knee osteoarthritis: Identification of a subpopulation with greater response. Int. Orthop. 2019, 43, 7–13. [Google Scholar] [CrossRef]
- Braile, A.; Toro, G.; Cicco, A.D.; Cecere, A.B.; Zanchini, F.; Panni, A.S. Hallux rigidus treated with adipose-derived mesenchymal stem cells: A case report. World J. Orthop. 2021, 12, 51–55. [Google Scholar] [CrossRef]
- Kim, Y.S.; Lee, H.J.; Choi, Y.J.; Kim, Y.I.; Koh, Y.G. Does an injection of a stromal vascular fraction containing adipose-derived mesenchymal stem cells influence the outcomes of marrow stimulation in osteochondral lesions of the Talus?: A clinical and magnetic resonance imaging study. Am. J. Sports Med. 2014, 42, 2424–2434. [Google Scholar] [CrossRef]
- Striano, R.D. Refractory shoulder pain with osteoarthritis, and rotator cuff tear, treated with micro-fragmented adipose tissue. Orthop. Spine Sports Med. 2018, 2, 1–5. [Google Scholar]
- Kunze, K.N.; Burnett, R.A.; Wright-Chisem, J.; Frank, R.M.; Chahla, J. Adipose-derived mesenchymal stem cell treatments and available formulations. Curr. Rev. Musculoskelet. Med. 2020, 13, 264–280. [Google Scholar] [CrossRef]
- Panchal, J.; Malanga, G.; Sheinkop, M. Safety and efficacy of percutaneous injection of lipogems micro-fractured adipose tissue for osteoarthritic knees. Am. J. Orthop. 2018, 47, 11. [Google Scholar] [CrossRef]
- Ivone, A.; Fioruzzi, A.; Jannelli, E.; Castelli, A.; Ghiara, M.; Ferranti Calderoni, E.; Fontana, A. Micro-fragmented adipose tissue transplantation (MATT) for the treatment of acetabular delamination. A two years follow up comparison study with microfractures. Acta Bio Med. Atenei Parm. 2019, 90, 69–75. [Google Scholar] [CrossRef]
- Chu, D.-T.; Nguyen Thi Phuong, T.; Tien, N.L.B.; Tran, D.K.; Minh, L.B.; Thanh, V.V.; Gia Anh, P.; Pham, V.H.; Thi Nga, V. Adipose tissue stem cells for therapy: An update on the progress of isolation, culture, storage, and clinical application. J. Clin. Med. 2019, 8, 917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cagri Uysal, A.; Mizuno, H. Tendon regeneration and repair with adipose derived stem cells. Curr. Stem Cell Res. Ther. 2010, 5, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Pongkitwitoon, S.; Lu, H.; Lee, C.; Gelberman, R.; Thomopoulos, S. CTGF induces tenogenic differentiation and proliferation of adipose-derived stromal cells. J. Orthop. Res. 2019, 37, 574–582. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Peng, H.; Li, X.; Streubel, P.N.; Liu, Y.; Duan, B. Effect of scaffold morphology and cell co-culture on tenogenic differentiation of HADMSC on centrifugal melt electrospun poly (L-lactic Acid) fibrous meshes. Biofabrication 2017, 9, 044106. [Google Scholar] [CrossRef]
- Kraus, A.; Woon, C.; Raghavan, S.; Megerle, K.; Pham, H.; Chang, J. Co-culture of human adipose-derived stem cells with tenocytes increases proliferation and induces differentiation into a tenogenic lineage. Plast. Reconstr. Surg. 2013, 132, 754e–766e. [Google Scholar] [CrossRef]
- Zhang, B.; Luo, Q.; Chen, Z.; Shi, Y.; Ju, Y.; Yang, L.; Song, G. Increased nuclear stiffness via FAK-ERK1/2 signaling is necessary for synthetic mechano-growth factor E peptide-induced tenocyte migration. Sci. Rep. 2016, 6, 18809. [Google Scholar] [CrossRef] [Green Version]
