Molecular and Nano-Structural Optimization of Nanoparticulate Mn2+-Hexarhenium Cluster Complexes for Optimal Balance of High T1- and T2-Weighted Contrast Ability with Low Hemoagglutination and Cytotoxicity
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Methods
2.3. Relaxometry
2.4. Synthesis of K4−2xMnxRe6Q8
2.5. Determination of Re:Mn Ratio
2.6. Hemagglutination Assay
3. Results and Discussion
3.1. Synthesis and Characterization of K4−2xMnxRe6Q8
3.2. Magnetic Relaxivity of K4−2xMnxRe6Q8
3.3. Leaching, Cytotoxicity, Hemagglutination Assay and Imaging Capacity of K4−2xMnxRe6Se8
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pan, D.; Caruthers, S.D.; Senpan, A.; Schmieder, A.H.; Wickline, S.A.; Gregory, M.L. Revisiting an old friend: Manganese-based MRI contrast agents. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2011, 3, 162–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallez, B.; Bacic, G.; Swartz, H.M. Evidence for the Dissociation of the Hepatobiliary MRI Contrast Agent Mn-DPDP. Magn. Reson. Med. 1996, 35, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Dobson, A.W.; Erikson, K.M.; Aschner, M. Manganese neurotoxicity. Ann. N. Y. Acad. Sci. 2004, 1012, 115–128. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Solomon, M.; Achilefu, S. Perspectives and Potential Applications of Nanomedicine in Breast and Prostate Cancer. Med. Res. Rev. 2013, 33, 3–32. [Google Scholar] [CrossRef] [PubMed]
- Gale, E.M.; Atanasova, I.P.; Blasi, F.; Ay, I.; Caravan, P. A Manganese Alternative to Gadolinium for MRI Contrast. J. Am. Chem. Soc. 2015, 137, 15548–15557. [Google Scholar] [CrossRef] [Green Version]
- Vanasschen, C.; Molnar, E.; Tircso, G.; Kalman, F.K.; Toth, E.; Brandt, M.; Coenen, H.H.; Neumaier, B. Novel CDTA-based, Bifunctional Chelators for Stable and Inert MnII Complexation: Synthesis and Physicochemical Characterization. Inorg. Chem. 2017, 56, 7746–7760. [Google Scholar] [CrossRef]
- Phukan, B.; Mukherjee, C.; Goswami, U.; Sarmah, A.; Mukherjee, S.; Sahoo, S.K.; Moi, S.C. A New Bis(Aquated) High Relaxivity Mn(II) Complex as an Alternative to Gd(III)-Based MRI Contrast Agent. Inorg. Chem. 2018, 57, 2631–2638. [Google Scholar] [CrossRef]
- Terreno, W.; Dastru, D.; Castelli, E.D.; Gianolio, S.G.C.; Longo, D.; Aime, S. Advances in Metal-Based Probes for MR Molecular Imaging Applications. Curr. Med. Chem. 2010, 31, 3684–3700. [Google Scholar] [CrossRef]
- Botta, M.; Carniato, F.; Esteban-Gomez, D.; Platas-Iglesias, C.; Tei, L. Mn(II) compounds as an alternative to Gd-based MRI probes. Future Med. Chem. 2019, 11, 1461–1483. [Google Scholar] [CrossRef]
- Dahanayake, V.; Pornrungro, C.; Pablico-Lansigan, M.; Hickling, W.J.; Lyons, T.; Lah, D.; Lee, Y.; Parasido, E.; Bertke, J.A.; Albanese, C.; et al. Paramagnetic Clusters of Mn3(O2CCH3)6(Bpy)2 in Polyacrylamide Nanobeads as a New Design Approach to a T1–T2 Multimodal Magnetic Resonance Imaging Contrast Agent. ACS Appl. Mater. Interfaces 2019, 11, 18153–18164. [Google Scholar] [CrossRef]
