Herb Polysaccharide-Based Drug Delivery System: Fabrication, Properties, and Applications for Immunotherapy
Abstract
:1. Introduction
2. Immunomodulatory Activity of HPS
Herb Polysaccharides | Molecular Weight | Monosaccharide Composition and Proportion of Monosaccharide | Main Types of Glycosidic Bonds | Pharmacological Effect | References |
---|---|---|---|---|---|
Bletilla striata polysaccharides | 8.354 × 104 Da 1.26 × 104 Da | Man and Glc in the ratio of 4.0:1.0 Man and Glc in the ratio of 3.0:1.0 | Backbone composed of β-1,4-linked Manp Backbone composed of β-1,4-linked Glcp | Immunomodulatory | [76] |
1.46 × 105 Da | Man and Glc in the ratio of 2.4:1.0 | α-Man and β-Glc residues | Anti-inflammatory | [82] | |
Mw:3.73 × 105 g/mol Mn:6.75 × 104 g/mol | Man and Glc in the ratio of 2.946:1 | Composed of 1,4-linked Glcp Branches composed of 1,3-linked Manp and 1,3-linked Glcp | Anti-inflammatory | [83] | |
2.35 × 105 Da | Man, Glc, and Gal in the ratio of 9:2.6:1.0 | Composed of 1,4-linked Manp and 1,4-linked Glcp in a molar ratio of 2:1 | Immunomodulatory | [84] | |
Angelica sinensis polysaccharides | 1.0 × 105 Da | Glc | α-(1→6)-glucan | Immunomodulatory | [85] |
44,000 Da | arabinose and galactose, as well as xylose, rhamnose and mannose | 1,5 linked, galactose containing 1,4 and 1,4,6 linked units, xylose 1,4 linked, rhamnose 1,2 linked, and terminal mannose | [86] | ||
American Ginseng polysaccharides | Arabinose, rhamnose, mannose, glucose, and glucose acid | Immunomodulatory | [87] | ||
3.1 kDa | Glucose (Glc) and galactose (Gal) in a molar ratio of 1:1.15 | Anti-inflammatory | [88] | ||
Astragalus membranaceus polysaccharides | Glucose, in addition to rhamnose, galactose, arabinose, xylose, mannose, glucuronic acid, and galacturonic acid | Immunoregulatory, antitumor, anti-inflammatory, and antiviral | [89] | ||
Lycium barbarum L. polysaccharides | 4.2 × 104 Da 4.1 × 104 Da | Glucose, mannose, and galactose Glc:Man:Gal = 1:0.4:0.1 | (1→3)-linked α-d-glucopyranosyl residues (1→2)-linked α-d-mannopyranosyl residues a-d-(1,3)-Glcp a-d-(1,2)-Manp-p-d-Galp (1→2)-linked α-d-mannopyranosyl residues, β-D-galactopyranosyl residues | Anti-inflammatory | [90] |
Yam polysaccharides | 4.2 × 104 Da | Glc:Man:Gal = 1:0.37:0.11 | (1→3)-α-Glucopyranose as the main chain and β-galactopyranose-[(1→2)-α-mannopyranose]3-(1→2)-α-mannopyranose-(1→6) as the side chain | Immunomodulatory | [91] |
3. General Rules of HPS-DDS
3.1. Preparation of HPS-DDS
3.1.1. Self-Aggregation
3.1.2. Polymer Encapsulation
3.1.3. Covalent Link
3.1.4. Crosslinking
3.1.5. Physical Mixture
3.1.6. Electrostatic Adsorption
3.2. Role of HPS in DDS
3.2.1. Drug Carriers
3.2.2. Macromolecular Drugs
3.2.3. Adjuvants
3.2.4. Targeting Agents
3.2.5. Stabilizers
3.2.6. Emulgators
3.2.7. Solubilizers
Type of Dosage Form | Polysaccharides | Drug | Curing Disease | Preparation Method | The Role of HPS in DDS | Aimed Cells | Size (nm) | Zeta (mV) | Refs |
---|---|---|---|---|---|---|---|---|---|
HPS nanoparticles | Panax quinquefolium polysaccharides | Immunoregulation; Reduce skin cancer | Self-aggregation; Polymer encapsulation | Immunologic adjuvant; Macromolecular drugs | Macrophages | 180 ± 10; 20 | [99,185] | ||
HPS–polymeric nanoparticles | Ramulus mori polysaccharides | Inflammatory bowel disease; Colitis | Polymer encapsulation | Macromolecular drugs | Macrophages | 205.6 ± 4.26; 180.3 ± 4.21 | −31.7 ± 1.097 | [102,104] | |
Inulin | Antigens | Stimulated the Th2 type immune response. | Polymer encapsulation | Immunologic adjuvant | Antigen presenting cells (APC) | 1.5 ± 0.12 | [105] | ||
Aloe polysaccharides | Angular leaf spot | Polymer encapsulation | Macromolecular drugs | 644.00 ± 0.52; 243.20 ± 0.22 | [106] | ||||
Chinese yam polysaccharides | Ovalbumin | Strengthen immune responses | Polymer encapsulation; Covalent link | Immunologic adjuvant | CD3(+)CD4(+) T cells CD3(+)CD8(+) T cells | 200 | [186] | ||
Angelica sinensis polysaccharides | Ovalbumin; Inactivated H9N2 | Induce strong and long-term immune responses; H9N2 influenza | Polymer encapsulation | Macromolecular drugs; Immunologic adjuvant | CD4(+)/CD8(+) T cells Th1 cells | 225.2; 286.3 ± 2.45 | −11.27; 47.8 ± 0.24 | [187,188] | |
Dendrobium polysaccharides | Ovalbumin | Improve immune responses | Polymer encapsulation | Immunologic adjuvant | Macrophages and lymphocytes CD4(+)/CD8(+) Tcells | 141.4; 156.4; 175.9 | −17.9 ± 1.29; −26.9 ± 2.76; 31.4 ± 2.18 | [189] | |
Micelles | Lepidium meyenii Walp(maca) polysaccharides | Chloroquine | Cancer immunotherapy | Self-aggregation | Targeting; Immunologic adjuvant | 4T1-M2 macrophages | 120 | −35 | [154] |
Angelica sinensis polysaccharides | Curcumin; Doxorubicin | Acute alcoholic liver damage; Liver cancer | Polymer encapsulation; Covalent link | Drug carrier; Targeting | HepG2 | 208.4; 228 | −20; −17 | [162,168] | |
Bletilla striata polysaccharides | Doxorubicin; Docetaxel; Silymarin; Let-7b; Alendronate | Antitumor; Liver diseases; Suppressive tumor microenvironment; Suppressed tumor progression | Crosslinking; Covalent link | Drug carrier; Targeting; Stabilizer | HepG2, HeLa, SW480, and MCF-7 HepG2 cell lines Michigan Cancer Foundation-7 (MCF-7) cells Dendritic cells (DCs) Macrophages | 125.30 ± 1.89; 96.27 ± 1.21; 96.54 ± 5.27; 99.21 ± 3.83; 121.61 ± 9.81; 125.30 ± 1.89; 120; 67 | −26.92 ± 0.18; −35.66 ± 0.28; −35.46 ± 0.10; −34.76 ± 0.22; −28.37 ± 0.12; −26.92 ± 0.18; −13; −19 | [169,190,191,192,193,194,195] | |
Rehmannia glutinosa polysaccharides | Inactivated Bb | Bordetella bronchiseptica (Bb) | Crosslinking; Covalent link; Self-aggregation | Immunologic adjuvant | Dendritic cells (DCs) CD4(+) and CD8(+) T-cells | [196] | |||
Astragalus membranaceus polysaccharides | Inhibited the growth of tumor | Self-aggregation | Immunologic adjuvant | Dendritic cells (DC) CD4(+) T/T-reg and CD8(+) T/T (reg) | 138 ± 5 | −12.4 ± 0.3 | [197] | ||
Polysaccharide-drug conjugations | Lycium barbarum polysaccharides | Platinum-based; Doxorubicin | Anticancer | Covalent link | Targeting; Immunologic adjuvant; Stabilizer; Immunologic adjuvant | A549 (human lung cancer cell line) human Hepatic cancer cell line HepG2 | 273.3 | −25.6 | [21,198] |
Polygonum multiflorum polysaccharides | 5-fluorouracil | Antitumor | Covalent link | Targeting; Immunologic adjuvant | Splenocytes and peritoneal macrophages | 124.7 | [199] | ||
Polysaccharide-Metal | Rosa roxburghii polysaccharides | AgNPs | Antibacterial | Crosslinking | Stabilizer | 24.5-83.2 | −36 | [200] | |
Astragalus membranaceus polysaccharides | AgNPs; AuNPs | Antibacterial; Antitumor and immunoregulation | Crosslinking | Stabilizer; Stabilizer; Immunologic adjuvant | Dendritic cells/T cells | 65.08; 25.38 | −28.33 | [120,201] | |
Dioscorea opposita Thunb polysaccharides | ZnNPs | Anti-diabetes | Crosslinking; Polymer encapsulation | Stabilizer; Immunologic adjuvant | [202] | ||||
Leucaena leucocephala Seeds polysaccharides | AgNPs | Anticancer, Antifungal and Preservative | Crosslinking | Stabilizer; Solubilizer | 8–20 | −14.2 | [203] | ||
Tamarind polysaccharides | AgNPs; AuNPs | Antibacterial; Anticancer and immunomodulatory | Crosslinking; Polymer encapsulation | Stabilizer; Immunologic adjuvant | 44–86; 30–40; 20 | −36.7 | [204,205,206] | ||
Farfarae Flos polysaccharides | AgNPs | Anticancer | Self-aggregation | Stabilizer | HT29 cells | 4–25 | −17.1 | [207] | |
Psidium guajava L. leaf polysaccharides | AgNPs | Antioxidation or antimicrobial | Self-aggregation | Stabilizer | 25–35 | −25.23 | [208] | ||
Soybean polysaccharides | AgNPs | Antibacterial | Self-aggregation | Stabilizer | [209] | ||||
Moringa oleifera seed polysaccharides | AgNPs | Wound healing | Self-aggregation | Stabilizer | 17.6 | −25.6 | [210] | ||
Apple polysaccharides | AuNPs | Anti-diabetes | Polymer encapsulation | Stabilizer | 124 ± 8.55 | −10.5 ± 0.54 | [211] | ||
HPS-inorganic nanoparticles | Gracilaria lemaneiformis polysaccharides | SeNPs | Anticancer | Covalent link; Crosslinking | Solubilizer; Targeting | Glioma cells | 123 | −24.0 | [171] |
Citrus limon polysaccharide | SeNPs | Antitumor | Covalent link | Stabilizer | 85.35; 79.67; 90.14 | −9.44; −7.52; −6.87 | [174] | ||
Polygonatum sibiricum polysaccharides | SeNPs | Antioxidation | Covalent link | Stabilizer | 105 | −34.9 | [178] | ||
Astragalus polysaccharides | SeNPs; Chitosan | Antioxidation, enhance the proliferation of T-lymphocytes and Inhibit HepG2 cells proliferation; Exhibited high permeation through intestinal enterocytes | Covalent link; Self-aggregation; Electrostatic adsorption | Solubilizer | HepG2 cells | 478.1; 100–150 | −20.39; +16 | [136,179] | |
Lignosus rhinocerotis polysaccharides | SeNPs | Antioxidation | Covalent link | Immunologic adjuvant; stabilizer | 50 | [212] | |||
Lycium barbarum polysaccharides | SeNPs | Anti-fatigue; Antitumor; Protect human lens epithelial cells (HLECs) from UVB-induced damage; Antioxidation | Covalent link | Stabilizer; Solubilizer | Lens epithelial cells | 105.4; 111.5–117; 150–200; 83–160 | −37; −24.1 | [111,213,214,215,216] | |
Codonopsis pilosula polysaccharides | SeNPs | Inhibit the proliferation and promote apoptosis of HepG2 cells | Covalent link | Solubilizer; Stabilizer | HepG2 cells | 75 | [217] | ||
Dandelion polysaccharides | SeNPs | Anti-tumor | Covalent link; Polymer encapsulation | Immunologic adjuvant; stabilizer; Solubilizer | HepG2, A549, and HeLa | 50 | [218] | ||
Other HPS based NPs | Araucaria heterophylla polysaccharides | Curcumin | Anticancer; Antioxidation and antibacterial | Physical mixture; Crosslinking | Solubilizer; Targeting; Drug carrier | MCF7 human breast cancer cell line | 250–300; 200 | [126,127] | |
Tamarind Gum polysaccharides | Simvastatin | Antitumor | Covalent link; Electrostatic adsorption | Solubilizer; Targeting; Stabilizer | Human breast cancer cell line | 53.3–383.1 | [137] | ||
