Strategies for Advanced Oncolytic Virotherapy: Current Technology Innovations and Clinical Approaches
Abstract
:1. Introduction
2. Approved Oncolytic Viruses
3. Representative Oncolytic Viruses in Clinical Trials
Vector | Name | Indications | Interventions | Results | Phase | Registration Number |
---|---|---|---|---|---|---|
Adenovirus | CG0070 | Bladder cancer | ip. | N = 45, Overall 6-month CR: 47%, | II | NCT02365818 [36] |
nivolumab + ip. (neoadjuvant followed by radio cystecmy) | N = 15, ORR = 54% | I | NCT04610671 [35] | |||
pembrolizumab + ip. | N = 35, CRR = 87.5% (16 evaluable) | II | NCT04387461 [37] | |||
ONCOS-102 | Ovarian/Colorectal cancer | durvalumab + ip. | OC: N = 19, SD = 4; CRC: N = 36, SD = 9; | I/II | NCT02963831 [38] | |
OBP-301 | Hepatoma | it. | N = 20, SD = 7, PD = 11 | I | NCT02293850 [39] | |
DNX-2401 | Glioma | it. | N = 25, reduction ≥ 95% = 3 | I | NCT00805376 [40] | |
Pediatric Glioma | Infusion in cerebella followed by radiotherapy | N = 12, PR = 3, SD = 8 | I | NCT03178032 [85] | ||
Celyvir | Advanced Tumors | iv. | N = 16, SD = 2 | I/II | NCT01844661 [41] | |
VCN-01 | Pancreatic adenocarcinoma | iv. | N = 26, ORR 50% | I | NCT02045602 [42] | |
Enadenotucirev | Ovarian cancer | iv. + PTX/ip. | N = 38, ORR = 10%, * 6 discontinued treatments due to TRAE | I | NCT02028117 [44] | |
Epithelial solid tumors | iv. | N = 61 | I/II | NCT02028442 [43] | ||
Nsc-crad-s-pk7 | Glioma | ip. | N = 12, mPFS = 9.1 m, mOS = 18.4 m | I | NCT03072134 [45] | |
LOAd703 | Pancreatic cancer | it. + nab-PTX + GEM | N = 22, ORR = 44%, DCR = 94% (18 evaluable) | I/II | NCT02705196 [46] | |
Ad5-DS | Pancreatic cancer | it. | N = 11, PR = 2, SD = 2 (9 evaluable) | I | NCT02894944 [47] | |
Ad5-yCD/mutTK(SR39)rep-hIL-12 | Pancreatic cancer | it. | N = 12 | I | NCT03281382 [48] | |
CAN-2409 | NSCLC | it. + ICIs ± chemotherapy | N = 28, PR = 4, SD = 8 (14 evaluable) | II | NCT04495153 [49] | |
Herpes simplex virus-1 | VG161 | Advanced solid tumors | it. | N = 3 | I | ACTRN12620000244909 [50] |
HF-10 | Melanoma. | it.+ ipilimumab | N = 46, ORR = 41%, DCR = 68% | II | NCT02272855 [51] | |
Pancreatic cancer | it. + GEM + nab-PTX | N = 6, PR = 4, SD = 2 | I | NCT03252808 [52] | ||
RP1 | Skin cancer | it. + nivolumab | Melanoma: ORR = 13/36 (36.1%), Non-melanoma: ORR = 19/31 (61.3%) | II | NCT03767348 [53] | |
OrienX010 | Melanoma | it. | N = 26, ORR = 19.2%, DCR = 53.8% | Ib | CTR20140631/ CTR20150881 [34] | |
Melanoma with liver metastases | it. + toripalimab | N = 23, ORR = 15%, DCR = 50% (20 evaluable) | I | NCT04206358 [86] | ||
Seprehvir | Refractory extracranial solid cancers | iv. | N = 9, SD = 2 | I | NCT00931931 [54] | |
G207 | Pediatric Glioma | it. | N = 12, mOS = 12.2 m | I | NCT02457845 [55] | |
T3011 | Cutaneous/subcutaneous malignancies | it. | N = 8, SD = 5 (6 evaluable) | I/II | NCT04370587 [56] | |
rQNestin | Glioma | it. | N = 30, mOS = 13.25 m | I | NCT03152318 [57] | |
Herpes simplex virus-2 | OH2 | Advanced solid tumors | it./it.+ HX008 | OH2:PR = 2/54; OH2+ toripalimab: PR = 2/14 | I/II | NCT03866525 [58] |
Melanoma | it. | N = 35, iPR/PR = 5, SD = 6 | I/II | NCT04386967 [59] | ||