- Mertzman, J.E.; Kar, S.; Lofland, S.; Fleming, T.; Van Keuren, E.; Tonga, Y.Y.; Stoll, S.L. Surface attached manganese–oxo clusters as potential contrast agents. Chem. Commun. 2009, 7, 788–790. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Sun, Z.-Y.; Cheng, L.; Liu, S.-W.; Pang, J.-X.; Xia, L.-M.; Chen, W.-H.; Cheng, Z.; Chen, J.-X. Zwitterionic Manganese and Gadolinium Metal−Organic Frameworks as Efficient Contrast Agents for in Vivo Magnetic Resonance Imaging. ACS Appl. Mater. Interfaces 2017, 9, 41378–41386. [Google Scholar] [CrossRef] [PubMed]
- Kathryn, M.L.; Taylor, W.J.R.; Lin, W. Manganese-Based Nanoscale Metal−Organic Frameworks for Magnetic Resonance Imaging. J. Am. Chem. Soc. 2008, 130, 14358–14359. [Google Scholar]
- Liu, Z.-J.; Song, X.-X.; Tang, Q. Development of PEGylated KMnF3 Nanoparticle as a T1-weighted Contrast Agent: Chemical Synthesis, In-vivo Brain MR Images, and Account for High Relaxivity. Nanoscale 2013, 5, 5073–5079. [Google Scholar] [CrossRef]
- Zou, Q.; Tang, R.; Zhao, H.-X.; Jiang, J.; Li, J.; Fu, Y.-Y. Hyaluronic Acid-Assisted Facile Synthesis of MnWO4 Single-Nanoparticle for Efficient Tri-Modal Imaging and Liver-Renal Structure Display. ACS Appl. Nano Mater. 2018, 1, 101–110. [Google Scholar] [CrossRef]
- Ali, L.M.A.; Mathlouthi, E.; Kajdan, M.; Daurat, M.; Long, J.; Sidi-Boulenouar, R.; Cardoso, M.; Goze-Bac, C.; Amdouni, N.; Guari, Y.; et al. Multifunctional manganese-doped Prussian blue nanoparticles for two-photon photothermal therapy and magnetic resonance imaging. Photodiagnosis Photodyn. Ther. 2018, 22, 65–69. [Google Scholar] [CrossRef]
- Della Rocca, J.; Liu, D.; Lin, W. Nanoscale Metal–Organic Frameworks for Biomedical Imaging and Drug Delivery. Acc. Chem. Res. 2011, 44, 957–968. [Google Scholar] [CrossRef] [Green Version]
- Torre, C.M.; Grossman, J.H.; Bobko, A.A.; Bennewitz, M.F. Tuning the size and composition of manganese oxide nanoparticles through varying temperature ramp and aging time. PLoS ONE 2020, 15, e0239034. [Google Scholar]
- Na, H.B.; Lee, J.H.; An, K.; Park, Y.I.; Park, M.; Lee, I.S.; Nam, D.-H.; Kim, S.T.; Kim, S.-H.; Kim, S.-W.; et al. Development of a T1 contrast agent for magnetic resonance imaging using MnO nanoparticles. Angew. Chem. Int. Ed. 2007, 46, 5397–5401. [Google Scholar] [CrossRef]
- Hsu, B.Y.W.; Kirby, G.; Tan, A.; Seifalian, A.M.; Li, X.; Wangag, J. Relaxivity and toxicological properties of manganese oxide nanoparticles for MRI applications. RSC Adv. 2016, 6, 45462–45474. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.-C.; Khu, N.-H.; Yeh, C.-H. The characteristics of sub 10 nm manganese oxide T-1 contrast agents of different nanostructured morphologies. Biomaterials 2010, 31, 4073–4078. [Google Scholar] [CrossRef] [PubMed]