Hydrogel | Bletilla striata polysaccharides | Lactobacillus plantarum probiotics | Skin lesions; Bleeding disorders; Wound infection | Covalent link; Crosslinking | Immunologic adjuvant; Stabilizer; | L929 cells | [30,219,220] | ||
Plantago psyllium seed polysaccharides | 5-fluorouracil | Antitumor | Crosslinking | Immunologic adjuvant; stabilizer; | [221] | ||||
Tamarindus indica polysaccharides | Silver nanoparticle | Wound infection | Crosslinking | Stabilizer | [222] | ||||
Microneedle | Panax notoginseng polysaccharides | Doxorubicin and 5-fluorouracil | Antitumor | Physical mixture | Drug carriers; Immunologic adjuvant | Skin dendritic cell | [49] | ||
Bletilla striata polysaccharides | Ovalbumin; Triamcinolone acetonide and verapamil | Infectious disease; Hypertrophic scars | Physical mixture | Stabilizer; Drug carriers; Immunologic adjuvant | [223,224] | ||||
HPS-based liposome | Cordyceps sinensis Sacc polysaccharides | Polymer encapsulation | [225] | ||||||
Lycium barbarum polysaccharides | Immunological and adjuvanticity against PCV2 in vivo | Polymer encapsulation | Immunologic adjuvant; Macromolecular drugs | Spleen cells, macrophagesCD4(+)/CD8(+) T cells | 120.7 ± 0.84 | [226] | |||
HPS-Emulsion | Dioscorea opposita Thunb polysaccharides | Polymer encapsulation | Emulsifier | 1500 | −30 | [107] | |||
Albizia lebbeck L. seed polysaccharides | Polymer encapsulation | Emulsifier | 1160–2790 | −35.83−−19.00 | [181] | ||||
Soybean polysaccharides | Soy protein | Emulsion digestion in the gastrointestinal tract | Polymer encapsulation | Stabilizer | 835 | −129.76 | [183] |
4. HPS-DDS and Their Immunomodulatory Effects
4.1. HPS-Nanomedicine
4.1.1. HPS NPs
4.1.2. HPS–Polymeric Nanoparticles
4.2. HPS Amphiphilic Derivatives
4.2.1. HPS-Based Micelles
4.2.2. HPS-Drug Conjugations
4.3. Polysaccharides-Metal Nanoparticles
4.4. HPS-Inorganic Nanoparticles
4.5. HPS-Based Hydrogels
4.6. HPS-Based DMNs
4.7. Other HPS-Based DDS
4.7.1. Liposomes
4.7.2. Emulsions
5. Conclusions and Prospect
Funding
Conflicts of Interest
Abbreviations
References
- Muhamad, I.I.; Lazim, N.; Selvakumaran, S.J.N.P.D.D.; Applications, B. Natural polysaccharide-based composites for drug delivery and biomedical applications. ScienceDirect 2019, 419–440. [Google Scholar]
- Yu, Y.; Shen, M.; Song, Q.; Xie, J. Biological activities and pharmaceutical applications of polysaccharide from natural resources: A review. Carbohydr. Polym. 2018, 183, 91–101. [Google Scholar] [CrossRef]
- Liu, Z.; Jiao, Y.; Wang, Y.; Zhou, C.; Zhang, Z.J.A. Polysaccharides-based nanoparticles as drug delivery systems. Adv. Drug Deliv. Rev. 2008, 60, 1650–1662. [Google Scholar] [CrossRef]
- Perumal, P.; Kiruthika, T.; Sivaraj, P.; Lakshmi, D.; Selvin, P.C. Tamarind seed polysaccharide biopolymer-assisted synthesis of spinel zinc iron oxide as a promising alternate anode material for lithium-ion batteries. J. Mater. Sci. Mater. Electron. 2020, 31, 10593–10604. [Google Scholar] [CrossRef]
- Abedini, F.; Ebrahimi, M.; Roozbehani, A.H.; Domb, A.J.; Hosseinkhani, H. Overview on natural hydrophilic polysaccharide polymers in drug delivery. Polym. Adv. Technol. 2018, 29, 2564–2573. [Google Scholar] [CrossRef]
- Shao, P.; Zhu, Y.; Jin, W. Physical and chemical stabilities of beta-carotene emulsions stabilized by Ulva fasciata polysaccharide. Food Hydrocoll. 2017, 64, 28–35. [Google Scholar] [CrossRef]
- Otero, P.; Carpena, M.; Garcia-Oliveira, P.; Echave, J.; Soria-Lopez, A.; Garcia-Perez, P.; Fraga-Corral, M.; Cao, H.; Nie, S.; Xiao, J.; et al. Seaweed polysaccharides: Emerging extraction technologies, chemical modifications and bioactive properties. Crit. Rev. Food Sci. Nutr. 2021, 1–29. [Google Scholar] [CrossRef]
- Wang, L.; Wu, Y.; Li, J.; Qiao, H.; Di, L. Rheological and mucoadhesive properties of polysaccharide from Bletilla striata with potential use in pharmaceutics as bio-adhesive excipient. Int. J. Biol. Macromol. 2018, 120, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Cha, S.Y.; Park, S.Y.; Lee, J.S.; Lee, K.H.; Kim, J.H.; Fang, Y.; Shin, S.S. Efficacy of Dendrobium candidum polysaccharide extract as a moisturizer. J. Cosmet. Dermatol. 2022, 21, 3117–3126. [Google Scholar] [CrossRef]
- Pushpamalar, J.; Veeramachineni, A.K.; Owh, C.; Loh, X.J. Biodegradable Polysaccharides for Controlled Drug Delivery. Chempluschem 2016, 81, 504–514. [Google Scholar] [CrossRef]
- Huang, G.; Chen, X.; Huang, H. Chemical Modifications and Biological Activities of Polysaccharides. Curr. Drug Targets 2016, 17, 1799–1803. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Hass, B.; Kuss, M.A.; Zhang, H.; Ryu, S.; Zhang, D.; Li, T.; Li, Y.-L.; Duan, B. Fabrication of versatile dynamic hyaluronic acid-based hydrogels. Carbohydr. Polym. 2020, 233, 115803. [Google Scholar] [CrossRef]
- Azmana, M.; Mahmood, S.; Hilles, A.R.; Rahman, A.; Bin Arifin, M.A.; Ahmed, S. A review on chitosan and chitosan-based bionanocomposites: Promising material for combatting global issues and its applications. Int. J. Biol. Macromol. 2021, 185, 832–848. [Google Scholar] [CrossRef]
- Teng, K.; An, Q.; Chen, Y.; Zhang, Y.; Zhao, Y. Recent Development of Alginate-Based Materials and Their Versatile Functions in Biomedicine, Flexible Electronics, and Environmental Uses. Acs. Biomater. Sci. Eng. 2021, 7, 1302–1337. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, L.; Zhou, H.; Liang, X.-D.; Zhang, M.-T.; Tang, Y.-X.; Wang, J.-H.; Mao, J.-L. The isolation, structural features and biological activities of polysaccharide from Ligusticum chuanxiong: A review. Carbohydr. Polym. 2022, 285, 118971. [Google Scholar] [CrossRef]
- Wang, D.; Liu, Y.; Zhao, W. The Adjuvant Effects on Vaccine and the Immunomodulatory Mechanisms of Polysaccharides From Traditional Chinese Medicine. Front. Mol. Biosci. 2021, 8, 655570. [Google Scholar] [CrossRef]
- Zeng, Y.; Xiang, Y.; Sheng, R.; Tomas, H.; Rodrigues, J.; Gu, Z.; Zhang, H.; Gong, Q.; Luo, K. Polysaccharide-based nanomedicines for cancer immunotherapy: A review. Bioact. Mater. 2021, 6, 3358–3382. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Zhang, L.-L.; Zou, J. Research progress on antioxidation effect of traditional Chinese medicine polysaccharides and sports for diabetes prevention and treatment. Zhongguo Zhongyao Zazhi China J. Chin. Mater. Med. 2016, 41, 2591–2599. [Google Scholar]
- Shi, C.; Ma, Q.; Ren, M.; Liang, D.; Yu, Q.; Luo, J. Antitumorpharmacological mechanism of the oral liquid of Poriacocos polysaccharide. J. Ethnopharmacol. 2017, 209, 24–31. [Google Scholar] [CrossRef]
- Zhao, B.; Zhang, X.; Han, W.; Cheng, J.; Qin, Y. Wound healing effect of an Astragalus membranaceus polysaccharide and its mechanism. Mol. Med. Rep. 2017, 15, 4077–4083. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.-Y.; Park, C.W.; Lee, S.J.; Park, H.-R.; Kim, S.H.; Son, S.-U.; Park, J.; Shin, K.-S. Anti-Cancer Effects of Panax ginseng Berry Polysaccharides via Activation of Immune-Related Cells. Front. Pharmacol. 2019, 10, 1411. [Google Scholar] [CrossRef] [PubMed]
- Li, C.-X.; Liu, Y.; Zhang, Y.-Z.; Li, J.-C.; Lai, J. Astragalus polysaccharide: A review of its immunomodulatory effect. Arch. Pharmacal. Res. 2022, 45, 367–389. [Google Scholar] [CrossRef]
- Wei, W.; Feng, L.; Nie, S.P.; Han, Q.B. Structure characterization and immunomodulating effects of polysaccharides isolated from Dendrobium officinale. Planta Med. 2016, 82, 881–889. [Google Scholar]
- Yan, Q.; Long, X.; Zhang, P.; Lei, W.; Sun, D.; Ye, X. Oxidized Bletilla rhizome polysaccharide-based aerogel with synergistic antibiosis and hemostasis for wound healing. Carbohydr. Polym. 2022, 293, 119696. [Google Scholar] [CrossRef]
- Sun, Q.; Shi, P.; Lin, C.; Ma, J. Effects of Astragalus Polysaccharides Nanoparticles on Cerebral Thrombosis in SD Rats. Front. Bioeng. Biotechnol. 2020, 8, 616759. [Google Scholar] [CrossRef]
- Zhu, J.; Guo, X.; Guo, T.; Yang, Y.; Cui, X.; Pan, J.; Qu, Y.; Wang, C. Novel pH-responsive and self-assembled nanoparticles based on Bletilla striata polysaccharide: Preparation and characterization. Rsc. Adv. 2018, 8, 40308–40320. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Wardwell, P.R.; Bader, R.A. Polysaccharide-based micelles for drug delivery. Pharmaceutics 2013, 5, 329–352. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Liu, Z.; Bo, R.; Xing, J.; Luo, L.; Zhen, S.; Niu, Y.; Hu, Y.; Liu, J.; Wu, Y.; et al. The enhanced immune response of PCV-2 vaccine using Rehmannia glutinosa polysaccharide liposome as an adjuvant. Int. J. Biol. Macromol. 2016, 86, 929–936. [Google Scholar] [CrossRef]
- Jiao, L.; Liu, Z.; Zhang, Y.; Feng, Z.; Gu, P.; Huang, Y.; Liu, J.; Wu, Y.; Wang, D. Lentinan PLGA-stabilized pickering emulsion for the enhanced vaccination. Int. J. Pharm. 2022, 611, 121348. [Google Scholar] [CrossRef]
- Yang, L.; Han, Z.; Chen, C.; Li, Z.; Yu, S.; Qu, Y.; Zeng, R. Novel probiotic-bound oxidized Bletilla striata polysaccharide-chitosan composite hydrogel. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 117, 121348. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, D.F.S.; Vilela, C.; Silvestre, A.J.D.; Freire, C.S.R. A compendium of current developments on polysaccharide and protein-based microneedles. Int. J. Biol. Macromol. 2019, 136, 704–728. [Google Scholar] [CrossRef] [PubMed]
- Nai, J.; Zhang, C.; Shao, H.; Li, B.; Li, H.; Gao, L.; Dai, M.; Zhu, L.; Sheng, H. Extraction, structure, pharmacological activities and drug carrier applications of Angelica sinensis polysaccharide. Int. J. Biol. Macromol. 2021, 183, 2337–2353. [Google Scholar] [CrossRef] [PubMed]
