A Pharmacokinetic Dose-Optimization Study of Cabotegravir and Bictegravir in a Mouse Pregnancy Model
Abstract
:1. Introduction
1.1. Cabotegravir
1.2. Bictegravir
2. Materials and Methods
2.1. Drugs
2.2. Mouse Pregnancy Model
2.3. Bioanalysis of Drug Level Measurement in Blood Plasma and Amniotic Fluid Using HPLC-MSMS
3. Results
3.1. Plasma Cmax Concentrations
Drug | Co-Administered Drug(s) and Dose | Participant Characteristics | CAB Dosage, Frequency, and Route | Human Plasma Levels (ng/mL) | Reference | ||
---|---|---|---|---|---|---|---|
Cmax | Cmin | ||||||
CAB | - | Healthy Participants | Single oral dose | 5 mg | 1150 | 420 | [17] |
10 mg | 2150 | 830 | |||||
25 mg | 4380 | 1930 | |||||
50 mg | 8570 | 3820 | |||||
Repeat oral dose | 5 mg | 2080 | 1060 | ||||
10 mg | 4290 | 2390 | |||||
25 mg | 9470 | 5400 | |||||
Participants with HIV | Single oral dose | 5 mg | 520 | 230 | |||
30 mg | 2840 | 1250 | |||||
Repeat oral dose | 5 mg | 1020 | - | ||||
30 mg | 6370 | 3280 | |||||
- | Healthy Participants | CAB given as IM (gluteal) injection | 100 mg IM | 200 | - | [15] | |
200 mg IM | 300 | - | |||||
400 mg IM | 700 | - | |||||
400 mg (200 mg × 2) | 1400 | - | |||||
800 mg IM (400 mg × 2) | 3300 | - | |||||
CAB given as SC (abdominal) injection | 100 mg | 200 | - | ||||
200 mg | 500 | - | |||||
400 mg (200 mg × 2) | 900 | - | |||||
Rilpivirine LA 300 mg/mL suspension given as IM (gluteal) injection monthly | Healthy Participants | Oral lead-in followed by LA CAB given as IM (gluteal) or SC (abdominal) injection | 30 mg | 8300 | 4900 | [16] | |
200 mg SC | 2100 | 1660 | |||||
200 mg IM | 2200 | 1610 | |||||
400 mg IM | 4400 | 3270 | |||||
800 mg IM | 3300 | 1100 | |||||
Healthy Participants (Males) | 30 mg oral phase, 800 mg LA CAB repeated dose every 12 weeks | 800 mg LA CAB: | [28] | ||||
1st injection | 4260 | 302 | |||||
2nd injection | 5220 | 331 | |||||
3rd injection | 4910 | 387 | |||||
- | Healthy Participants (Males) | 30 mg oral phase, 800 mg LA CAB repeated dose every 12 weeks | 800 mg LA CAB: | [29] | |||
1st injection | 2670 | 490 | |||||
2nd injection | 2570 | 780 | |||||
3rd injection | 3390 | 820 | |||||
4th injection | - | - | |||||
5th injection | - | - | |||||
Healthy Participants (Females) | 30 mg oral phase, 800 mg LA CAB repeated dose every 12 weeks | 800 mg LA CAB: | |||||
1st injection | 1890 | 950 | |||||
2nd injection | 2290 | 1350 | |||||
3rd injection | 3010 | 1650 | |||||
4th injection | - | - | |||||
5th injection | - | - | |||||
Healthy Participants (Males) | 30 mg oral phase, 600 mg LA CAB repeated dose every 12 weeks | 600 mg LA CAB: | |||||
1st injection | 2510 | 1790 | |||||
2nd injection | 3900 | 1290 | |||||
3rd injection | 2960 | 1110 | |||||
4th injection | 2960 | 1460 | |||||
5th injection | 3820 | 1680 | |||||