- Pan, D.; Schmieder, A.H.; Wickline, S.A.; Lanza, G.M. Manganese-based MRI contrast agents: Past, present, and future. Tetrahedron 2011, 67, 8431–8444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.; He, C.; Liu, M.; Chen, Q.; Zhang, L.; Xu, X.; Xu, H.; Qian, Y.; Yu, F.; Wu, Y.; et al. Self-assembly of hyaluronic acid-mediated tumortargeting theranostic nanoparticles. Biomater. Sci. 2021, 9, 2221–2229. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Duan, J.; Liu, Y.; Kuang, Y.; Duan, J.; Liao, T.; Xu, Z.; Jiang, B.; Li, C. Multi-stimuli responsive hollow MnO2-based drug delivery system for magnetic resonance imaging and combined chemo-chemodynamic cancer therapy. Acta Biomater. 2021, 126, 445–462. [Google Scholar] [CrossRef]
- Dumont, M.; Yadavilli, S.; Sze, R.; Nazarian, J.; Fernandes, R. Manganese-containing Prussian blue nanoparticles for imaging of pediatric brain tumors. Int. J. Nanomed. 2014, 9, 2581–2595. [Google Scholar]
- Naumov, N.G.; Virovets, A.V.; Sokolov, M.N.; Artemkina, S.B.; Fedorov, V.E. A Novel Framework Type for Inorganic Clusters with Cyanide Ligands: Crystal Structures of Cs2Mn3[Re6Se8(CN)6]2·15H2O and (H3O)2Co3[Re6Se8(CN)6]2·14.5H2O. Angew. Chem. Int. Ed. 1998, 37, 1943–1945. [Google Scholar] [CrossRef]
- Artemkina, S.B.; Naumov, N.G.; Mironov, Y.V.; Virovets, A.V.; Fenske, D. Electroneutral coordination frameworks based on octahedral [Re6(μ3-Q)8(CN)6]4– complexes (Q = S, Se, Te) and the Mn2+ cations. Russ. J. Coord. Chem. 2007, 33, 867–875. [Google Scholar] [CrossRef]
- Naumov, N.G.; Soldatov, D.V.; Ripmeester, J.A.; Artemkina, S.B.; Fedorov, V.E. Extended framework materials incorporating cyanide cluster complexes: Structure of the first 3D architecture accommodating organic molecules. Chem. Commun. 2001, 571–572. [Google Scholar] [CrossRef]
- Artemkina, S.B.; Naumov, N.G.; Virovets, A.V.; Oeckler, O.; Simon, A.; Erenburg, S.B.; Bausk, N.V.; Fedorov, V.E. Two Molecular-Type Complexes of the Octahedral Rhenium(III) Cyanocluster Anion [Re6Se8(CN)6]4– with M2+ (Mn2+, Ni2+). Eur. J. Inorg. Chem. 2002, 2002, 1198–1202. [Google Scholar] [CrossRef]
- Mironov, Y.V.; Solodovnikov, S.F.; Fedorov, V.E.; Gatilov, Y.V. Novel Cyanide-Bridged Three-Dimensional Coordination Polymer Derived from an Octahedral Rhenium Cluster [Re6Te8(CN)6]4–: Synthesis and Crystal Structure of [{Mn(H2O)2(DMF)} 2Re6Te8(CN)6]·2H2O. J. Struct. Chem. 2004, 45, 874–878. [Google Scholar] [CrossRef]
- He, T.; Qin, X.; Jiang, C.; Jiang, D.; Lei, S.; Lin, J.; Zhu, W.-G.; Qu, J.; Huang, P. Tumor pH-responsive metastable-phase manganese sulfide nanotheranostics for traceable hydrogen sulfide gas therapy primed chemodynamic therapy. Theranostics 2020, 10, 2453. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Zhang, Z.; Wang, X. Fabrication of pH-responsive PAA-NaMnF3@DOX hybrid nanostructures for magnetic resonance imaging and drug delivery. J. Alloys Compd. 2020, 820, 1531422. [Google Scholar] [CrossRef]
- Wang, X.; Hu, H.; Zhang, H.; Li, C.; An, B.; Dai, J. Single ultrasmall Mn2+-doped NaNdF4 nanocrystals as multimodal nanoprobes for magnetic resonance and second near-infrared fluorescence imaging. Nano Res. 2018, 11, 1069–1081. [Google Scholar] [CrossRef]