- Demina, T.S.; Kilyashova, L.A.; Popyrina, T.N.; Svidchenko, E.A.; Bhuniya, S.; Akopova, T.A.; Grandfils, C. Polysaccharides as Stabilizers for Polymeric Microcarriers Fabrication. Polymers 2021, 13, 3045. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wan, P.; Wang, J.; Li, P.; Hu, Q.; Zhao, R. Polysaccharide from vinegar baked radix bupleuri as efficient solubilizer for water-insoluble drugs of Chinese medicine. Carbohydr. Polym. 2020, 229, 115473. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Huang, G. Improving method, properties and application of polysaccharide as emulsifier. Food Chem. 2022, 376, 131937. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Yu, S.; Zhao, D.; Guo, S.; Wang, X.; Zhao, K. Polysaccharides as vaccine adjuvants. Vaccine 2018, 36, 5226–5234. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; He, Y.; Niu, Z.; Shen, T.; Zhang, J.; Wang, X.; Hu, W.; Cho, J.Y. A review of the immunomodulatory activities of polysaccharides isolated from Panax species. J. Ginseng Res. 2022, 46, 23–32. [Google Scholar] [CrossRef]
- Pang, G.; Wang, F.; Zhang, L.W. Dose matters: Direct killing or immunoregulatory effects of natural polysaccharides in cancer treatment. Carbohydr. Polym. 2018, 195, 243–256. [Google Scholar] [CrossRef] [PubMed]
- Mu, M.; Li, X.; Tong, A.; Guo, G. Multi-functional chitosan-based smart hydrogels mediated biomedical application. Expert Opin. Drug Deliv. 2019, 16, 239–250. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.Y.; Tang, X.D.; Jia, Y.; Ho, C.T.; Huang, Q.R. Applications and delivery mechanisms of hyaluronic acid used for topical/transdermal delivery—A review. Int. J. Pharm. 2020, 578, 119127. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Lu, Y.; Luo, Y. Recent advances in dextran-based drug delivery systems: From fabrication strategies to applications. Carbohydr. Polym. 2021, 264, 117999. [Google Scholar] [CrossRef] [PubMed]
- Niculescu, A.-G.; Grumezescu, A.M. Applications of Chitosan-Alginate-Based Nanoparticles-An Up-to-Date Review. Nanomaterials 2022, 12, 186. [Google Scholar] [CrossRef]
- Chen, F.; Huang, G. Preparation and immunological activity of polysaccharides and their derivatives. Int. J. Biol. Macromol. 2018, 112, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.-H.; Jin, M.-L.; Morris, G.A.; Zha, X.-Q.; Chen, H.-Q.; Yi, Y.; Li, J.-E.; Wang, Z.-J.; Gao, J.; Nie, S.-P.; et al. Advances on Bioactive Polysaccharides from Medicinal Plants. Crit. Rev. Food Sci. Nutr. 2016, 56, S60–S84. [Google Scholar] [CrossRef]
- Li, R.; Chen, H.; Zhou, X. Immunomodulatory Effects of Plant Polysaccharides:A Review of the Mechanisms. Nat. Prod. Res. Dev. 2018, 30, 2017. [Google Scholar]
- Ren, L.; Zhang, J.; Zhang, T. Immunomodulatory activities of polysaccharides from Ganoderma on immune effector cells. Food Chem. 2021, 340, 127933. [Google Scholar] [CrossRef] [PubMed]
- Yi, Y.; Cao, Y.; Zhang, M. Immunomodulatory Activities and Mechanisms of Polysaccharides on T/B Lymphocytes. Chin. J. Cell Biol. 2012, 34, 67–74. [Google Scholar]
- Chung, J.T.; Lau, C.M.L.; Chau, Y. The effect of polysaccharide-based hydrogels on the response of antigen-presenting cell lines to immunomodulators. Biomater. Sci. 2021, 9, 6542–6554. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Liu, S.; Xu, J.; Gao, M.; Qu, Y.; Liu, Y.; Yang, Y.; Cui, X. Dissolvable microneedles based on Panax notoginseng polysaccharide for transdermal drug delivery and skin dendritic cell activation. Carbohydr. Polym. 2021, 268, 118211. [Google Scholar] [CrossRef] [PubMed]
- Haogui, X.I.E.; Meizhen, C.; Yuqiang, Z. Research Progress on Structure-antitumor Activity Relationship of Polysaccharide and Its Mechanism. Food Sci. 2011, 32, 329–333. [Google Scholar]
- Ma, Z.-X.; Zhao, L.-H. Polysaccharides activate signaling pathways of macrophage. Zhejiang Da Xue Xue Bao Yi Xue Ban J. Zhejiang Univer. Med. Sci. 2011, 40, 567–572. [Google Scholar]
- Zhou, X.N.; Dong, Q.; Kan, X.Z.; Peng, L.H.; Xu, X.Y.; Fang, Y.; Yang, J.L. Immunomodulatory activity of a novel polysaccharide from Lonicera japonica in immunosuppressed mice induced by cyclophosphamide. PLoS ONE 2018, 13, e0204152. [Google Scholar] [CrossRef]
- Sun, Y.J.; Wang, F.; Liu, Y.; An, Y.Y.; Chang, D.W.; Wang, J.K.; Xia, F.; Liu, N.; Chen, X.F.; Cao, Y.G. Comparison of water- and alkali-extracted polysaccharides from Fuzhuan brick tea and their immunomodulatory effects in vitro and in vivo. Food Funct. 2022, 13, 806–824. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Dong, L.; Zhang, R. Research Progress on Main Bioactive Substances and Their Health Benefits of Lychee Pulp. J. Food Sci. Technol. 2019, 37, 1–12. [Google Scholar] [CrossRef]
- Chen, L.; Huang, G. Antitumor Activity of Polysaccharides: An Overview. Curr. Drug Targets 2018, 19, 89–96. [Google Scholar] [CrossRef]
- Guo, R.; Chen, M.; Ding, Y.; Yang, P.; Wang, M.; Zhang, H.; He, Y.; Ma, H. Polysaccharides as Potential Anti-tumor Biomacromolecules—A Review. Front. Nutr. 2022, 9, 838179. [Google Scholar] [CrossRef] [PubMed]
- Motshwene, P.G.; Moncrieffe, M.C.; Grossmann, J.G.; Kao, C.; Ayaluru, M.; Sandercock, A.M.; Robinson, C.V.; Latz, E.; Gay, N.J. An Oligomeric Signaling Platform Formed by the Toll-like Receptor Signal Transducers MyD88 and IRAK-4. J. Biol. Chem. 2009, 284, 25404–25411. [Google Scholar] [CrossRef] [PubMed]
- Roselaar, S.E.; Daugherty, A. Lipopolysaccharide decreases scavenger receptor mRNA in vivo. J. Interferon Cytokine Res. Off. J. Int. Soc. Interferon Cytokine Res. 1997, 17, 573–579. [Google Scholar] [CrossRef]
- Ilchmann, A.; Burgdorf, S.; Scheurer, S.; Waibler, Z.; Nagai, R.; Wellner, A.; Yamamoto, Y.; Yamamoto, H.; Henle, T.; Kurts, C.; et al. Glycation of a food allergen by the Maillard reaction enhances its T-cell immunogenicity: Role of macrophage scavenger receptor class A type I and II. J. Allergy Clin. Immunol. 2010, 125, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Sallusto, F.; Cella, M.; Danieli, C.; Lanzavecchia, A. Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: Downregulation by cytokines and bacterial products. J. Exp. Med. 1995, 182, 389–400. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.Y.; You, H.J.; Jeong, H.G.; Kang, J.S.; Kim, H.M.; Dal Rhee, S.; Jeon, Y.J. Polysaccharide isolated from Poria cocos sclerotium induces NF-kappa B/Rel activation and NOS expression through the activation of p38 kinase in murine macrophages. Int. Immunopharmacol. 2004, 4, 1029–1038. [Google Scholar] [CrossRef]
- Li, H.; Xiao, Y.; Li, H.; Jia, Y.; Luo, S.; Zhang, D.; Zhang, L.; Wu, P.; Xiao, C.; Kan, W.; et al. Ganoderma lucidum polysaccharides ameliorated depression-like behaviors in the chronic social defeat stress depression model via modulation of Dectin-1 and the innate immune system. Brain Res. Bull. 2021, 171, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Wang, Q.; Dai, W.; Sun, X.; Chen, C.; Xing, K. Effects of Angelica sinensis polysaccharides on expression of TLR22 pathway-related genes in malabar grouper Epinephelus malabaricus. J. Dalian Ocean Univ. 2017, 32, 33–37. [Google Scholar]
- Zhao, H.; Lu, X.; Yue, H.; Liu, Y.; Liu, X.; Huang, X.; Liu, D. Regulation of Astragalus polysaccharide treated colitis mice by JAK/STAT signaling pathway. Chin. Pharmacol. Bull. 2018, 34, 145–146. [Google Scholar]
- Shen, C.Y.; Zhang, W.L.; Jiang, J.G. Immune-enhancing activity of polysaccharides from Hibiscus sabdariffa Linn. via MAPK and NF-kappa B signaling pathways in RAW264.7 cells. J. Funct. Foods 2017, 34, 118–129. [Google Scholar] [CrossRef]
- Li, K.; Cao, Y.-X.; Jiao, S.-M.; Du, G.-H.; Du, Y.-G.; Qin, X.-M. Structural Characterization and Immune Activity Screening of Polysaccharides with Different Molecular Weights From Astragali Radix. Front. Pharmacol. 2020, 11, 582091. [Google Scholar] [CrossRef]
- Zhao, B.; Zhao, J.; Lv, M.; Li, X.; Wang, J.; Yue, Z.; Shi, J.; Zhang, G.; Sui, G. Comparative study of structural properties and biological activities of polysaccharides extracted from Chroogomphus rutilus by four different approaches. Int. J. Biol. Macromol. 2021, 188, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Miao, M.; Yu, W.-Q.; Li, Y.; Sun, Y.-L.; Guo, S.-D. Structural Elucidation and Activities of Cordyceps militaris-Derived Polysaccharides: A Review. Front. Nutr. 2022, 9, 898674. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.-J.; Guo, J.-Y.; Cheng, H.; Li, L.; Liu, Y.; Shi, Y.; Xu, J.; Yu, H.-T. Spatial structure and anti-fatigue of polysaccharide from Inonotus obliquus. Int. J. Biol. Macromol. 2020, 151, 855–860. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Luo, Y.; Wei, G.; Li, Y.; Huang, Y.; Huang, J.; Liu, C.; Huang, R.; Liu, G.; Wei, Z.; et al. Physicochemical and Antioxidant Properties of the Degradations of Polysaccharides from Dendrobium officinale and Their Suitable Molecular Weight Range on Inducing HeLa Cell Apoptosis. Evid. Based Complement. Altern. Med. 2019, 2019, 4127360. [Google Scholar] [CrossRef]
- Sun, X.-Y.; Wang, J.-M.; Ouyang, J.-M.; Kuang, L. Antioxidant Activities and Repair Effects on Oxidatively Damaged HK-2 Cells of Tea Polysaccharides with Different Molecular Weights. Oxidative Med. Cell. Longev. 2018, 2018, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhuang, X.; Zhang, X.; Han, W.; Liu, Y.; Sun, D.; Guo, W. Enzymatic Modification of Rice Bran Polysaccharides by Enzymes from Grifola Frondosa: Natural Killer Cell Cytotoxicity and Antioxidant Activity. J. Food Sci. 2018, 83, 1948–1955. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.-C.; Park, J.; Cho, S. Anti-Inflammatory and Anti-Oxidative Effects of luteolin-7-O-glucuronide in LPS-Stimulated Murine Macrophages through TAK1 Inhibition and Nrf2 Activation. Int. J. Mol. Sci. 2020, 21, 2007. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Xu, J.X.; Xu, X.Y.; Yuan, Z.H.; Song, H.; Yang, L.N.; Zhu, D.S. Structure/function relationships of bean polysaccharides: A review. Crit. Rev. Food Sci. Nutr. 2021, 107, 2411–2502. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Cao, Y.; Xin, G.S.; Ji, C.F.; Gao, S.Y.; Zou, X.; Qi, Z.; Ji, Y.B.; Qiao, A.N.; Ru, X.; et al. Advances in study on structure of polysaccharide. In Proceedings of the International Symposium on Mechanical Engineering and Material Science (ISMEMS), Jeju Island, Korea, 17–19 November 2016; pp. 227–233. [Google Scholar]