Healthy Participants (Females) | 30 mg oral phase, 600 mg LA CAB repeated dose every 12 weeks | 600 mg LA CAB: | |||||
1st injection | 1580 | 1330 | |||||
2nd injection | 2960 | 1820 | |||||
3rd injection | 3460 | 2040 | |||||
4th injection | 3330 | 2060 | |||||
5th injection | 3660 | 2030 | |||||
CAB/rilpivirin LA injectable every 4 weeks | ART-naïve, Switch study; ART- experienced, virologically suppressed | Oral | 30 mg once daily | 8000 | 4600 | [30,31] | |
Initial injection | 600 mg IM initial dose | 8000 | 1500 | ||||
Monthly injection | 400 mg IM monthly | 4200 | 2800 | ||||
CAB/rilpivirine LA injectable every 4 or 8 weeks | Participants with HIV | Repeat-dose every 4 week | 400 mg | 2740 | [32] | ||
Participants with HIV | Repeat-dose every 8 week | 600 mg | 1670 |
Drug | Co-Administered Drug(s) and Dose | Participant Characteristics | BIC Dosage, Frequency, and Route | Human Plasma Levels (ng/mL) | Reference | ||
---|---|---|---|---|---|---|---|
Cmax | Cmin | ||||||
BIC | - | Participants with HIV | Multiple-dose | 5 mg | 741.5 | 225.3 | [27] |
25 mg | 3475 | 1052.3 | |||||
50 mg | 6080 | 2053 | |||||
100 mg | 12,235 | 4520 | |||||
Coformulated BIC 50 mg, FTC 200 mg, TAF 25 mg | Participants with HIV | Oral | 50 mg | - | 2310 | [33] | |
Coformulated BIC 50 mg, FTC 200 mg, TAF 25 mg | Participants with HIV | Oral | 50 mg | - | 2576 | [34] | |
Coformulated BIC 50 mg, FTC 200 mg, TAF 25 mg | Participants with HIV | Oral | 50 mg | - | 2282.9 | [35] | |
Coformulated BIC 50 mg, FTC 200 mg, TAF 25 mg | Participants with HIV | Oral | 50 mg | - | 2038.2 | [36] | |
- | Healthy Participants | Oral | 30 mg fasting | 3450 | 1660 | [37] | |
30 mg fed | 3950 | 1930 | |||||
Coformulated BIC 50 mg, FTC 200 mg, TAF 25 mg | Pregnant Woman 1 GW 33 | Oral | 50 mg | 3820 | 630 | [25] | |
Pregnant Woman 2 GW 33 | 4840 | - |
3.2. Plasma Cmin Concentrations
3.3. Amniotic Fluid Concentrations
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grinsztejn, B.; Nguyen, B.Y.; Katlama, C.; Gatell, J.M.; Lazzarin, A.; Vittecoq, D.; Gonzalez, C.J.; Chen, J.; Harvey, C.M.; Isaacs, R.D. Protocol 005 Team. Safety and efficacy of the HIV-1 integrase inhibitor raltegravir (MK-0518) in treatment-experienced patients with multidrug-resistant virus: A phase II randomised controlled trial. Lancet 2007, 369, 1261–1269. [Google Scholar] [CrossRef]
- Markowitz, M.; Nguyen, B.Y.; Gotuzzo, E.; Mendo, F.; Ratanasuwan, W.; Kovacs, C.; Prada, G.; Morales-Ramirez, J.O.; Crumpacker, C.S.; Isaacs, R.D.; et al. Protocol 004 Part II Study Team. Sustained antiretroviral effect of raltegravir after 96 weeks of combination therapy in treatment-naive patients with HIV-1 infection. J. Acquir. Immune Defic. Syndr. 2009, 52, 350–356. [Google Scholar] [CrossRef] [Green Version]
- Temesgen, Z.; Siraj, D.S. Raltegravir: First in class HIV integrase inhibitor. Ther. Clin. Risk Manag. 2008, 4, 493–500. [Google Scholar] [CrossRef] [Green Version]