- Machado, V.O.; Andrade, A.L.; Fabris, J.D.; Fraga, E.T.; da Fonte Ferreira, F.J.M.; Rosana, A.S.; Domingues, Z.; Fernandez-Outon, L.E.; Carmo, F.A.; Santos, A.C.; et al. Preparation of hybrid nanocomposite particles for medical practices. Coll. Surfaces A 2021, 624, 126706. [Google Scholar] [CrossRef]
- Rivas-Moreno, F.K.; Luna-Flores, A.; Cruz-Gonzalez, D.; González-Coronel, V.J.; Sanchez-Cantu, M.; Rodríguez-Lopez, J.L.; Caudillo-Flores, U.; Tepale, N. Effect of Pluronic P103 Concentration on the Simple Synthesis of Ag and Au Nanoparticles and Their Application in Anatase-TiO2 Decoration for Its Use in Photocatalysis. Molecules 2022, 27, 127. [Google Scholar] [CrossRef] [PubMed]
- Jayababu, S.; Inbasekaran, M.; Narayanasamy, S. Promising solar photodegradation of RY 86 by hydrophilic F127 (pluronic) aided nano cobalt ferrite and its biomedical applications. J. Mol. Liq. 2022, 350, 118530. [Google Scholar] [CrossRef]
- Alexandris, P.; Athanassiou, V.; Fukuda, S.; Hatton, T.A. Surface Activity of Poly(ethylene oxide)-block-Poly(propylene oxide)-block-Poly(ethylene oxide) Copolymers. Langmuir 1994, 10, 2604–2612. [Google Scholar] [CrossRef]
- Elistratova, J.; Akhmadeev, B.; Korenev, V.; Sokolov, M.; Nizameev, I.; Ismaev, I.; Kadirov, M.; Sapunova, A.; Voloshina, A.; Amirov, R.; et al. Aqueous solutions of triblock copolymers used as the media affecting the magnetic relaxation properties of gadolinium ions trapped by metal-oxide nanostructures. J. Mol. Liq. 2019, 296, 111821. [Google Scholar] [CrossRef]
- Hunt, B.J.; Ginsburg, A. Manganese ion interactions with glutamine synthetase from Escherichia coli: Kinetic and equilibrium studies with xylenol orange and pyridine-2,6-dicarboxylic acid. Biochem 1981, 20, 2226–2233. [Google Scholar] [CrossRef]
- Otomo, M. Spectrophotometric determination of copper, iron(II), cobalt, nickel and manganese with Xylenol Orange. Japan Analyst. 1965, 14, 47–52. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, N.; Sengupta, S.; Roy, A.; Ghosh, P.; Das, K.; Das, S. Functional Alteration of a Dimeric Insecticidal Lectin to a Monomeric Antifungal Protein Correlated to Its Oligomeric Status Oligomerisation of Lectin Correlates Functionality. PLoS ONE 2011, 6, e18593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elistratova, J.; Akhmadeev, B.; Gubaidullin, A.; Shestopalov, M.; Solovieva, A.; Brylev, K.; Kholin, K.; Nizameev, I.; Ismaev, I.; Kadirov, M.; et al. Structure optimization for enhanced luminescent and paramagnetic properties of hydrophilic nanomaterial based on heterometallic Gd- Re complexes. Mater. Design. 2018, 146, 49–56. [Google Scholar] [CrossRef]
- Lopes, J.R.; Loh, W. Investigation of Self-Assembly and Micelle Polarity for a Wide Range of Ethylene Oxide−Propylene Oxide−Ethylene Oxide Block Copolymers in Water. Langmuir 1998, 14, 750–756. [Google Scholar] [CrossRef]