- Palazzo, A.F.; Eng, C.H.; Schlaepfer, D.D.; Marcantonio, E.E.; Gundersen, G.G. Localized stabilization of microtubules by integrin-and FAK-facilitated rho signaling. Science 2004, 303, 836–839. [Google Scholar] [CrossRef]
- Viganò, M.; Lugano, G.; Perucca Orfei, C.; Menon, A.; Ragni, E.; Colombini, A.; De Luca, P.; Randelli, P.; de Girolamo, L. Autologous microfragmented adipose tissue reduces inflammatory and catabolic markers in supraspinatus tendon cells derived from patients affected by rotator cuff tears. Int. Orthop. 2021, 45, 419–426. [Google Scholar] [CrossRef]
- Oshita, T.; Tobita, M.; Tajima, S.; Mizuno, H. Adipose-derived stem cells improve collagenase-induced tendinopathy in a rat model. Am. J. Sports Med. 2016, 44, 1983–1989. [Google Scholar] [CrossRef]
- Canapp, S.O.; Canapp, D.A.; Ibrahim, V.; Carr, B.J.; Cox, C.; Barrett, J.G. The use of adipose-derived progenitor cells and platelet-rich plasma combination for the treatment of supraspinatus tendinopathy in 55 dogs: A retrospective study. Front. Vet. Sci. 2016, 3, 61. [Google Scholar] [CrossRef] [Green Version]
- Uysal, C.A.; Tobita, M.; Hyakusoku, H.; Mizuno, H. Adipose-derived stem cells enhance primary tendon repair: Biomechanical and immunohistochemical evaluation. J. Plast. Reconstr. Aesthet. Surg. 2012, 65, 1712–1719. [Google Scholar] [CrossRef]
- Jankowski, M.; Dompe, C.; Sibiak, R.; Wąsiatycz, G.; Mozdziak, P.; Jaśkowski, J.M.; Antosik, P.; Kempisty, B.; Dyszkiewicz-Konwińska, M. In vitro cultures of adipose-derived stem cells: An overview of methods, molecular analyses, and clinical applications. Cells 2020, 9, 1783. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. PRISMA group preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kmet, L.; Cook, L.; Lee, R. Standard Quality Assessment Criteria for Evaluating Primary Research Papers from a Variety of Fields; Alberta Heritage Foundation for Medical Research: Edmonton, AB, Canada, 2004. [Google Scholar]
- Kim, Y.S.; Sung, C.H.; Sung, H.C.; Kwak, S.J.; Koh, Y.G. Does an injection of adipose-derived mesenchymal stem cells loaded in fibrin glue influence rotator cuff repair outcomes? Am. J. Sports Med. 2017, 45, 2010–2018. [Google Scholar] [CrossRef] [PubMed]
- Jo, C.H.; Chai, J.W.; Jeong, E.C.; Oh, S.; Kim, P.S.; Yoon, J.Y.; Yoon, K.S. Intratendinous injection of autologous adipose tissue-derived mesenchymal stem cells for the treatment of rotator cuff disease: A first-in-human trial. Stem Cells 2018, 36, 1441–1450. [Google Scholar] [CrossRef]
- Lee, S.Y.; Kim, W.; Lim, C.; Chung, S.G. Treatment of lateral epicondylosis by using allogeneic adipose-derived mesenchymal stem cells: A pilot study. Stem Cells 2015, 33, 2995–3005. [Google Scholar] [CrossRef]
- Usuelli, F.G.; Grassi, M.; Maccario, C.; Vigano’, M.; Lanfranchi, L.; Alfieri Montrasio, U.; de Girolamo, L. Intratendinous adipose-derived stromal vascular fraction (SVF) injection provides a safe, efficacious treatment for achilles tendinopathy: Results of a randomized controlled clinical trial at a 6-month follow-up. Knee Surg. Sports Traumatol. Arthrosc. 2018, 26, 2000–2010. [Google Scholar] [CrossRef]
- Khoury, M.A.; Chamari, K.; Tabben, M.; Alkhelaifi, K.; Ricardo, T.; Damián, C.; D’hooghe, P. Expanded adipose derived mesenchymal stromal cells are effective in treating chronic insertional patellar tendinopathy: Clinical and MRI evaluations of a pilot study. J. Exp. Orthop. 2021, 8, 49. [Google Scholar] [CrossRef]