- Wang, Y.R.; Han, S.W.; Li, R.F.; Cui, B.S.; Ma, X.J.; Qi, X.Z.; Hou, Q.; Lin, M.B.; Bai, J.Y.; Li, S. Structural characterization and immunological activity of polysaccharides from the tuber of Bletilla striata. Int. J. Biol. Macromol. 2019, 122, 628–635. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Wang, X.; Xiong, Z.; Lu, G.; Ma, W.; Lv, Q.; Wang, L.; Jia, X.; Feng, L. A review on the applications of Traditional Chinese medicine polysaccharides in drug delivery systems. Chin. Med. 2022, 17, 12. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; He, D.; Zhang, C.; Bai, Y.; Zhang, C. The regulate function of polysaccharides and oligosaccharides that with sulfate group on immune-related disease. J. Funct. Foods 2022, 88, 104870. [Google Scholar] [CrossRef]
- Xiao, W.; Zhou, P.; Wang, X.; Zhao, R.; Wang, Y. Comparative Characterization and Immunomodulatory Activities of Polysaccharides Extracted from the Radix of Platycodon grandiflorum with Different Extraction Methods. Molecules 2022, 27, 4759. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Z.; Wei, X. Antioxidant activities potential of tea polysaccharide fractions obtained by ultra filtration. Int. J. Biol. Macromol. 2012, 50, 558–564. [Google Scholar] [CrossRef]
- Wang, H.; Wei, G.; Liu, F.; Banerjee, G.; Joshi, M.; Bligh, S.W.; Shi, S.; Lian, H.; Fan, H.; Gu, X.; et al. Characterization of two homogalacturonan pectins with immunomodulatory activity from green tea. Int. J. Mol. Sci. 2014, 15, 9963–9978. [Google Scholar] [CrossRef]
- Zhang, C.; Gao, F.; Gan, S.; He, Y.A.; Chen, Z.J.; Liu, X.W.; Fu, C.M.; Qu, Y.; Zhang, J.M. Chemical characterization and gastroprotective effect of an isolated polysaccharide fraction from Bletilla striata against ethanol-induced acute gastric ulcer. Food Chem. Toxicol. 2019, 131, 110539. [Google Scholar] [CrossRef]
- Liao, Z.C.; Zeng, R.; Hu, L.L.; Maffucci, K.G.; Qu, Y. Polysaccharides from tubers of Bletilla striata: Physicochemical characterization, formulation of buccoadhesive wafers and preliminary study on treating oral ulcer. Int. J. Biol. Macromol. 2019, 122, 1035–1045. [Google Scholar] [CrossRef] [PubMed]
- Peng, Q.; Li, M.; Xue, F.; Liu, H.J. Structure and immunobiological activity of a new polysaccharide from Bletilla striata. Carbohydr. Polym. 2014, 107, 119–123. [Google Scholar] [CrossRef]
- Jin, M.L.; Zhao, K.; Huang, Q.S.; Xu, C.L.; Shang, P. Isolation, structure and bioactivities of the polysaccharides from Angelica sinensis (Oliv.) Diels: A review. Carbohydr. Polym. 2012, 89, 713–722. [Google Scholar] [CrossRef] [PubMed]
- Shunchun, W.; Songshan, S.H.I.; Jian, C.U.I.; Lili, D.; Zhengtao, W.; Zhibi, H.U. Isolation and Structure Analysis of a Hetero-Polysaccharide from Angelica sinensis (Oliv)Diels. Chin. Pharm. J. 2007, 42, 1255–1258. [Google Scholar]
- Yang, X.; Zhou, X.; Wang, L.; Yu, X.; Shi, Z.; Ren, G.; Dong, C. Ultrafiltration separation and immune enhancing activity of American ginseng polysaccharide. Sci. Technol. Food Ind. 2014, 35, 49. [Google Scholar]
- Wang, L.J.; Yu, X.N.; Yang, X.S.; Li, Y.; Yao, Y.; Lui, E.M.K.; Ren, G.X. Structural and anti-inflammatory characterization of a novel neutral polysaccharide from North American ginseng (Panax quinquefolius). Int. J. Biol. Macromol. 2015, 74, 12–17. [Google Scholar] [CrossRef]
- Yan, J.; Wang, Y.; Zhang, X.; Zhao, X.; Ma, J.; Pu, X.; Wang, Y.; Ran, F.; Wang, Y.; Leng, F.; et al. Snakegourd root/Astragalus polysaccharide hydrogel preparation and application in 3D printing. Int. J. Biol. Macromol. 2019, 121, 309–316. [Google Scholar] [CrossRef]
- Shi, S.; Lan, X.; Feng, J.; Ni, Y.; Zhu, M.; JingSun; Wang, J. Hydrogel loading 2D montmorillonite exfoliated by anti-inflammatory Lycium barbarum L. polysaccharides for advanced wound dressing. Int. J. Biol. Macromol. 2022, 209 Pt A, 50–58. [Google Scholar] [CrossRef]
- Zhao, G.H.; Kan, J.Q.; Li, Z.X.; Chen, Z.D. Structural features and immunological activity of a polysaccharide from Dioscorea opposita Thunb roots. Carbohydr. Polym. 2005, 61, 125–131. [Google Scholar] [CrossRef]
- Luque-Alcaraz, A.G.; Lizardi-Mendoza, J.; Goycoolea, F.M.; Higuera-Ciapara, I.; Arguelles-Monal, W. Preparation of chitosan nanoparticles by nanoprecipitation and their ability as a drug nanocarrier. Rsc. Adv. 2016, 6, 59250–59256. [Google Scholar] [CrossRef]
- Tang, P.L.; Chew, S.Y.; Hou, X.; Deng, J.; Badri, K. Novel use of sugarcane leaf polysaccharide in kappa-carrageenan blend hydrogel. Biomass Convers. Bioref. 2022. [Google Scholar] [CrossRef]
- Xie, L.; Shen, M.; Hong, Y.; Ye, H.; Huang, L.; Xie, J. Chemical modifications of polysaccharides and their anti-tumor activities. Carbohydr. Polym. 2020, 229, 115436. [Google Scholar] [CrossRef]
- Li, X.; Weng, Y.; Kong, X.; Zhang, B.; Li, M.; Diao, K.; Zhang, Z.; Wang, X.; Chen, H. A covalently crosslinked polysaccharide hydrogel for potential applications in drug delivery and tissue engineering. J. Mater. Sci. Mater. Med. 2012, 23, 2857–2865. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Liu, Y.; Wu, Y.; Dai, F.; Yuan, M.; Wang, F.; Bai, Y.; Deng, H. Natural polysaccharides based self-assembled nanoparticles for biomedical applications—A review. Int. J. Biol. Macromol. 2021, 192, 1240–1255. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wang, Y.; Zhang, D.; Wu, X.; Zhao, Y.; Shang, L.; Ren, J.; Zhao, Y. Natural polysaccharide based complex drug delivery system from microfluidic electrospray for wound healing. Appl. Mater. Today 2021, 23, 101000. [Google Scholar] [CrossRef]
- Chiesa, E.; Dorati, R.; Pisani, S.; Conti, B.; Bergamini, G.; Modena, T.; Genta, I. The Microfluidic Technique and the Manufacturing of Polysaccharide Nanoparticles. Pharmaceutics 2018, 10, 267. [Google Scholar] [CrossRef] [PubMed]
- Akhter, K.F.; Mumin, M.A.; Lui, E.M.K.; Charpentier, P.A. Immunoengineering with Ginseng Polysaccharide Nanobiomaterials through Oral Administration in Mice. Acs. Biomater. Sci. Eng. 2019, 5, 2916–2925. [Google Scholar] [CrossRef]
- Zhou, R.; Teng, L.; Zhu, Y.; Zhang, C.; Yang, Y.; Chen, Y. Preparation of Amomum longiligulare polysaccharides 1-PLGA nanoparticle and its immune enhancement ability on RAW264.7 cells. Int. Immunopharmacol. 2021, 99, 108053. [Google Scholar] [CrossRef]
- Luo, L.; Zheng, S.; Huang, Y.; Qin, T.; Xing, J.; Niu, Y.; Bo, R.; Liu, Z.; Huang, Y.; Hu, Y.; et al. Preparation and characterization of Chinese yam polysaccharide PLGA nanoparticles and their immunological activity. Int. J. Pharm. 2016, 511, 140–150. [Google Scholar] [CrossRef]
- Feng, Z.; Peng, S.; Wu, Z.; Jiao, L.; Xu, S.; Wu, Y.; Liu, Z.; Hu, Y.; Liu, J.; Wu, Y.; et al. Ramulus mori polysaccharide-loaded PLGA nanoparticles and their anti-inflammatory effects in vivo. Int. J. Biol. Macromol. 2021, 182, 2024–2036. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Wusiman, A.; Liu, Z.; Gu, P.; Ni, H.; Zhang, Y.; Hu, Y.; Liu, J.; Wu, Y.; Wang, D. pH-responsive Astragalus polysaccharides-loaded poly(lactic-co-glycolic acid) nanoparticles and their in vitro immunogenicity. Int. J. Biol. Macromol. 2019, 125, 865–875. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Jiao, L.; Wu, Z.; Xu, J.; Gu, P.; Xu, S.; Liu, Z.; Hu, Y.; Liu, J.; Wu, Y.; et al. A Novel Nanomedicine Ameliorates Acute Inflammatory Bowel Disease by Regulating Macrophages and T-Cells. Mol. Pharm. 2021, 18, 3484–3495. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Tummala, H. Development of Soluble Inulin Microparticles as a Potent and Safe Vaccine Adjuvant and Delivery System. Mol. Pharm. 2013, 10, 1845–1853. [Google Scholar] [CrossRef] [PubMed]
- Luiz, C.; Caires, N.P.; de Aguiar, T.; Lemos Blainski, J.M.; Behs, J.d.S.; Oliveira Coqueiro, D.S.; Di Piero, R.M. Resistance of strawberries to Xanthomonas fragariae induced by aloe polysaccharides and essential oils nanoemulsions is associated with phenolic metabolism and stomata closure. Australas. Plant Pathol. 2022, 51, 305–314. [Google Scholar] [CrossRef]
- Ma, F.Y.; Zhang, Y.; Wen, Y.R.; Yao, Y.N.; Zhu, J.H.; Liu, X.H.; Bell, A.; Tikkanen-Kaukanen, C. Emulsification properties of polysaccharides from Dioscorea opposita Thunb. Food Chem. 2017, 221, 919–925. [Google Scholar] [CrossRef]
- Gu, P.; Xu, S.; Zhou, S.; Liu, Z.; Sun, Y.; Ou, N.; Hu, Y.; Liu, J.; Wu, Y.; Wang, X.; et al. Optimization of angelica sinensis polysaccharide-loaded Poly (lactic-co-glycolicacid) nanoparticles by RSM and its immunological activity in vitro. Int. J. Biol. Macromol. 2018, 107, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Chebil, A.; Funfschilling, D.; Leonard, M.; Six, J.-L.; Nouvel, C.; Durand, A. Amphiphilic Polysaccharides Acting both as Stabilizers and Surface Modifiers during Emulsification in Microfluidic Flow-Focusing Junction. ACS Appl. Bio Mater. 2018, 1, 879–887. [Google Scholar] [CrossRef]
- Wang, W.; He, S.; Hong, T.; Zhang, Y.; Sui, H.; Zhang, X.; Ma, Y. Synthesis, self-assembly, and in vitro toxicity of fatty acids-modified Bletilla striata polysaccharide. Artif. Cells Nanomed. Biotechnol. 2017, 45, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Ji, T.; Yang, X.; Liu, G.; Liang, L.; Liu, X.; Wen, C.; Ye, Z.; Wu, M.; Xu, X. Properties of selenium nanoparticles stabilized by Lycium barbarum polysaccharide-protein conjugates obtained with subcritical water. Int. J. Biol. Macromol. 2022, 205, 672–681. [Google Scholar] [CrossRef] [PubMed]
- Beater, E.J.; Onissema-Karimu, S.; Rivera-Galletti, A.; Francis, M.; Witkowski, J.; Salas-de la Cruz, D.; Hu, X. Protein-Polysaccharide Composite Materials: Fabrication and Applications. Polymers 2020, 12, 464. [Google Scholar] [CrossRef]