Reovirus | Pelareorep | Pancreatic adenocarcinoma | iv. + pembrolizumab + chemotherapy | N = 11, SD = 3, PR = 1(10 evaluable) | I | NCT02620423 [60] |
Melanoma | iv. + CBP + PTX | N = 14, ORR = 21%, mPFS = 5.2 m, mOS = 10.9 m | II | NCT00984464 [74] | ||
Breast cancer | iv. + PTX vs. PTX | N = 36 vs. 38, mPFS = 3.78 m vs. 3.38 m, mOS = 17.4 m vs. 10.4 m | II | NCT01656538 [76] | ||
Vaccinia virus | TG4023 | Liver tumor | it. + flucytosine | N = 16 | I | NCT00978107 [61] |
GL-ONC1 | Ovarian cancer | ip. | N = 11 | I/II | NCT02759588 [62] | |
Pexa-Vec | Colorectal cancer | iv. + durvalumab/iv. + durvalumab + tremelimumab | N = 16, PR = 1(14 evaluable) | I/II | NCT03206073 [63] | |
Coxsackie virus | CVA21 | Bladder Cancer | ip. | N = 15, CR = 1 | I | NCT02316171 [64] |
Melanoma | it. | N = 57, 6-months PFS rate = 38.6%, DRR = 21.1%, ORR = 28.1% | II | NCT01227551/NCT01636882 [71] | ||
it. + ipilimumab | N = 13, ORR = 38.0%, DCR = 88%(8 evaluable) | I | NCT02307149 [65] | |||
measles virus | MV-NIS | Urothelial carcinoma | iv. | N = 8, pCR = 2 | I | NCT03171493 [66] |
Poliovirus | PVSRIPO | Melanoma | it. | N = 12, ORR = 33%, pCR = 2 | I | NCT03712358 [67] |
Glioblastoma | it. | N = 61, a plateau of 21% at 24 months | I | NCT01491893 [68] | ||
Parvovirus | ParvOryx | Pancreatic Adenocarcinoma | iv. | N = 7, PR = 1 | I/II | NCT02653313 [69] |
Vesicular stomatitis virus | VSV-IFNβ-NIS | Refractory solid tumors | iv. | N = 18 | I | NCT02923466 [70] |
4. Genome-Engineering Approaches to Improve Therapeutic Effects of Oncolytic Viruses
4.1. Introducing Immune Activating Cytokines/Chemokines Directly
4.2. Introducing Elements to Improve Specific Recognition and Immunity against Tumors
4.3. Introducing Tumor Suppressor Genes Associated with Tumor Cell Apoptosis
4.4. Introducing Functional Elements Being Related to Other Antitumor Therapies
5. Innovations for Oncolytic Viruses Delivery
5.1. Chemical and Physical Methods Assisting the Delivery
5.2. Biological Vehicles to Deliver Oncolytic Viruses
6. Challenges and Perspectives
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Larson, C.; Oronsky, B.; Scicinski, J.; Fanger, G.R.; Stirn, M.; Oronsky, A.; Reid, T.R. Going Viral: A Review of Replication-Selective Oncolytic Adenoviruses. Oncotarget 2015, 6, 19976–19989. [Google Scholar] [CrossRef]
- Fukuhara, H.; Ino, Y.; Todo, T. Oncolytic Virus Therapy: A New Era of Cancer Treatment at Dawn. Cancer Sci. 2016, 107, 1373–1379. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Quintanilla, J.; Seah, I.; Chua, M.; Shah, K. Oncolytic Viruses: Overcoming Translational Challenges. J. Clin. Investig. 2019, 129, 1407–1418. [Google Scholar] [CrossRef] [PubMed]
- Alberts, P.; Tilgase, A.; Rasa, A.; Bandere, K.; Venskus, D. The Advent of Oncolytic Virotherapy in Oncology: The Rigvir® Story. Eur. J. Pharmacol. 2018, 837, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Liang, M. Oncorine, the World First Oncolytic Virus Medicine and Its Update in China. Curr. Cancer Drug Targets 2018, 18, 171–176. [Google Scholar] [CrossRef]
- Raman, S.S.; Hecht, J.R.; Chan, E. Talimogene Laherparepvec: Review of Its Mechanism of Action and Clinical Efficacy and Safety. Immunotherapy 2019, 11, 705–723. [Google Scholar] [CrossRef]