- Khoury, M.; Tabben, M.; Rolón, A.U.; Levi, L.; Chamari, K.; D’Hooghe, P. Promising improvement of chronic lateral elbow tendinopathy by using adipose derived mesenchymal stromal cells: A pilot study. J. Exp. Orthop. 2021, 8, 6. [Google Scholar] [CrossRef]
- Freitag, J.; Shah, K.; Wickham, J.; Tenen, A. Effect of autologous adipose-derived mesenchymal stem cell therapy in combination with autologous platelet-rich plasma in the treatment of elbow tendinopathy. BMJ Case Rep. 2020, 13, e234592. [Google Scholar] [CrossRef]
- Rivera-Izquierdo, M.; Cabeza, L.; Láinez-Ramos-Bossini, A.; Quesada, R.; Perazzoli, G.; Alvarez, P.; Prados, J.; Melguizo, C. An updated review of adipose derived-mesenchymal stem cells and their applications in musculoskeletal disorders. Expert Opin. Biol. Ther. 2019, 19, 233–248. [Google Scholar] [CrossRef] [PubMed]
- Amodeo, G.; Niada, S.; Moschetti, G.; Franchi, S.; Savadori, P.; Brini, A.T.; Sacerdote, P. Secretome of human adipose-derived mesenchymal stem cell relieves pain and neuroinflammation independently of the route of administration in experimental osteoarthritis. Brain Behav. Immun. 2021, 94, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Sano, M.; Tanabe, A.; Urushihata, N.; Liu, X.-L. Effect of human adipose-derived mesenchymal stem cell conditioned medium on musculoskeletal pain. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 1570–1578. [Google Scholar] [CrossRef] [PubMed]
- Freitag, J.; Bates, D.; Wickham, J.; Shah, K.; Huguenin, L.; Tenen, A.; Paterson, K.; Boyd, R. Adipose-derived mesenchymal stem cell therapy in the treatment of knee osteoarthritis: A randomized controlled trial. Regen. Med. 2019, 14, 213–230. [Google Scholar] [CrossRef] [Green Version]
- Yousof, S.M.; ElSayed, D.A.; El-Baz, A.A.; Sallam, H.S.; Abbas, F. Combined treatment of adipose derived-mesenchymal stem cells and pregabalin is superior to monotherapy for the treatment of neuropathic pain in rats. Stem Cells Int. 2021, 2021, 8847110. [Google Scholar] [CrossRef]
- Zuk, P. The ASC: Critical Participants in Paracrine-Mediated Tissue Health and Function. In Regenerative Medicine and Tissue Engineering; Andrades, J.A., Ed.; InTech: London, UK, 2013; ISBN 978-953-51-1108-5. [Google Scholar]
Reference | Tendinopathy and Treatment | n (Baseline) | Age (Years), Sex (%M), BMI (kg/m2) | Inclusion Criteria | Exclusion Criteria | n (Follow-Up) |
---|---|---|---|---|---|---|
Kim et al. 2017 [55] | Rotator cuff disease Intratendinous injection of autologous ASCs during arthroscopic rotator cuff repair | 35 | 59.2, 43%, 26.6 | -full-thickness rotator cuff tear diagnosed by a clinical examination, conventional radiography and MRI -shoulder pain and/or functional limitations despite at least 3 months of nonsurgical treatment (anti-inflammatory medication, physical therapy) |
| 35 |
Jo et al. 2016 [56] | Rotator cuff disease Ultrasound-guided intratendinous injection of autologous ASCs | 20 | 56.7, 8.3%, 23.4 | -19 years of age and older -unilateral shoulder pain of at least 3 months, with failure of conservative treatments -partial-thickness rotator cuff tear confirmed with MRI/US |
| 19 |