- Molina, J.M.; Lamarca, A.; Andrade-Villanueva, J.; Clotet, B.; Clumeck, N.; Liu, Y.P.; Zhong, L.; Margot, N.; Cheng, A.K.; Chuck, S.L. Study 145 Team. Efficacy and safety of once daily elvitegravir versus twice daily raltegravir in treatment-experienced patients with HIV-1 receiving a ritonavir-boosted protease inhibitor: Randomised, double-blind, phase 3, non-inferiority study. Lancet Infect. Dis. 2012, 12, 27–35. [Google Scholar] [CrossRef]
- van Lunzen, J.; Maggiolo, F.; Arribas, J.R.; Rakhmanova, A.; Yeni, P.; Young, B.; Rockstroh, J.K.; Almond, S.; Song, I.; Brothers, C.; et al. Once daily dolutegravir (S/GSK1349572) in combination therapy in antiretroviral-naive adults with HIV: Planned interim 48 week results from SPRING-1, a dose-ranging, randomised, phase 2b trial. Lancet Infect. Dis. 2012, 12, 111–118. [Google Scholar] [CrossRef]
- Doherty, M.; Victoria, M.; Penazzato, M.; Renaud, F. Whats’s New in the 2019 WHO Guidelines: Dolutegravir Based Regimens in First- and Second-line HIV Treatment. Available online: Chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://salamandertrust.net/wp-content/uploads/2018/11/2M_Doherty_2019_edited_WHO_Guidelines_updates_for-ESA_20191008.pdf (accessed on 10 July 2022).
- Recommendation for use of Antiretroviral Drugs during Pregnancy, 2022. Table 4. What to Start: Initial Antiretroviral Regimens during Pregnancy for People Who Are Antiretroviral-Naive: NIH. Available online: https://clinicalinfo.hiv.gov/en/guidelines/perinatal/table-4-what-to-start (accessed on 11 July 2022).
- Papp, E.; Mohammadi, H.; Loutfy, M.R.; Yudin, M.H.; Murphy, K.E.; Walmsley, S.L.; Shah, R.; MacGillivray, J.; Silverman, M.; Serghides, L. HIV protease inhibitor use during pregnancy is associated with decreased progesterone levels, suggesting a potential mechanism contributing to fetal growth restriction. J. Infect. Dis. 2015, 211, 10–18. [Google Scholar] [CrossRef] [Green Version]
- Kala, S.; Watson, B.; Zhang, J.G.; Papp, E.; Guzman, M.L.; Dennehy, M.; Cameron, D.W.; Harrigan, P.R.; Serghides, L. Improving the clinical relevance of a mouse pregnancy model of antiretroviral toxicity; a pharmacokinetic dosing-optimization study of current HIV antiretroviral regimens. Antivir. Res. 2018, 159, 45–54. [Google Scholar] [CrossRef]
- Mundhra, D.; Pan, R. Pharmaceutical Compositions. U.S. Patent Application No. 20130171214, 4 July 2013. [Google Scholar]
- Andrews, C.D.; Spreen, W.R.; Mohri, H.; Moss, L.; Ford, S.; Gettie, A.; Russell-Lodrigue, K.; Bohm, R.P.; Cheng-Mayer, C.; Hong, Z.; et al. Long-acting integrase inhibitor protects macaques from intrarectal simian/human immunodeficiency virus. Science 2014, 343, 1151–1154. [Google Scholar] [CrossRef] [Green Version]