- Zhang, G.; Huang, L.; Wu, J.; Liu, Y.; Zhang, Z.; Guan, Q. Doxorubicin-loaded folate-mediated pH-responsive micelle based on Bletilla striata polysaccharide: Release mechanism, cellular uptake mechanism, distribution, pharmacokinetics, and antitumor effects. Int. J. Biol. Macromol. 2020, 164, 566–577. [Google Scholar] [CrossRef]
- Gan, M.; Zhang, W.; Wei, S.; Dang, H. The influence of mPEG-PCL and mPEG-PLGA on encapsulation efficiency and drug-loading of SN-38 NPs. Artif. Cells Nanomed. Biotechnol. 2017, 45, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Wang, L.; Zhang, X.; Bao, D.; Zhao, Y. Polymeric micelles for pH-responsive lutein delivery. J. Drug Deliv. Sci. Technol. 2018, 45, 281–286. [Google Scholar] [CrossRef]
- Kim, K.; Lee, C.-S.; Na, K. Light-controlled reactive oxygen species (ROS)-producible polymeric micelles with simultaneous drug-release triggering and endo/lysosomal escape. Chem. Commun. 2016, 52, 2839–2842. [Google Scholar] [CrossRef]
- Cao, B.; Zhang, Q.; Guo, J.; Guo, R.; Fan, X.; Bi, Y. Synthesis and evaluation of Grateloupia Livida polysaccharides-functionalized selenium nanoparticles. Int. J. Biol. Macromol. 2021, 191, 832–839. [Google Scholar] [CrossRef] [PubMed]
- Luisa Pita-Lopez, M.; Fletes-Vargas, G.; Espinosa-Andrews, H.; Rodriguez-Rodriguez, R. Physically cross-linked chitosan-based hydrogels for tissue engineering applications: A state-of-the-art review. Eur. Polym. J. 2021, 145, 110176. [Google Scholar] [CrossRef]
- Matsumoto, Y.; Enomoto, Y.; Kimura, S.; Iwata, T. Highly stretchable curdlan hydrogels and mechanically strong stretched-dried-gel-films obtained by strain-induced crystallization. Carbohydr. Polym. 2021, 269, 118312. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, C.; Qu, D.; Chen, Y.; Huang, M.; Liu, Y. Antibacterial evaluation of sliver nanoparticles synthesized by polysaccharides from Astragalus membranaceus roots. Biomed. Pharmacother. 2017, 89, 351–357. [Google Scholar] [CrossRef]
- Vokhidova, N.R.; Rashidova, S.S. The influence of synthesis conditions on the film morphology of chitosan-stabilized silver nanoparticles. Polym. Bull. 2022, 79, 3419–3436. [Google Scholar] [CrossRef]
- Saini, R.K.; Srivastava, A.K.; Gupta, P.K.; Das, K. pH dependent reversible aggregation of Chitosan and glycol-Chitosan stabilized silver nanoparticles. Chem. Phys. Lett. 2011, 511, 326–330. [Google Scholar] [CrossRef]
- Aftab, A.; Bashi, S.; Rafique, S.; Ghani, T.; Khan, R.; Bashir, M.; Ehsan, A.; Khan, M.I.; Shah, A.U.; Mahmood, A. Microfluidic platform for encapsulation of plant extract in chitosan microcarriers embedding silver nanoparticles for breast cancer cells. Appl. Nanosci. 2020, 10, 2281–2293. [Google Scholar] [CrossRef]
- Zhang, Y.; Lin, L.; Liu, L.; Liu, F.; Maruyama, A.; Tian, H.; Chen, X. Ionic-crosslinked polysaccharide/PEI/DNA nanoparticles for stabilized gene delivery. Carbohydr. Polym. 2018, 201, 246–256. [Google Scholar] [CrossRef]
- Lack, S.; Dulong, V.; Le Cerf, D.; Picton, L.; Argillier, J.F.; Muller, G. Hydrogels based on pullulan crosslinked with sodium trimetaphosphate (STMP): Rheological study. Polym. Bull. 2004, 52, 429–436. [Google Scholar] [CrossRef]
- Samrot, A.V.; Angalene, J.L.A.; Roshini, S.M.; Stefi, S.M.; Preethi, R.; Raji, P.; Kumar, A.M.; Paulraj, P.; Kumar, S.S. Purification, characterization and utilization of polysaccharide of Araucaria heterophylla gum for the synthesis of curcumin loaded nanocarrier. Int. J. Biol. Macromol. 2019, 140, 393–400. [Google Scholar] [CrossRef]
- Samrot, A.V.; Kudaiyappan, T.; Bisyarah, U.; Mirarmandi, A.; Faradjeva, E.; Abubakar, A.; Selvarani, J.A.; Subbiah, S.K. Extraction, Purification, and Characterization of Polysaccharides of Araucaria heterophylla L and Prosopis chilensis L and Utilization of Polysaccharides in Nanocarrier Synthesis. Int. J. Nanomed. 2020, 15, 7097–7115. [Google Scholar] [CrossRef]
- Alavarse, A.C.; Frachini, E.C.G.; da Silva, R.L.C.G.; Lima, V.H.; Shavandi, A.; Petri, D.F.S. Crosslinkers for polysaccharides and proteins: Synthesis conditions, mechanisms, and crosslinking efficiency, a review. Int. J. Biol. Macromol. 2022, 202, 558–596. [Google Scholar] [CrossRef]
- Ponrasu, T.; Gu, J.-S.; Wu, J.-J.; Cheng, Y.-S. Evaluation of jelly fig polysaccharide as a shell composite ingredient of colon-specific drug delivery. J. Drug Deliv. Sci. Technol. 2021, 61, 101679. [Google Scholar] [CrossRef]
- Cui, X.; Zhang, X.; Yang, Y.; Wang, C.; Zhang, C.; Peng, G. Preparation and evaluation of novel hydrogel based on polysaccharide isolated from Bletilla striata. Pharm. Dev. Technol. 2017, 22, 1001–1011. [Google Scholar] [CrossRef]
- Wei, H.; Liu, S.; Tong, Z.; Chen, T.; Yang, M.; Guo, Y.; Sun, H.; Wu, Y.; Chu, Y.; Fan, L. Hydrogel-based microneedles of chitosan derivatives for drug delivery. React. Funct. Polym. 2022, 172, 105200. [Google Scholar] [CrossRef]
- Moniz, T.; Costa Lima, S.A.; Reis, S. Marine polymeric microneedles for transdermal drug delivery. Carbohydr. Polym. 2021, 266, 118098. [Google Scholar] [CrossRef]
- Zhuang, X.; Wang, L.; Jiang, X.; Chen, Y.; Zhou, G. The effects of three polysaccharides on the gelation properties of myofibrillar protein: Phase behaviour and moisture stability. Meat Sci. 2020, 170, 108228. [Google Scholar] [CrossRef]
- Hyland, L.L.; Taraban, M.B.; Feng, Y.; Hammouda, B.; Yu, Y.B. Viscoelastic properties and nanoscale structures of composite oligopeptide-polysaccharide hydrogels. Biopolymers 2012, 97, 177–188. [Google Scholar] [CrossRef]
- Huang, C.; Liao, H.; Ma, X.; Xiao, M.; Liu, X.; Gong, S.; Shu, X.; Zhou, X. Adsorption performance of chitosan Schiff base towards anionic dyes: Electrostatic interaction effects. Chem. Phys. Lett. 2021, 780, 138958. [Google Scholar] [CrossRef]
- Lai, M.; Wang, J.; Tan, J.; Luo, J.; Zhang, L.-M.; Deng, D.Y.B.; Yang, L. Preparation, complexation mechanism and properties of nano-complexes of Astragalus polysaccharide and amphiphilic chitosan derivatives. Carbohydr. Polym. 2017, 161, 261–269. [Google Scholar] [CrossRef]
- Malviya, R.; Raj, S.; Fuloria, S.; Subramaniyan, V.; Sathasivam, K.; Kumari, U.; Meenakshi, D.U.; Porwal, O.; Kumar, D.H.; Singh, A.; et al. Evaluation of Antitumor Efficacy of Chitosan-Tamarind Gum Polysaccharide Polyelectrolyte Complex Stabilized Nanoparticles of Simvastatin. Int. J. Nanomed. 2021, 16, 2533–2553. [Google Scholar] [CrossRef]
- Wang, C.; Luo, W.; Li, P.; Li, S.; Yang, Z.; Hu, Z.; Liu, Y.; Ao, N. Preparation and evaluation of chitosan/alginate porous microspheres/Bletilla striata polysaccharide composite hemostatic sponges. Carbohydr. Polym. 2017, 174, 432–442. [Google Scholar] [CrossRef]
- Krystyjan, M.; Khachatryan, G.; Khachatryan, K.; Krzan, M.; Ciesielski, W.; Zarska, S.; Szczepankowska, J. Polysaccharides Composite Materials as Carbon Nanoparticles Carrier. Polymers 2022, 14, 948. [Google Scholar] [CrossRef]
- Tabernero, A.; Cardea, S. Microbial Exopolysaccharides as Drug Carriers. Polymers 2020, 12, 2142. [Google Scholar] [CrossRef]
- Qian, C.; Zhang, T.; Gravesande, J.; Baysah, C.; Song, X.; Xing, J. Injectable and self-healing polysaccharide-based hydrogel for pH-responsive drug release. Int. J. Biol. Macromol. 2019, 123, 140–148. [Google Scholar] [CrossRef]
- Zhou, P.; Zhao, S.; Huang, C.; Qu, Y.; Zhang, C. Bletilla striata polysaccharide microneedle for effective transdermal administration of model protein antigen. Int. J. Biol. Macromol. 2022, 205, 511–519. [Google Scholar] [CrossRef] [PubMed]
- Nie, J.; Pei, B.; Wang, Z.; Hu, Q. Construction of ordered structure in polysaccharide hydrogel: A review. Carbohydr. Polym. 2019, 205, 225–235. [Google Scholar] [CrossRef] [PubMed]
- Minh-Hiep, N.; Tran, T.-T.; Hadinoto, K. Controlling the burst release of amorphous drug-polysaccharide nanoparticle complex via crosslinking of the polysaccharide chains. Eur. J. Pharm. Biopharm. 2016, 104, 156–163. [Google Scholar]
- Monteiro, S.R.; Lopes-da-Silva, J.A. Effect of the molecular weight of a neutral polysaccharide on soy protein gelation. Food Res. Int. 2017, 102, 14–24. [Google Scholar] [CrossRef]
- Safronov, A.P.; Terziyan, T.V.; Kyzy, A.M.; Adamova, L.V. Thermodynamic Compatibility of Polyacrylamide with Agarose: The Effect of Polysaccharide Chain Stiffness. Polym. Sci. Ser. A 2022, 64, 53–62. [Google Scholar] [CrossRef]
- Usoltseva, R.V.; Shevchenko, N.M.; Malyarenko, O.S.; Ishina, I.A.; Ivannikova, S.I.; Ermakova, S.P. Structure and anticancer activity of native and modified polysaccharides from brown alga Dictyota dichotoma. Carbohydr. Polym. 2018, 180, 21–28. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, Y.; Wu, Y.; Liu, L.; Liang, M.; Han, M.; Li, P.; Chen, Z.; Yan, H.; Zhao, R. Size, surface charge and flexibility of vinegar-baked Radix Bupleuri polysaccharide affecting the immune response. Arab. J. Chem. 2022, 15, 8. [Google Scholar] [CrossRef]
- Otto, S.; Marina, P.F.; Zhou, F.; Blencowe, A. Thermoresponsive polysaccharides with tunable thermoresponsive properties via functionalisation with alkylamide groups. Carbohydr. Polym. 2021, 254, 117280. [Google Scholar] [CrossRef]
- Bruinsmann, F.A.; Pigana, S.; Aguirre, T.; Souto, G.D.; Pereira, G.G.; Bianchera, A.; Fasiolo, L.T.; Colombo, G.; Marques, M.; Pohlmann, A.R.; et al. Chitosan-Coated Nanoparticles: Effect of Chitosan Molecular Weight on Nasal Transmucosal Delivery. Pharmaceutics 2019, 11, 86. [Google Scholar] [CrossRef]
- Qi, X.; Wei, W.; Shen, J.; Dong, W. Salecan polysaccharide-based hydrogels and their applications: A review. J. Mater. Chem. B 2019, 7, 2577–2587. [Google Scholar] [CrossRef]
- Cui, M.; Zhang, M.; Liu, K. Colon-targeted drug delivery of polysaccharide-based nanocarriers for synergistic treatment of inflammatory bowel disease: A review. Carbohydr. Polym. 2021, 272, 118530. [Google Scholar] [CrossRef] [PubMed]