- Patel, K.; Bahadur, P.; Guo, C.; Ma, J.H.; Liu, H.Z.; Yamashita, Y.; Khanal, A.; Nakashima, K. Salt induced micellization of very hydrophilic PEO–PPO–PEO block copolymers in aqueous solutions. Eur. Polym. J. 2007, 43, 1699–1708. [Google Scholar] [CrossRef]
- Kadam, Y.; Yerramilli, U.; Bahadur, A. Solubilization of poorly water-soluble drug carbamezapine in pluronic micelles: Effect of molecular characteristics, temperature and added salt on the solubilizing capacity. Colloids Surf. B 2009, 72, 141–147. [Google Scholar] [CrossRef]
- Aime, S.; Crich, S.G.; Gianolil, E.; Giovenzana, G.B.; Tei, L.; Terreno, E. High sensitivity lanthanide(III) based probes for MR-medical imaging. Coord. Chem. Rev. 1999, 250, 1562–1579. [Google Scholar] [CrossRef]
- Caravan, P.; Farrar, C.T.; Frullano, L.; Uppal, R. Influence of molecular parameters and increasing magnetic field strength on relaxivity of gadolinium- and manganese-based T1 contrast agents. Contrast Media Mol. Imaging 2009, 4, 89–100. [Google Scholar] [CrossRef] [Green Version]
- Amirov, R.R.; Burilova, E.A.; Zhuravleva, Y.I.; Zakharov, A.V.; Ziyatdinova, A.B. NMR Paramagnetic Probing of Polymer Solutions Using Manganese(II) Ions. Polym. Sci. 2017, 59, 140–148. [Google Scholar] [CrossRef]
- Guillet-Nicolas, R.; Laprise-Pelletier, M.; Nair, M.M.; Chevallier, P.; Lagueux, J.; Gossuin, Y.; Laurent, S.; Kleitz, F.; Fortin, M.-A. Manganese-impregnated mesoporous silica nanoparticles for signal enhancement in MRI cell labelling studies. Nanoscale 2013, 5, 11499–11511. [Google Scholar] [CrossRef]
- Hu, J.; Chen, Y.; Zhang, H.; Chen, Z.; Ling, Y.; Yang, Y.; Liu, X.; Jia, Y.; Zhou, Y. TEA-assistant synthesis of MOF-74 nanorods for drug delivery and in-vitro magnetic resonance imaging. Micropor. Mesopor. Mat. 2021, 315, 1109003. [Google Scholar] [CrossRef]
- Reichenbach, J.R.; Hacklander, T.; Harth, T.; Hofer, M.; Rassek, M.; Modder, U. 1HT1 and T2 measurements of the MR imaging contrast agents Gd-DTPA and Gd-DTPA BMA at 1.5T. Eur. Radiol. 1997, 7, 264–274. [Google Scholar] [CrossRef]
- Meng, Z.; Huang, H.; Huang, D.; Zhang, F.; Mi, P. Functional metal–organic framework-based nanocarriers for accurate magnetic resonance imaging and effective eradication of breast tumor and lung metastasis. J. Colloid Interface Sci. 2021, 581, 31–43. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.L.; Lan, Y.-Q.; Xiao, K.-J.; Xu, Q.-M.; Qu, L.-L.; Chen, Q.-Y.; Huang, T.; Gao, J.; Zhao, Y. BODIPY-Mn nanoassemblies for accurate MRI and phototherapy of hypoxic cancer. J. Mater. Chem. B 2017, 5, 1275–1283. [Google Scholar] [CrossRef] [PubMed]
- Saha, A.K.; Zhen, M.Y.S.; Erogbogho, F.; Ramasubramanian, A.K. Design Considerations and Assays for Hemocompatibility of FDA-Approved Nanoparticles. Semin. Thromb. Hemost. 2020, 46, 637–652. [Google Scholar] [CrossRef] [PubMed]
- DIFFRAC Plus Evaluation Package EVA, Version 11, User’s Manual; Bruker AXS: Karlsruhe, Germany, 2005; 258p.
- TOPAS V3: General Profile and Structure Analysis Software for Powder Diffraction Data; Technical Reference; Bruker AXS: Karlsruhe, Germany, 2005; 117p.