- Andrews, C.D.; Yueh, Y.L.; Spreen, W.R.; St Bernard, L.; Boente-Carrera, M.; Rodriguez, K.; Gettie, A.; Russell-Lodrigue, K.; Blanchard, J.; Ford, S.; et al. A long-acting integrase inhibitor protects female macaques from repeated high-dose intravaginal SHIV challenge. Sci. Transl. Med. 2015, 7, 270ra4. [Google Scholar] [CrossRef] [Green Version]
- Andrews, C.D.; Heneine, W. Cabotegravir long-acting for HIV-1 prevention. Curr. Opin. HIV AIDS 2015, 10, 258–263. [Google Scholar] [CrossRef]
- Radzio, J.; Spreen, W.; Yueh, Y.L.; Mitchell, J.; Jenkins, L.; García-Lerma, J.G.; Heneine, W. The long-acting integrase inhibitor GSK744 protects macaques from repeated intravaginal SHIV challenge. Sci. Transl. Med. 2015, 7, 270ra5. [Google Scholar] [CrossRef] [Green Version]
- Spreen, W.; Ford, S.L.; Chen, S.; Wilfret, D.; Margolis, D.; Gould, E.; Piscitelli, S. GSK1265744 pharmacokinetics in plasma and tissue after single-dose long-acting injectable administration in healthy subjects. J. Acquir. Immune Defic. Syndr. 2014, 67, 481–486. [Google Scholar] [CrossRef] [Green Version]
- Spreen, W.; Williams, P.; Margolis, D.; Ford, S.L.; Crauwels, H.; Lou, Y.; Gould, E.; Stevens, M.; Piscitelli, S. Pharmacokinetics, safety, and tolerability with repeat doses of GSK1265744 and rilpivirine (TMC278) long-acting nanosuspensions in healthy adults. J. Acquir. Immune Defic. Syndr. 2014, 67, 487–492. [Google Scholar] [CrossRef]
- Spreen, W.; Min, S.; Ford, S.L.; Chen, S.; Lou, Y.; Bomar, M.; St Clair, M.; Piscitelli, S.; Fujiwara, T. Pharmacokinetics, safety, and monotherapy antiviral activity of GSK1265744, an HIV integrase strand transfer inhibitor. HIV Clin. Trials 2013, 14, 192–203. [Google Scholar] [CrossRef]
- Whitfield, T.; Torkington, A.; van Halsema, C. Profile of cabotegravir and its potential in the treatment and prevention of HIV-1 infection: Evidence to date. HIV AIDS (Auckl.) 2016, 8, 157–164. [Google Scholar] [CrossRef] [Green Version]
- Patel, P.; Thiagarajah, S.; Ford, S.; Margolis, D.A.; Romach, B.H.; Baker, M.; Sutton, K.; Harrington, C.M.; Shaefer, M.S.; Spreen, W.; et al. Cabotegravir pharmacokinetic tail in pregnancy and neonatal outcomes. In Proceedings of the Conference on Retroviruses and Opportunistic Infections, Boston, MA, USA, 8–11 March 2020; Available online: https://www.croiconference.org/abstract/cabotegravir-pharmacokinetic-tail-in-pregnancy-and-neonatal-outcomes (accessed on 5 July 2022).
- Cabotegravir and Rilpivirine (cabenueva kit) [package insert]. Food and Drug Administration. 2021. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/212888s000lbl.pdf (accessed on 5 July 2022).
- Guidelines for the Use of Antiretroviral Agents in Pediatric HIV Infection. Integrase Inhibitors, Bictegravir. 2022. Available online: https://clinicalinfo.hiv.gov/en/guidelines/pediatric-arv/bictegravir (accessed on 18 July 2022).