Usuelli et al. 2018 [58] | Unilateral or bilateral chronic tendinopathy of Achilles tendon Ultrasound-guided injection of autologous SVF | 21 | 47.3, 67%, - | -unilateral or bilateral chronic tendinopathy of the Achilles tendon recalcitrant to traditional conservative treatments (NSAIDs, eccentric loading exercises, stretching and biophysical therapy) -symptoms lasting for at least 3 months -age between 18 and 55 -VAS pain >5 at the first visit |
| 21 |
Lee et al. 2015 [57] | Chronic lateral epicondylosis Ultrasound-guided intratendinous injection of allogeneic ASCs mixed with fibrin glue | 12 | 24.4, 42%, 51.8 | -lateral elbow pain for at least 6 months -failure of conventional treatments (physical therapy, oral medication, prolotherapy and steroid injection) |
| 12 |
Khoury et al. 2021a [59] | Chronic insertional patellar tendinopathy Ultrasound-guided intratendinous injection of autologous ASCs | 16 | 34.6, 80%, 23.7 | -exercise-related pain located at the patellar tendon insertion for at least 6 months -tenderness to palpation of the tendon substance and thickening and tear of the patellar tendon -failure of exercise-based rehabilitation and different treatment modalities for a minimum of 6 months |
| 14 |
Khoury et al. 2021b [60] | Chronic lateral elbow tendinopathy Ultrasound-guided intratendinous injection of autologous ASCs | 19 | 46.5, 61%, - | -lateral elbow tendinopathy diagnosis -pain and disability for at least 4 months -failure of conventional treatments (eccentric rehabilitation protocol, oral medication, prolotherapy, extracorporeal shock wave therapy, steroid injections, unguided tendon injections with dipropionate and sodium phosphate of betamethasone and PRP) |
| 18 |
Reference | Tendinopathy and Treatment | n (Baseline) | Age (Years), Sex BMI (kg/m2) | Case Presentation | n(Follow-Up) | |
Freitag et al. 2020 [61] | Elbow tendinopathy Ultrasound-guided intratendinous injection of autologous ASCs combined with autologous PRP | 1 | 52, M, - |
| 1 |
Reference | Tendinopathy | Treatment Group (n) | Control Group (n) | Significant Score at Follow-Up (p Value) | Significant Score at Intermediate Time Points (p Value) | Score Changes Confirmed by MRI/US | AE Reported (n of Patients) |
---|---|---|---|---|---|---|---|
Kim et al. 2017 [55] | Rotator cuff disease | Autologous ASCs in fibrin glue (35) | Arthroscopic rotator cuff repair alone (controls) (35) | Rate of tear recurrence Controls: 28.5% ASCs: 14.3% (p < 0.001) | - | MRI | - |
Jo et al. 2018 [56] | Rotator cuff disease | Autologous ASCs (19) 3 low-dose; 3 mid-dose; 13 high-dose | Baseline (19) | SPADI mid baseline: 63.8; 6 months: 12.8 (p < 0.05) high baseline: 75.4; 6 months: 17.7 (p < 0.001) Constant score mid baseline: 60.9; 6 months: 77.1 (p < 0.05) high baseline: 55.7; 6 months: 66.9 (p < 0.05) VAS high baseline: 45.4; 6 months: 25.9 (p < 0.001) | high: reduced vs. baseline at month 1 and 3 (both p < 0.001) high: increased vs. baseline at month 1 (p < 0.001) high: reduced vs. baseline at month 1 and 3 (both p < 0.001) | MRI | low: 1 mid: 1 high: 3 |