- Nadar, S.S.; Vaidya, L.; Maurya, S.; Rathod, V.K. Polysaccharide based metal organic frameworks (polysaccharide-MOF): A review. Coord. Chem. Rev. 2019, 396, 1–21. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, T.; Xu, J.; Xiong, Y.; Cui, X.; Ke, Y.; Wang, C. Micelle nanovehicles for co-delivery of Lepidium meyenii Walp. (maca) polysaccharide and chloroquine to tumor-associated macrophages for synergistic cancer immunotherapy. Int. J. Biol. Macromol. 2021, 189, 577–589. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Yi, L.; Li, E.; Li, Y.; Lu, Y.; Wang, P.; Zhou, H.; Liu, J.; Hu, Y.; Wang, D. Optimization of Glycyrrhiza polysaccharide liposome by response surface methodology and its immune activities. Int. J. Biol. Macromol. 2017, 102, 68–75. [Google Scholar] [CrossRef]
- Sun, W.; Hu, W.; Meng, K.; Yang, L.; Zhang, W.; Song, X.; Qu, X.; Zhang, Y.; Ma, L.; Fan, Y. Activation of macrophages by the ophiopogon polysaccharide liposome from the root tuber of Ophiopogon japonicus. Int. J. Biol. Macromol. 2016, 91, 918–925. [Google Scholar] [CrossRef]
- Shao, P.; Xuan, S.; Wu, W.; Qu, L. Encapsulation efficiency and controlled release of Ganoderma lucidum polysaccharide microcapsules by spray drying using different combinations of wall materials. Int. J. Biol. Macromol. 2019, 125, 962–969. [Google Scholar] [CrossRef]
- Wang, J.; Ge, B.; Li, Z.; Guan, F.; Li, F. Structural analysis and immunoregulation activity comparison of five polysaccharides from Angelica sinensis. Carbohydr. Polym. 2016, 140, 6–12. [Google Scholar] [CrossRef]
- Xue, L.; Wang, D.; Zhang, D.; Ju, A.; Duan, A.; Xing, J.; Qin, Y.; Yang, S.; Luan, W. The immune adjuvant effect ofAstragaluspolysaccharide onin ovoinjection of Newcastle disease vaccine. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1719–1726. [Google Scholar] [CrossRef]
- Liu, C.; Luo, J.; Xue, R.-Y.; Guo, L.; Nie, L.; Li, S.; Ji, L.; Ma, C.-J.; Chen, D.-Q.; Miao, K.; et al. The mucosal adjuvant effect of plant polysaccharides for induction of protective immunity against Helicobacter pylori infection. Vaccine 2019, 37, 1053–1061. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiao, L.; Wu, Z.; Gu, P.; Feng, Z.; Xu, S.; Liu, Z.; Yang, Y.; Wang, D. Fabrication and characterization of Chinese yam polysaccharides PLGA nanoparticles stabilized Pickering emulsion as an efficient adjuvant. Int. J. Biol. Macromol. 2022, 209, 513–524. [Google Scholar] [CrossRef]
- Zhang, Y.; Cui, Z.; Mei, H.; Xu, J.; Zhou, T.; Cheng, F.; Wang, K. Angelica sinensis polysaccharide nanoparticles as a targeted drug delivery system for enhanced therapy of liver cancer. Carbohydr. Polym. 2019, 219, 143–154. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.J.; Lee, W.C. Polysaccharide-modified nanoparticles with intelligent CD44 receptor targeting ability for gene delivery. Int. J. Nanomed. 2018, 13, 3989–4002. [Google Scholar] [CrossRef] [PubMed]
- Li, W.J.; Tang, X.-F.; Shuai, X.-X.; Jiang, C.-J.; Liu, X.; Wang, L.-F.; Yao, Y.-F.; Nie, S.-P.; Xie, M.-Y. Mannose Receptor Mediates the Immune Response to Ganoderma atrum Polysaccharides in Macrophages. J. Agric. Food Chem. 2017, 65, 348–357. [Google Scholar] [CrossRef] [PubMed]
- Shahbazi, M.-A.; Sedighi, M.; Bauleth-Ramos, T.; Kant, K.; Correia, A.; Poursina, N.; Sarmento, B.; Hirvonen, J.; Santos, H.A. Targeted Reinforcement of Macrophage Reprogramming Toward M2 Polarization by IL-4-Loaded Hyaluronic Acid Particles. Acs. Omega 2018, 3, 18444–18455. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Hou, J.; Zheng, S.; Ma, X.; Fu, X.; Hu, S.; Zhao, K.; Xu, W. Peucedanum praeruptorum Dunn polysaccharides regulate macrophage inflammatory response through TLR2/TLR4-mediated MAPK and NF-KB pathways. Biomed. Pharmacother. 2022, 152, 113258. [Google Scholar] [CrossRef]
- Monestier, M.; Charbonnier, P.; Gateau, C.; Cuillel, M.; Robert, F.; Lebrun, C.; Mintz, E.; Renaudet, O.; Delangle, P. ASGPR-Mediated Uptake of Multivalent Glycoconjugates for Drug Delivery in Hepatocytes. Chembiochem 2016, 17, 590–594. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Xu, J.; Liu, Y.; Cui, Z.; He, Z.; Zheng, Z.; Huang, X.; Zhang, Y. Self-assembled Angelica sinensis polysaccharide nanoparticles with an instinctive liver-targeting ability as a drug carrier for acute alcoholic liver damage protection. Int. J. Pharm. 2020, 577, 118996. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; He, S.; Ma, X.; Hong, T.; Li, Z.; Park, K.; Wang, W. Silymarin-Loaded Nanoparticles Based on Stearic Acid-Modified Bletilla striata Polysaccharide for Hepatic Targeting. Molecules 2016, 21, 265. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.; Yang, Y.; Gao, M.; Qu, Y.; Guo, X.; Liu, Y.; Cui, X.; Wang, C. Lepidium meyenii Walpers polysaccharide and its cationic derivative re-educate tumor-associated macrophages for synergistic tumor immunotherapy. Carbohydr. Polym. 2020, 250, 116904. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Fu, Y.; Yang, F.; Yang, Y.; Liu, T.; Zheng, W.; Zeng, L.; Chen, T. Gracilaria Iemaneiformis Polysaccharide as Integrin-Targeting Surface Decorator of Selenium Nanoparticles to Achieve Enhanced Anticancer Efficacy. Acs. Appl. Mater. Interfaces 2014, 6, 13738–13748. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Chang, X.; Shan, Y.; Fu, F.; Ding, S. Fabrication and characterization of Pickering emulsion gels stabilized by zein/pullulan complex colloidal particles. J. Sci. Food Agric. 2021, 101, 3630–3643. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Sun, L.; You, G.; Liu, H.; Ren, X.; Wang, M. Effects of Astragalus polysaccharide on the solubility and stability of 15 flavonoids. Int. J. Biol. Macromol. 2020, 143, 873–880. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Song, Z.; Zhang, S.; Li, Y.; Xu, J.; Guo, Y. Construction and antitumor activity of selenium nanoparticles decorated with the polysaccharide extracted from Citrus limon (L.) Burm. f. (Rutaceae). Int. J. Biol. Macromol. 2021, 188, 904–913. [Google Scholar] [CrossRef]
- Wang, C.; Gao, X.; Chen, Z.; Chen, Y.; Chen, H. Preparation, Characterization and Application of Polysaccharide-Based Metallic Nanoparticles: A Review. Polymers 2017, 9, 689. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.-D.; Tian, Y.-Q.; Wu, J.-L.; Wang, S.-Y. Synthesis, characterization, and biological activity of selenium nanoparticles conjugated with polysaccharides. Crit. Rev. Food Sci. Nutr. 2021, 61, 2225–2236. [Google Scholar] [CrossRef]
- Banerjee, A.; Halder, U.; Bandopadhyay, R. Preparations and Applications of Polysaccharide Based Green Synthesized Metal Nanoparticles: A State-of-the-Art. J. Clust. Sci. 2017, 28, 1803–1813. [Google Scholar] [CrossRef]
- Chen, W.; Cheng, H.; Xia, W. Construction of Polygonatum sibiricum Polysaccharide Functionalized Selenium Nanoparticles for the Enhancement of Stability and Antioxidant Activity. Antioxidants 2022, 11, 240. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Zhang, Y.; Jia, N.; Qiao, H.; Zhu, M.; Meng, Q.; Lu, Q.; Zu, Y. Synthesis and evaluation of a novel water-soluble high Se-enriched Astragalus polysaccharide nanoparticles. Int. J. Biol. Macromol. 2018, 118, 1438–1448. [Google Scholar] [CrossRef] [PubMed]
- Shao, P.; Feng, J.R.; Sun, P.L.; Xiang, N.; Lu, B.Y.; Qiu, D. Recent advances in improving stability of food emulsion by plant polysaccharides. Food Res. Int. 2020, 137, 109376. [Google Scholar] [CrossRef] [PubMed]
- Varma, C.A.K.; Kumar, K.J. Formulation and optimization of pH sensitive drug releasing O/W emulsions using Albizia lebbeck L. seed polysaccharide. Int. J. Biol. Macromol. 2018, 116, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, X.C.; Yong, H.M.; Kan, J.; Jin, C.H. Recent advances in flavonoid-grafted polysaccharides: Synthesis, structural characterization, bioactivities and potential applications. Int. J. Biol. Macromol. 2018, 116, 1011–1025. [Google Scholar] [CrossRef]
- Wang, S.; Shao, G.; Yang, J.; Zhao, H.; Qu, D.; Zhang, D.; Zhu, D.; He, Y.; Liu, H. Contribution of soybean polysaccharides in digestion of oil-in-water emulsion-based delivery system in an in vitro gastric environment. Food Sci. Technol. Int. 2020, 26, 444–452. [Google Scholar] [CrossRef]
- Sun, Y.; Jia, X.; Yang, R.; Qin, X.; Zhou, X.; Zhang, H.; Kong, W.; Zhang, J.; Wang, J. Deep eutectic solvents boosting solubilization and Se-functionalization of heteropolysaccharide: Multiple hydrogen bonds modulation. Carbohydr. Polym. 2022, 284, 119159. [Google Scholar] [CrossRef] [PubMed]
- Akhter, K.F.; Mumin, M.A.; Lui, E.M.K.; Charpentier, P.A. Transdermal nanotherapeutics: Panax quinquefolium polysaccharide nanoparticles attenuate UVB-induced skin cancer. Int. J. Biol. Macromol. 2021, 181, 221–231. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Qin, T.; Huang, Y.; Zheng, S.; Bo, R.; Liu, Z.; Xing, J.; Hu, Y.; Liu, J.; Wang, D. Exploring the immunopotentiation of Chinese yam polysaccharide poly(lactic-co-glycolic acid) nanoparticles in an ovalbumin vaccine formulation in vivo. Drug Deliv. 2017, 24, 1099–1111. [Google Scholar] [CrossRef] [PubMed]
- Gu, P.; Liu, Z.; Sun, Y.; Ou, N.; Hu, Y.; Liu, J.; Wu, Y.; Wang, D. Angelica sinensis polysaccharide encapsulated into PLGA nanoparticles as a vaccine delivery and adjuvant system for ovalbumin to promote immune responses. Int. J. Pharm. 2019, 554, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Gu, P.; Wusiman, A.; Zhang, Y.; Cai, G.; Xu, S.; Zhu, S.; Liu, Z.; Hu, Y.; Liu, J.; Wang, D. Polyethylenimine-coated PLGA nanoparticles-encapsulated Angelica sinensis polysaccharide as an adjuvant for H9N2 vaccine to improve immune responses in chickens compared to Alum and oil-based adjuvants. Vet. Microbiol. 2020, 251, 108894. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, D.; Li, X.; Guo, Z.; Liu, Y.; Ma, X.; Zheng, S. PEI-modified macrophage cell membrane-coated PLGA nanoparticles encapsulating Dendrobium polysaccharides as a vaccine delivery system for ovalbumin to improve immune responses. Int. J. Biol. Macromol. 2020, 165, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Guan, Q.; Sun, D.; Zhang, G.; Sun, C.; Wang, M.; Ji, D.; Yang, W. Docetaxel-Loaded Self-Assembly Stearic Acid-Modified Bletilla striata Polysaccharide Micelles and Their Anticancer Effect: Preparation, Characterization, Cellular Uptake and In Vitro Evaluation. Molecules 2016, 21, 1641. [Google Scholar] [CrossRef]