- Tsiang, M.; Jones, G.S.; Goldsmith, J.; Mulato, A.; Hansen, D.; Kan, E.; Tsai, L.; Bam, R.A.; Stepan, G.; Stray, K.M.; et al. Antiviral Activity of Bictegravir (GS-9883), a Novel Potent HIV-1 Integrase Strand Transfer Inhibitor with an Improved Resistance Profile. Antimicrob. Agents Chemother. 2016, 60, 7086–7097. [Google Scholar] [CrossRef] [Green Version]
- Hassounah, S.A.; Alikhani, A.; Oliveira, M.; Bharaj, S.; Ibanescu, R.I.; Osman, N.; Xu, H.T.; Brenner, B.G.; Mesplède, T.; Wainberg, M.A. Antiviral Activity of Bictegravir and Cabotegravir against Integrase Inhibitor-Resistant SIVmac239 and HIV-1. Antimicrob. Agents Chemother. 2017, 61, e01695-17. [Google Scholar] [CrossRef] [Green Version]
- Biktarvy (Bictegravir, Emtricitabine, Tenofovir Alafenamide Fumarate) [Package Insert]. Food and Drug Administration. 2019. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/210251s006lbl.pdf (accessed on 5 July 2022).
- Bukkems, V.E.; Hidalgo-Tenorio, C.; Garcia, C.; van Hulzen, A.G.W.; Richel, O.; Burger, D.M.; Colbers, A.P. Pharmacokinetics of ANtiretroviral agents in HIV-infected pregNAnt women (PANNA) network. First pharmacokinetic data of bictegravir in pregnant women living with HIV. AIDS 2021, 35, 2405–2406. [Google Scholar] [CrossRef]
- Antiretroviral Pregnancy Registry Steering Committee. Antiretroviral Pregnancy Registry International Interim Report for 1 January 1989–31 January 2020; Registry Coordinating Center: Wilmington, NC, USA, 2020; Available online: http://www.apregistry.com (accessed on 5 July 2022).
- Gallant, J.E.; Thompson, M.; DeJesus, E.; Voskuhl, G.W.; Wei, X.; Zhang, H.; White, K.; Cheng, A.; Quirk, E.; Martin, H. Antiviral Activity, Safety, and Pharmacokinetics of Bictegravir as 10-Day Monotherapy in HIV-1-Infected Adults. J. Acquir. Immune Defic. Syndr. 2017, 75, 61–66. [Google Scholar] [CrossRef] [Green Version]
- Markowitz, M.; Frank, I.; Grant, R.M.; Mayer, K.H.; Elion, R.; Goldstein, D.; Fisher, C.; Sobieszczyk, M.E.; Gallant, J.E.; Van Tieu, H.; et al. Safety and tolerability of long-acting cabotegravir injections in HIV-uninfected men (ECLAIR): A multicentre, double-blind, randomised, placebo-controlled, phase 2a trial. Lancet HIV 2017, 4, e331–e340. [Google Scholar] [CrossRef]
- Landovitz, R.J.; Li, S.; Grinsztejn, B.; Dawood, H.; Liu, A.Y.; Magnus, M.; Hosseinipour, M.C.; Panchia, R.; Cottle, L.; Chau, G.; et al. Safety, tolerability, and pharmacokinetics of long-acting injectable cabotegravir in low-risk HIV-uninfected individuals: HPTN 077, a phase 2a randomized controlled trial. PLoS Med. 2018, 15, e1002690. [Google Scholar] [CrossRef] [Green Version]
- Orkin, C.; Arasteh, K.; Górgolas Hernández-Mora, M.; Pokrovsky, V.; Overton, E.T.; Girard, P.M.; Oka, S.; Walmsley, S.; Bettacchi, C.; Brinson, C.; et al. Long-Acting Cabotegravir and Rilpivirine after Oral Induction for HIV-1 Infection. N. Engl. J. Med. 2020, 382, 1124–1135. [Google Scholar] [CrossRef]
- Swindells, S.; Andrade-Villanueva, J.F.; Richmond, G.J.; Rizzardini, G.; Baumgarten, A.; Masiá, M.; Latiff, G.; Pokrovsky, V.; Bredeek, F.; Smith, G.; et al. Long-Acting Cabotegravir and Rilpivirine for Maintenance of HIV-1 Suppression. N. Engl. J. Med. 2020, 382, 1112–1123. [Google Scholar] [CrossRef]