Usuelli et al. 2018 [58] | Unilateral or bilateral chronic tendinopathy of Achilles tendon | Autologous SVF containing ASCs (21) autologous PRP (23) | Baseline (21) Baseline (23) | VAS SVF and PRP (6 months): reduced vs. baseline (p < 0.001) AOFAS SVF and PRP (6 months): increased vs. baseline (p < 0.001) VISA-A SVF and PRP (6 months): increased vs. baseline (p < 0.001) | SVF and PRP: reduced vs. baseline at 15 days, month 1–2–4 (all p < 0.001) SVF: reduced vs. PRP at 15 days and 1 month (both p < 0.05) SVF: increased vs. baseline at 15 days, month 1–2–4 (all p < 0.001) PRP: increased at baseline at month 2–4 (both p < 0.001) SVF: increased vs. PRP at 15 days (p < 0.05) SVF and PRP: increased vs. baseline at month 1–2–4 (all p < 0.001) SVF: increased vs. PRP at month 1 (p < 0.05) | - | |
Lee et al. 2015 [57] | Chronic lateral epicondylosis | allogeneic ASCs mixed with fibrin glue (12) 6 low-dose (106) 6 high-dose (107) | baseline (12) | VAS baseline: 66.8; all (13 months): 14.8 (p < 0.0001) MEPI baseline: 64.0; all (13 months): 90.6 (p < 0.001) | all reduced vs. baseline at week 6, month 1 and 2 (all p < 0.01) all increased vs. baseline at week 6, month 1 and 2 (all p < 0.01) | US | - |
Khoury et al. 2021a [59] | Chronic insertional patellar tendinopathy | autologous ASCs (14) | baseline (14) | knee VISA-P baseline: 43.8; 12 months: 78.7 (p < 0.05) VAS baseline: 7.4; 12 months: 1.5 (p < 0.05) Tegner score baseline: 2.3; 12 months: 7.2 (p < 0.05) | increased vs. baseline at month 3 and 6 (both p < 0.05) reduced vs. baseline at month 3 and 6 (both p < 0.05) increased vs. baseline at month 3 and 6 (both p < 0.05) | MRI | 2 |
Khoury et al. 2021b [60] | Chronic lateral elbow tendinopathy | autologous ASCs (18) | baseline (18) | VAS baseline: 6.28; 12 months: 0.74 (p < 0.001) QuickDASH-Compulsory score baseline: 51.38; 12 months: 5.76 (p < 0.001) QuickDASH-Sport score baseline: 56.94; 12 months: 8.68 (p < 0.001) | reduced vs. baseline at month 1 and 6 (both p < 0.001) reduced vs. baseline at month 1 and 6 (both p < 0.001) reduced vs. baseline at month 6 (p < 0.001) | MRI | 2 |
Freitag et al. 2020 [61] | Elbow tendinopathy | autologous ASCs combined with autologous PRP (1) | baseline (1) | NPRS baseline: 9; 30 months: 0 PRTEE baseline: 85; 30 months: 0 | baseline: 9; 30 months: 0 baseline: 85; 30 months: 0 | US | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Itro, A.; Trotta, M.C.; Miranda, R.; Paoletta, M.; De Cicco, A.; Lepre, C.C.; Tarantino, U.; D’Amico, M.; Toro, G.; Schiavone Panni, A. Why Use Adipose-Derived Mesenchymal Stem Cells in Tendinopathic Patients: A Systematic Review. Pharmaceutics 2022, 14, 1151. https://doi.org/10.3390/pharmaceutics14061151
Itro A, Trotta MC, Miranda R, Paoletta M, De Cicco A, Lepre CC, Tarantino U, D’Amico M, Toro G, Schiavone Panni A. Why Use Adipose-Derived Mesenchymal Stem Cells in Tendinopathic Patients: A Systematic Review. Pharmaceutics. 2022; 14(6):1151. https://doi.org/10.3390/pharmaceutics14061151
Chicago/Turabian StyleItro, Annalisa, Maria Consiglia Trotta, Roberta Miranda, Marco Paoletta, Annalisa De Cicco, Caterina Claudia Lepre, Umberto Tarantino, Michele D’Amico, Giuseppe Toro, and Alfredo Schiavone Panni. 2022. "Why Use Adipose-Derived Mesenchymal Stem Cells in Tendinopathic Patients: A Systematic Review" Pharmaceutics 14, no. 6: 1151. https://doi.org/10.3390/pharmaceutics14061151
APA StyleItro, A., Trotta, M. C., Miranda, R., Paoletta, M., De Cicco, A., Lepre, C. C., Tarantino, U., D’Amico, M., Toro, G., & Schiavone Panni, A. (2022). Why Use Adipose-Derived Mesenchymal Stem Cells in Tendinopathic Patients: A Systematic Review. Pharmaceutics, 14(6), 1151. https://doi.org/10.3390/pharmaceutics14061151