- Guan, Q.; Zhang, G.; Sun, D.; Wang, Y.; Liu, K.; Wang, M.; Sun, C.; Zhang, Z.; Li, B.; Lv, J. In vitro and in vivo evaluation of docetaxel-loaded stearic acid-modified Bletilla striata polysaccharide copolymer micelles. PLoS ONE 2017, 12, e0173172. [Google Scholar] [CrossRef]
- Wang, C.; Zhu, J.; Ma, J.; Yang, Y.; Cui, X. Functionalized Bletilla striata polysaccharide micelles for targeted intracellular delivery of Doxorubicin: In vitro and in vivo evaluation. Int. J. Pharm. 2019, 567, 118436. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, J.; Huang, L.; Qiao, J.; Wang, N.; Yu, D.; Zhang, G.; Yu, S.; Guan, Q. Synergistic effects of antitumor efficacy via mixed nano-size micelles of multifunctional Bletilla striata polysaccharide-based copolymer and D-alpha-tocopheryl polyethylene glycol succinate. Int. J. Biol. Macromol. 2020, 154, 499–510. [Google Scholar] [CrossRef]
- Huang, Z.; Gan, J.; Long, Z.; Guo, G.; Shi, X.; Wang, C.; Zang, Y.; Ding, Z.; Chen, J.; Zhang, J.; et al. Targeted delivery of let-7b to reprogramme tumor-associated macrophages and tumor infiltrating dendritic cells for tumor rejection. Biomaterials 2016, 90, 72–84. [Google Scholar] [CrossRef]
- Zhan, X.; Jia, L.; Niu, Y.; Qi, H.; Chen, X.; Zhang, Q.; Zhang, J.; Wang, Y.; Dong, L.; Wang, C. Targeted depletion of tumour-associated macrophages by an alendronate-glucomannan conjugate for cancer immunotherapy. Biomaterials 2014, 35, 10046–10057. [Google Scholar] [CrossRef]
- Huang, Y.; Nan, L.; Xiao, C.; Su, F.; Li, K.; Ji, Q.-A.; Wei, Q.; Liu, Y.; Bao, G. PEGylated nano-Rehmannia glutinosa polysaccharide induces potent adaptive immunity against Bordetella bronchiseptica. Int. J. Biol. Macromol. 2021, 168, 507–517. [Google Scholar] [CrossRef]
- Pang, G.; Chen, C.; Liu, Y.; Jiang, T.; Yu, H.; Wu, Y.; Wang, Y.; Wang, F.-J.; Liu, Z.; Zhang, L.W. Bioactive Polysaccharide Nanoparticles Improve Radiation-Induced Abscopal Effect through Manipulation of Dendritic Cells. Acs. Appl. Mater. Interfaces 2019, 11, 42661–42670. [Google Scholar] [CrossRef]
- Ma, W.; Zhou, Y.; Lou, W.; Wang, B.; Li, B.; Liu, X.; Yang, J.; Yang, B.; Liu, J.; Di, D. Mechanism regulating the inhibition of lung cancer A549 cell proliferation and structural analysis of the polysaccharide Lycium barbarum. Food Biosci. 2022, 47, 101664. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, Y.; Lv, J.; Cheng, M.; Wu, Y.; Cao, K.; Zhang, X.; Mou, X.; Fan, Q. New utilization of Polygonum multiflorum polysaccharide as macromolecular carrier of 5-fluorouracil for controlled release and immunoprotection. Int. J. Biol. Macromol. 2018, 116, 1310–1316. [Google Scholar] [CrossRef]
- Wang, L.; Tian, Y.; Zhang, P.; Li, C.; Chen, J. Polysaccharide isolated from Rosa roxburghii Tratt fruit as a stabilizing and reducing agent for the synthesis of silver nanoparticles: Antibacterial and preservative properties. J. Food Meas. Charact. 2022, 16, 1241–1251. [Google Scholar] [CrossRef]
- Pang, G.; Zhang, S.; Zhou, X.; Yu, H.; Wu, Y.; Jiang, T.; Zhang, X.; Wang, F.; Wang, Y.; Zhang, L.W. Immunoactive polysaccharide functionalized gold nanocomposites promote dendritic cell stimulation and antitumor effects. Nanomedicine 2019, 14, 1291–1306. [Google Scholar] [CrossRef]
- Zhang, Y.; Khan, M.Z.H.; Yuan, T.; Zhang, Y.; Liu, X.; Du, Z.; Zhao, Y. Preparation and characterization of D. opposita Thunb polysaccharide-zinc inclusion complex and evaluation of anti-diabetic activities. Int. J. Biol. Macromol. 2019, 121, 1029–1036. [Google Scholar] [CrossRef]
- Taher, M.A.; Khojah, E.; Darwish, M.S.; Elsherbiny, E.A.; Elawady, A.A.; Dawood, D.H. Biosynthesis of Silver Nanoparticles by Polysaccharide of Leucaena leucocephala Seeds and Their Anticancer, Antifungal Properties and as Preservative of Composite Milk Sample. J. Nanomater. 2022, 2022, 7490221. [Google Scholar] [CrossRef]
- Devi, I.M.P.; Nallamuthu, N.; Rajini, N.; Kumar, S.M.T.; Siengchin, S.; Rajulu, V.A.; Hariram, N. Antimicrobial properties of poly(propylene) carbonate/Ag nanoparticle-modified tamarind seed polysaccharide with composite films. Ionics 2019, 25, 3461–3471. [Google Scholar]
- Sanyasi, S.; Majhi, R.K.; Kumar, S.; Mishra, M.; Ghosh, A.; Suar, M.; Satyam, P.V.; Mohapatra, H.; Goswami, C.; Goswami, L. Polysaccharide-capped silver Nanoparticles inhibit biofilm formation and eliminate multi-drug-resistant bacteria by disrupting bacterial cytoskeleton with reduced cytotoxicity towards mammalian cells. Sci. Rep. 2016, 6, 24929. [Google Scholar] [CrossRef] [PubMed]
- Joseph, M.M.; Aravind, S.R.; Varghese, S.; Mini, S.; Sreelekha, T.T. PST-Gold nanoparticle as an effective anticancer agent with immunomodulatory properties. Colloids Surf. B Biointerfaces 2013, 104, 32–39. [Google Scholar] [CrossRef]
- Cao, J.; Qin, X.; Li, Z. Synthesis of Silver Nanoparticles from the Polysaccharide of Farfarae Flos and Uncovering Its Anticancer Mechanism Based on the Cell Metabolomic Approach. J. Proteome Res. 2022, 21, 172–181. [Google Scholar] [CrossRef]
- Wang, L.; Xie, J.; Huang, T.; Ma, Y.; Wu, Z.Q. Characterization of silver nanoparticles biosynthesized using crude polysaccharides of Psidium guajava L. leaf and their bioactivities. Mater. Lett. 2017, 208, 126–129. [Google Scholar] [CrossRef]
- Liu, J.; Ma, Z.X.; Liu, Y.C.; Zheng, X.J.; Pei, Y.; Tang, K.Y. Soluble soybean polysaccharide films containing in-situ generated silver nanoparticles for antibacterial food packaging applications. Food Packag. Shelf Life 2022, 31, 100800. [Google Scholar] [CrossRef]
- Mehwish, H.M.; Liu, G.; Rajoka, M.S.R.; Cai, H.; Zhong, J.; Song, X.; Xia, L.; Wang, M.; Aadil, R.M.; Inam-Ur-Raheem, M.; et al. Therapeutic potential of Moringa oleifera seed polysaccharide embedded silver nanoparticles in wound healing. Int. J. Biol. Macromol. 2021, 184, 144–158. [Google Scholar] [CrossRef]
- Kumari, Y.; Singh, S.K.; Kumar, R.; Kumar, B.; Kaur, G.; Gulati, M.; Tewari, D.; Gowthamarajan, K.; Karri, V.V.S.N.R.; Ayinkamiye, C.; et al. Modified apple polysaccharide capped gold nanoparticles for oral delivery of insulin. Int. J. Biol. Macromol. 2020, 149, 976–988. [Google Scholar] [CrossRef]
- Cai, W.; Hu, T.; Bakry, A.M.; Zheng, Z.; Xiao, Y.; Huang, Q. Effect of ultrasound on size, morphology, stability and antioxidant activity of selenium nanoparticles dispersed by a hyperbranched polysaccharide from Lignosus rhinocerotis. Ultrason. Sonochem. 2018, 42, 823–831. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yang, X.; Ji, T.; Wen, C.; Ye, Z.; Liu, X.; Liang, L.; Liu, G.; Xu, X. Digestion and absorption properties of Lycium barbarum polysaccharides stabilized selenium nanoparticles. Food Chem. 2022, 373, 131637. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Yang, X.; Zhang, J.; Liang, L.; Miao, F.; Ji, T.; Ye, Z.; Chu, M.; Ren, J.; Xu, X. Synthesis, stability and anti-fatigue activity of selenium nanoparticles stabilized by Lycium barbarum polysaccharides. Int. J. Biol. Macromol. 2021, 179, 418–428. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.-X.; Jin, S.-S.; Wu, K.-S.; Yu, G.-C.; Tu, L.-L.; Liu, L. Effect of nano-selenium loaded with lycium barbarum polysaccharide on the proliferation of lens epithelial cells after UVB damage in vitro. Int. J. Ophthalmol. 2022, 15, 9–14. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, J.; Ding, D.; Zhang, L.; Muehlmann, L.A.; Deng, S.-E.; Wang, X.; Li, W.; Zhang, W. Synthesis and antioxidant properties of Lycium barbarum polysaccharides capped selenium nanoparticles using tea extract. Artif. Cells Nanomed. Biotechnol. 2018, 46, 1463–1470. [Google Scholar] [CrossRef]
- Yu, J.; Dong, X.-D.; Jiao, J.-S.; Yu, S.-S.; Ji, H.-Y.; Liu, A.-J.; Chen, Y. The inhibitory effects of selenium nanoparticles modified by fructose-enriched polysaccharide from Codonopsis pilosula on HepG2 cells. Ind. Crops Prod. 2022, 176, 114335. [Google Scholar] [CrossRef]
- Zhang, S.; Song, Z.; Shi, L.; Zhou, L.; Zhang, J.; Cui, J.; Li, Y.; Jin, D.-Q.; Ohizumi, Y.; Xu, J.; et al. A dandelion polysaccharide and its selenium nanoparticles: Structure features and evaluation of anti-tumor activity in zebrafish models. Carbohydr. Polym. 2021, 270, 118365. [Google Scholar] [CrossRef]
- Xiang, J.; Wang, Y.; Yang, L.; Zhang, X.; Hong, Y.; Shen, L. A novel hydrogel based on Bletilla striata polysaccharide for rapid hemostasis: Synthesis, characterization and evaluation. Int. J. Biol. Macromol. 2022, 196, 1–12. [Google Scholar] [CrossRef]
- Ding, L.; Shan, X.; Zhao, X.; Zha, H.; Chen, X.; Wang, J.; Cai, C.; Wang, X.; Li, G.; Hao, J.; et al. Spongy bilayer dressing composed of chitosan-Ag nanoparticles and chitosan-Bletilla striata polysaccharide for wound healing applications. Carbohydr. Polym. 2017, 157, 1538–1547. [Google Scholar] [CrossRef]
- Singh, B.; Kumar, S. Synthesis and characterization of psyllium-NVP based drug delivery system through radiation crosslinking polymerization. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. At. 2008, 266, 3417–3430. [Google Scholar] [CrossRef]
- Preethi, G.U.; Unnikrishnan, B.S.; Sreekutty, J.; Archana, M.G.; Anupama, M.S.; Shiji, R.; Pillai, R.K.; Joseph, M.M.; Syama, H.P.; Sreelekha, T.T. Semi-interpenetrating nanosilver doped polysaccharide hydrogel scaffolds for cutaneous wound healing. Int. J. Biol. Macromol. 2020, 142, 712–723. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Liao, Z.; Hu, Q.; Maffucci, K.G.; Qu, Y. Novel Bletilla striata polysaccharide microneedles: Fabrication, characterization, and in vitro transcutaneous drug delivery. Int. J. Biol. Macromol. 2018, 117, 928–936. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Xue, L.; Younas, A.; Liu, F.; Sun, J.; Dong, Z.; Zhao, Y. Co-delivery of triamcinolone acetonide and verapamil for synergistic treatment of hypertrophic scars via carboxymethyl chitosan and Bletilla striata polysaccharide-based microneedles. Carbohydr. Polym. 2022, 284, 119219. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Guan, D.; Zhang, X. Quality standards for the Cordyceps sinensis Sacc polysaccharide liposomal oral liquid. J. Shenyang Pharm. Univ. 2005, 22, 203–206. [Google Scholar]