- Overton, E.T.; Richmond, G.; Rizzardini, G.; Jaeger, H.; Orrell, C.; Nagimova, F.; Bredeek, F.; García Deltoro, M.; Swindells, S.; Andrade-Villanueva, J.F.; et al. Long-acting cabotegravir and rilpivirine dosed every 2 months in adults with HIV-1 infection (ATLAS-2M), 48-week results: A randomised, multicentre, open-label, phase 3b, non-inferiority study. Lancet 2021, 396, 1994–2005. [Google Scholar] [CrossRef]
- Gallant, J.; Lazzarin, A.; Mills, A.; Orkin, C.; Podzamczer, D.; Tebas, P.; Girard, P.M.; Brar, I.; Daar, E.S.; Wohl, D.; et al. Bictegravir, emtricitabine, and tenofovir alafenamide versus dolutegravir, abacavir, and lamivudine for initial treatment of HIV-1 infection (GS-US-380-1489): A double-blind, multicentre, phase 3, randomised controlled non-inferiority trial. Lancet 2017, 390, 2063–2072. [Google Scholar] [CrossRef]
- Sax, P.E.; Pozniak, A.; Montes, M.L.; Koenig, E.; DeJesus, E.; Stellbrink, H.J.; Antinori, A.; Workowski, K.; Slim, J.; Reynes, J.; et al. Coformulated bictegravir, emtricitabine, and tenofovir alafenamide versus dolutegravir with emtricitabine and tenofovir alafenamide, for initial treatment of HIV-1 infection (GS-US-380-1490): A randomised, double-blind, multicentre, phase 3, non-inferiority trial. Lancet 2017, 390, 2073–2082. [Google Scholar] [CrossRef]
- Molina, J.M.; Ward, D.; Brar, I.; Mills, A.; Stellbrink, H.J.; López-Cortés, L.; Ruane, P.; Podzamczer, D.; Brinson, C.; Custodio, J.; et al. Switching to fixed-dose bictegravir, emtricitabine, and tenofovir alafenamide from dolutegravir plus abacavir and lamivudine in virologically suppressed adults with HIV-1: 48 week results of a randomised, double-blind, multicentre, active-controlled, phase 3, non-inferiority trial. Lancet HIV 2018, 5, e357–e365. [Google Scholar] [CrossRef]
- Daar, E.S.; DeJesus, E.; Ruane, P.; Crofoot, G.; Oguchi, G.; Creticos, C.; Rockstroh, J.K.; Molina, J.M.; Koenig, E.; Liu, Y.P.; et al. Efficacy and safety of switching to fixed-dose bictegravir, emtricitabine, and tenofovir alafenamide from boosted protease inhibitor-based regimens in virologically suppressed adults with HIV-1: 48 week results of a randomised, open-label, multicentre, phase 3, non-inferiority trial. Lancet HIV 2018, 5, e347–e356. [Google Scholar] [CrossRef]
- Patel, P.; Ford, S.L.; Lou, Y.; Bakshi, K.; Tenorio, A.R.; Zhang, Z.; Pan, R.; Spreen, W. Effect of a High-Fat Meal on the Pharmacokinetics of the HIV Integrase Inhibitor Cabotegravir. Clin. Pharmacol. Drug Dev. 2019, 8, 443–448. [Google Scholar] [CrossRef]
- van der Galiën, R.; ter Heine, R.; Greupink, R.; Schalkwijk, S.J.; van Herwaarden, A.E.; Colbers, A.; Burger, D.M. Pharmacokinetics of HIV-Integrase Inhibitors During Pregnancy: Mechanisms, Clinical Implications and Knowledge Gaps. Clin. Pharmacokinet. 2019, 58, 309–323. [Google Scholar] [CrossRef] [Green Version]
- Pencolé, L.; Lê, M.P.; Bouchet-Crivat, F.; Duro, D.; Peytavin, G.; Mandelbrot, L. Placental transfer of the integrase strand inhibitors cabotegravir and bictegravir in the ex-vivo human cotyledon perfusion model. AIDS 2020, 34, 2145–2149. [Google Scholar] [CrossRef] [PubMed]
- Drug Interactions between Integrase Strand Transfer Inhibitors and Other Drugs. Available online: https://clinicalinfo.hiv.gov/en/guidelines/hiv-clinical-guidelines-adult-and-adolescent-arv/drug-interactions-between-integrase (accessed on 15 July 2022).