Mn:Re6Q8 Ratio (x) | r1, mM−1s−1 | r2, mM−1s−1 | r2/r1 | PDI | dav, nm (DLS) | d nm (TEM) | T, K | |
---|---|---|---|---|---|---|---|---|
F-127–K4−2xMnxRe6S8 | 1.3 | 5.59 | 6.74 | 1.21 | 0.268 | 162 ± 51 | 20 ± 8 | 298 |
6.57 | 7.93 | 1.21 | 310 | |||||
F-127–K4−2xMnxRe6Se8 | 1.8 | 7.36 | 9.1 | 1.24 | 0.157 | 191 ± 23 | 50 ± 37 | 298 |
8.89 | 10.93 | 1.23 | 0.09 | 181 ± 33 | 310 | |||
F-127–K4−2xMnxRe6Te8 | 1.8 | 4.55 | 7.57 | 1.66 | 0.205 | 114 ± 48 | 15 ± 7 | 298 |
4.39 | 7.61 | 1.73 | 310 | |||||
F-68–K4−2xMnxRe6Se8 | 6.49 | 7.90 | 1.22 | 0.110 | 178 ± 57 | 298 | ||
7.71 | 9.55 | 1.24 | 0.127 | 180 ± 65 | 310 | |||
P-123–K4−2xMnxRe6Se8 | 4.91 | 6.00 | 1.22 | 0.170 | 195 ± 74 | 298 | ||
5.89 | 7.22 | 1.23 | 0.324 | 342 ± 110 | 310 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akhmadeev, B.S.; Nizameev, I.R.; Kholin, K.V.; Voloshina, A.D.; Gerasimova, T.P.; Gubaidullin, A.T.; Kadirov, M.K.; Ismaev, I.E.; Brylev, K.A.; Zairov, R.R.; et al. Molecular and Nano-Structural Optimization of Nanoparticulate Mn2+-Hexarhenium Cluster Complexes for Optimal Balance of High T1- and T2-Weighted Contrast Ability with Low Hemoagglutination and Cytotoxicity. Pharmaceutics 2022, 14, 1508. https://doi.org/10.3390/pharmaceutics14071508
Akhmadeev BS, Nizameev IR, Kholin KV, Voloshina AD, Gerasimova TP, Gubaidullin AT, Kadirov MK, Ismaev IE, Brylev KA, Zairov RR, et al. Molecular and Nano-Structural Optimization of Nanoparticulate Mn2+-Hexarhenium Cluster Complexes for Optimal Balance of High T1- and T2-Weighted Contrast Ability with Low Hemoagglutination and Cytotoxicity. Pharmaceutics. 2022; 14(7):1508. https://doi.org/10.3390/pharmaceutics14071508
Chicago/Turabian StyleAkhmadeev, Bulat Salavatovich, Irek R. Nizameev, Kirill V. Kholin, Alexandra D. Voloshina, Tatyana P. Gerasimova, Aidar T. Gubaidullin, Marsil K. Kadirov, Ildus E. Ismaev, Konstantin A. Brylev, Rustem R. Zairov, and et al. 2022. "Molecular and Nano-Structural Optimization of Nanoparticulate Mn2+-Hexarhenium Cluster Complexes for Optimal Balance of High T1- and T2-Weighted Contrast Ability with Low Hemoagglutination and Cytotoxicity" Pharmaceutics 14, no. 7: 1508. https://doi.org/10.3390/pharmaceutics14071508
APA StyleAkhmadeev, B. S., Nizameev, I. R., Kholin, K. V., Voloshina, A. D., Gerasimova, T. P., Gubaidullin, A. T., Kadirov, M. K., Ismaev, I. E., Brylev, K. A., Zairov, R. R., & Mustafina, A. R. (2022). Molecular and Nano-Structural Optimization of Nanoparticulate Mn2+-Hexarhenium Cluster Complexes for Optimal Balance of High T1- and T2-Weighted Contrast Ability with Low Hemoagglutination and Cytotoxicity. Pharmaceutics, 14(7), 1508. https://doi.org/10.3390/pharmaceutics14071508