- Bo, R.N.; Zheng, S.S.; Xing, J.; Luo, L.; Niu, Y.L.; Huang, Y.; Liu, Z.G.; Hu, Y.L.; Liu, J.G.; Wu, Y.; et al. The immunological activity of Lycium barbarum polysaccharides liposome in vitro and adjuvanticity against PCV2 in vivo. Int. J. Biol. Macromol. 2016, 85, 294–301. [Google Scholar] [CrossRef]
- Akhter, K.F.; Mumin, M.A.; Lui, E.K.; Charpentier, P.A. Microfluidic Synthesis of Ginseng Polysaccharide Nanoparticles for Immunostimulating Action on Macrophage Cell Lines. Acs. Biomater. Sci. Eng. 2016, 2, 96–103. [Google Scholar] [CrossRef]
- Akhter, K.F.; Mumin, M.A.; Lui, E.M.K.; Charpentier, P.A. Fabrication of fluorescent labeled ginseng polysaccharide nanoparticles for bioimaging and their immunomodulatory activity on macrophage cell lines. Int. J. Biol. Macromol. 2018, 109, 254–262. [Google Scholar] [CrossRef]
- Alalaiwe, A.; Roberts, G.; Carpinone, P.; Munson, J.; Roberts, S. Influence of PEG coating on the oral bioavailability of gold nanoparticles in rats. Drug Deliv. 2017, 24, 591–598. [Google Scholar] [CrossRef]
- Moon, H.J.; Lee, S.R.; Shim, S.N.; Jeong, S.H.; Stonik, V.A.; Rasskazov, V.A.; Zvyagintseva, T.; Lee, Y.H. Fucoidan inhibits UVB-induced MMP-1 expression in human skin fibroblasts. Biol. Pharm. Bull. 2008, 31, 284–289. [Google Scholar] [CrossRef]
- Lee, H.J.; Kim, J.S.; Song, M.S.; Seo, H.S.; Moon, C.; Kim, J.C.; Jo, S.K.; Jang, J.S.; Kim, S.H. Photoprotective Effect of Red Ginseng against Ultraviolet Radiation-induced Chronic Skin Damage in the Hairless Mouse. Phytother. Res. 2009, 23, 399–403. [Google Scholar] [CrossRef]
- Zhang, Y.; Gu, P.; Wusiman, A.; Xu, S.; Ni, H.; Qiu, T.; Liu, Z.; Hu, Y.; Liu, J.; Wang, D. The Immunoenhancement Effects of Polyethylenimine-Modified Chinese Yam Polysaccharide-Encapsulated PLGA Nanoparticles as an Adjuvant. Int. J. Nanomed. 2020, 15, 5527–5543. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Sun, L.; Zhao, W.; Peng, X.; Liu, F.; Wang, Y.; Bi, Y.; Zhang, H.; Zhou, Y. Cholesteryl-Modification of a Glucomannan from Bletilla striata and Its Hydrogel Properties. Molecules 2014, 19, 9089–9100. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, C.; Zhang, G.; Wu, J.; Huang, L.; Qiao, J.; Guan, Q. Bio-responsive Bletilla striata polysaccharide-based micelles for enhancing intracellular docetaxel delivery. Int. J. Biol. Macromol. 2020, 142, 277–287. [Google Scholar] [CrossRef] [PubMed]
- Zijderhand-Bleekemolen, J.E.; Schwartz, A.L.; Slot, J.W.; Strous, G.J.; Geuze, H.J. Ligand- and weak base-induced redistribution of asialoglycoprotein receptors in hepatoma cells. J. Cell Biol. 1987, 104, 1647–1654. [Google Scholar] [CrossRef] [PubMed]
- Ekladious, I.; Colson, Y.L.; Grinstaff, M.W. Polymer-drug conjugate therapeutics: Advances, insights and prospects. Nat. Rev. Drug Discov. 2019, 18, 273–294. [Google Scholar] [CrossRef] [PubMed]
- Homsi, J.; Simon, G.R.; Garrett, C.R.; Springett, G.; De Conti, R.; Chiappori, A.; Munster, P.N.; Burton, M.K.; Stromatt, S.; Allievi, C.; et al. Phase I trial of poly-L-glutamate camptothecin (CT-2106) administered weekly in patients with advanced solid malignancies. Clin. Cancer Res. 2007, 13, 5855–5861. [Google Scholar] [CrossRef]
- Nowotnik, D.P.; Cvitkovic, E. ProLindac (TM) (AP5346): A review of the development of an HPMA DACH platinum Polymer Therapeutic. Adv. Drug Deliv. Rev. 2009, 61, 1214–1219. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.; Guan, L.; An, K.; Tian, D. Preparation and physicochemical properties of konjac glucomannan ibuprofen ester as a polysaccharide-drug conjugate. J. Macromol. Sci. Part A-Pure Appl. Chem. 2021, 58, 32–43. [Google Scholar] [CrossRef]
- Sauraj; Kumar, S.U.; Gopinath, P.; Negi, Y.S. Synthesis and bio-evaluation of xylan-5-fluorouracil-1-acetic acid conjugates as prodrugs for colon cancer treatment. Carbohydr. Polym. 2017, 157, 1442–1450. [Google Scholar] [CrossRef] [PubMed]
- Daus, S.; Heinze, T. Xylan-Based Nanoparticles: Prodrugs for Ibuprofen Release. Macromol. Biosci. 2010, 10, 211–220. [Google Scholar] [CrossRef]
- Zhou, S.; Zhang, B.; Liu, X.; Teng, Z.; Huan, M.; Yang, T.; Yang, Z.; Jia, M.; Mei, Q. A New Natural Angelica Polysaccharide Based Colon-Specific Drug Delivery System. J. Pharm. Sci. 2009, 98, 4756–4768. [Google Scholar] [CrossRef] [PubMed]
- Prasher, P.; Sharma, M.; Singh, S.P. Drug encapsulating polysaccharide-loaded metal nanoparticles: A perspective drug delivery system. Drug Dev. Res. 2021, 82, 145–148. [Google Scholar] [CrossRef] [PubMed]
- Plucinski, A.; Lyu, Z.; Schmidt, B. Polysaccharide nanoparticles: From fabrication to applications. J. Mater. Chem. B 2021, 9, 7030–7062. [Google Scholar] [CrossRef]
- Ren, Z.; Luo, Y.; Liu, X.; Zhang, J.; Chen, S.; Yu, R.; Xu, Y.; Meng, Z.; Li, J.; Huang, Y.; et al. Preparation, characterization and controlled-release property of CS crosslinked MWCNT based on Hericium erinaceus polysaccharides. Int. J. Biol. Macromol. 2020, 153, 1310–1318. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Zhang, J.; Cui, Y.; Chen, S.; Sun, H.; Yang, Q.; Ma, G.; Wang, L.; Kang, J. Highly biocompatible jujube polysaccharide-stabilized palladium nanoparticles with excellent catalytic performance. New J. Chem. 2019, 43, 7646–7652. [Google Scholar] [CrossRef]
- Wang, Y.; Han, Q.; Bai, F.; Luo, Q.; Wu, M.; Song, G.; Zhang, H.; Wang, Y. The assembly and antitumor activity of lycium barbarum polysaccharide-platinum-based conjugates. J. Inorg. Biochem. 2020, 205, 111001. [Google Scholar] [CrossRef]
- Hu, N.; Gao, Z.; Cao, P.; Song, H.; Hu, J.; Qiu, Z.; Chang, C.; Zheng, G.; Shan, X.; Meng, Y. Uniform and disperse selenium nanoparticles stabilized by inulin fructans from Codonopsis pilosula and their anti-hepatoma activities. Int. J. Biol. Macromol. 2022, 203, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, Y.; Gong, J.P.; Osada, Y. Novel hydrogels with excellent mechanical performance. Prog. Polym. Sci. 2005, 30, 1–9. [Google Scholar] [CrossRef]
- Sahiner, N. Soft and flexible hydrogel templates of different sizes and various functionalities for metal nanoparticle preparation and their use in catalysis. Prog. Polym. Sci. 2013, 38, 1329–1356. [Google Scholar] [CrossRef]
- Huseini, H.F.; Rahimzadeh, G.; Fazeli, M.R.; Mehrazma, M.; Salehi, M. Evaluation of wound healing activities of kefir products. Burns 2012, 38, 719–723. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.; Verma, M. Functionalization of psyllium with methacrylic acid through grafting and network formation for use of polymers in water treatment. J. Appl. Polym. Sci. 2007, 103, 1025–1034. [Google Scholar] [CrossRef]
- Singh, B. Psyllium as therapeutic and drug delivery agent. Int. J. Pharm. 2007, 334, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.; Zhang, L. Cellulose-based hydrogels: Present status and application prospects. Carbohydr. Polym. 2011, 84, 40–53. [Google Scholar] [CrossRef]
- Damiri, F.; Kommineni, N.; Ebhodaghe, S.O.; Bulusu, R.; Jyothi, V.; Sayed, A.A.; Awaji, A.A.; Germoush, M.O.; Al-Malky, H.S.; Nasrullah, M.Z.; et al. Microneedle-Based Natural Polysaccharide for Drug Delivery Systems (DDS): Progress and Challenges. Pharmaceuticals 2022, 15, 190. [Google Scholar] [CrossRef]
- Ohnishi, N.; Yamamoto, E.; Tomida, H.; Hyodo, K.; Ishihara, H.; Kikuchi, H.; Tahara, K.; Takeuchi, H. Rapid determination of the encapsulation efficiency of a liposome formulation using column-switching HPLC. Int. J. Pharm. 2013, 441, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Daraee, H.; Etemadi, A.; Kouhi, M.; Alimirzalu, S.; Akbarzadeh, A. Application of liposomes in medicine and drug delivery. Artif. Cells Nanomed. Biotechnol. 2016, 44, 381–391. [Google Scholar] [CrossRef]
- Ding, J.; Hu, L.; Kang, X.; Cao, K.; Guan, W. Application of liposome in cancer therapy and tracer study. Chin. J. Clin. Oncol. 2014, 41, 1403–1407. [Google Scholar]
- Fan, Y.; Ma, X.; Ma, L.; Zhang, J.; Zhang, W.; Song, X. Antioxidative and immunological activities of ophiopogon polysaccharide liposome from the root of Ophiopogon japonicus. Carbohydr Polym 2016, 135, 110–120. [Google Scholar] [CrossRef]
- Wang, S.; Zhu, J.; Cui, X.; Lin, Y.; Yang, Y.; Qu, Y.; Wang, C.; Yang, X. Preparation and evaluation of novel hydrogel of Bletilla striata polysaccharide. Chin. Tradit. Herb. Drugs 2017, 48, 888–893. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Y.; Chen, Z.; Sun, L.; Lin, Y.; Yang, Y.; Cui, X.; Wang, C. Herb Polysaccharide-Based Drug Delivery System: Fabrication, Properties, and Applications for Immunotherapy. Pharmaceutics 2022, 14, 1703. https://doi.org/10.3390/pharmaceutics14081703
Cao Y, Chen Z, Sun L, Lin Y, Yang Y, Cui X, Wang C. Herb Polysaccharide-Based Drug Delivery System: Fabrication, Properties, and Applications for Immunotherapy. Pharmaceutics. 2022; 14(8):1703. https://doi.org/10.3390/pharmaceutics14081703
Chicago/Turabian StyleCao, Yubiao, Zhuowen Chen, Liangliang Sun, Yameng Lin, Ye Yang, Xiuming Cui, and Chengxiao Wang. 2022. "Herb Polysaccharide-Based Drug Delivery System: Fabrication, Properties, and Applications for Immunotherapy" Pharmaceutics 14, no. 8: 1703. https://doi.org/10.3390/pharmaceutics14081703
APA StyleCao, Y., Chen, Z., Sun, L., Lin, Y., Yang, Y., Cui, X., & Wang, C. (2022). Herb Polysaccharide-Based Drug Delivery System: Fabrication, Properties, and Applications for Immunotherapy. Pharmaceutics, 14(8), 1703. https://doi.org/10.3390/pharmaceutics14081703