- Hodge, D.; Back, D.J.; Gibbons, S.; Khoo, S.H.; Marzolini, C. Pharmacokinetics and drug-drug interactions of long-acting intramuscular cabotegravir and rilpivirine. Clin. Pharmacokinet. 2021, 60, 835–853. [Google Scholar] [CrossRef] [PubMed]
Drug | Human Dosing Regimen | Equivalent Mouse Dose (1×) | Daily Mouse Dose Tested | Co-Admin with | Plasma Concentration (ng/mL) * | Amniotic Fluid (ng/mL) * | Amniotic: Maternal Plasma Ratio * | |
---|---|---|---|---|---|---|---|---|
1 h (Cmax) | 24 h (Cmin) | 1 h | 1 h | |||||
CAB | 30 mg | 0.5 mg/kg/day | 0.5 mg/kg (1×) | TDF 50 mg/kg + FTC 33.3 mg/kg | 912.8 (93.7) | 260.1 (15.5) | 44.9 (15.4) | 0.050 (0.022) |
1.5 mg/kg (3×) | 1269 (574) | 480.5 (88.2) | 59.9 (11.0) | 0.055 (0.033) | ||||
5 mg/kg (10×) | 3583 (1983) | 1306 (402) | 112.4 (33.6) | 0.034 (0.009) | ||||
BIC | 50 mg | 0.83 mg/kg/day | 0.83 mg/kg (1×) | TDF 50 mg/kg + FTC 33.3 mg/kg | 1758 (3.6) | 64.0 (43.3) | 36.9 (3.5) | 0.021 (0.002) |
4.15 mg/kg (5×) | 7713 (2300) | 365.5 (104.9) | 142 (80.7) | 0.021(0.017) | ||||
8.3 mg/kg (10×) | 12,789 (17.3) | 765.1 (3.4) | 462.8 (160.6) | 0.036 (0.013) | ||||
16.6 mg/kg (20×) | 14,749 (4456) | 2215 (752) | 1728 (966) | 0.112 (0.031) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohan, H.; Atkinson, K.; Watson, B.; Brumme, C.J.; Serghides, L. A Pharmacokinetic Dose-Optimization Study of Cabotegravir and Bictegravir in a Mouse Pregnancy Model. Pharmaceutics 2022, 14, 1761. https://doi.org/10.3390/pharmaceutics14091761
Mohan H, Atkinson K, Watson B, Brumme CJ, Serghides L. A Pharmacokinetic Dose-Optimization Study of Cabotegravir and Bictegravir in a Mouse Pregnancy Model. Pharmaceutics. 2022; 14(9):1761. https://doi.org/10.3390/pharmaceutics14091761
Chicago/Turabian StyleMohan, Haneesha, Kieran Atkinson, Birgit Watson, Chanson J. Brumme, and Lena Serghides. 2022. "A Pharmacokinetic Dose-Optimization Study of Cabotegravir and Bictegravir in a Mouse Pregnancy Model" Pharmaceutics 14, no. 9: 1761. https://doi.org/10.3390/pharmaceutics14091761
APA StyleMohan, H., Atkinson, K., Watson, B., Brumme, C. J., & Serghides, L. (2022). A Pharmacokinetic Dose-Optimization Study of Cabotegravir and Bictegravir in a Mouse Pregnancy Model. Pharmaceutics, 14(9), 1761. https://doi.org/10.3390/pharmaceutics14091761