- Russell, S.J.; Bell, J.C.; Engeland, C.E.; McFadden, G. Advances in Oncolytic Virotherapy. Commun. Med. 2022, 2, 33. [Google Scholar] [CrossRef]
- Tang, C.; Li, L.; Mo, T.; Na, J.; Qian, Z.; Fan, D.; Sun, X.; Yao, M.; Pan, L.; Huang, Y.; et al. Oncolytic Viral Vectors in the Era of Diversified Cancer Therapy: From Preclinical to Clinical. Clin. Transl. Oncol. 2022, 24, 1682–1701. [Google Scholar] [CrossRef]
- Santos Apolonio, J.; Lima de Souza Gonçalves, V.; Cordeiro Santos, M.L.; Silva Luz, M.; Silva Souza, J.V.; Rocha Pinheiro, S.L.; de Souza, W.R.; Sande Loureiro, M.; de Melo, F.F. Oncolytic Virus Therapy in Cancer: A Current Review. World J. Virol. 2021, 10, 229–255. [Google Scholar] [CrossRef]
- Zheng, M.; Huang, J.; Tong, A.; Yang, H. Oncolytic Viruses for Cancer Therapy: Barriers and Recent Advances. Mol. Ther.-Oncolytics 2019, 15, 234–247. [Google Scholar] [CrossRef] [Green Version]
- Martin, N.T.; Bell, J.C. Oncolytic Virus Combination Therapy: Killing One Bird with Two Stones. Mol. Ther. 2018, 26, 1414–1422. [Google Scholar] [CrossRef] [PubMed]
- Park, A.K.; Fong, Y.; Kim, S.-I.; Yang, J.; Murad, J.P.; Lu, J.; Jeang, B.; Chang, W.-C.; Chen, N.G.; Thomas, S.H.; et al. Effective Combination Immunotherapy Using Oncolytic Viruses to Deliver CAR Targets to Solid Tumors. Sci. Transl. Med. 2020, 12, eaaz1863. [Google Scholar] [CrossRef] [PubMed]
- Xia, Z.-J.; Chang, J.-H.; Zhang, L.; Jiang, W.-Q.; Guan, Z.-Z.; Liu, J.-W.; Zhang, Y.; Hu, X.-H.; Wu, G.-H.; Wang, H.-Q.; et al. Phase III randomized clinical trial of intratumoral injection of E1B gene-deleted adenovirus (H101) combined with cisplatin-based chemotherapy in treating squamous cell cancer of head and neck or esophagus. Ai Zheng 2004, 23, 1666–1670. [Google Scholar]
- Lin, X.-J.; Li, Q.-J.; Lao, X.-M.; Yang, H.; Li, S.-P. Transarterial Injection of Recombinant Human Type-5 Adenovirus H101 in Combination with Transarterial Chemoembolization (TACE) Improves Overall and Progressive-Free Survival in Unresectable Hepatocellular Carcinoma (HCC). BMC Cancer 2015, 15, 707. [Google Scholar] [CrossRef] [PubMed]
- Andtbacka, R.H.I.; Kaufman, H.L.; Collichio, F.; Amatruda, T.; Senzer, N.; Chesney, J.; Delman, K.A.; Spitler, L.E.; Puzanov, I.; Agarwala, S.S.; et al. Talimogene Laherparepvec Improves Durable Response Rate in Patients With Advanced Melanoma. J. Clin. Oncol. 2015, 33, 2780–2788. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.L.; Robinson, M.; Han, Z.-Q.; Branston, R.H.; English, C.; Reay, P.; McGrath, Y.; Thomas, S.K.; Thornton, M.; Bullock, P.; et al. ICP34.5 Deleted Herpes Simplex Virus with Enhanced Oncolytic, Immune Stimulating, and Anti-Tumour Properties. Gene Ther. 2003, 10, 292–303. [Google Scholar] [CrossRef] [PubMed]
- Wilcox, D.R.; Longnecker, R. The Herpes Simplex Virus Neurovirulence Factor Γ34.5: Revealing Virus-Host Interactions. PLoS Pathog. 2016, 12, e1005449. [Google Scholar] [CrossRef]
- Dummer, R.; Gyorki, D.E.; Hyngstrom, J.; Berger, A.C.; Conry, R.; Demidov, L.; Sharma, A.; Treichel, S.A.; Radcliffe, H.; Gorski, K.S.; et al. Neoadjuvant Talimogene Laherparepvec Plus Surgery Versus Surgery Alone for Resectable Stage IIIB-IVM1a Melanoma: A Randomized, Open-Label, Phase 2 Trial. Nat. Med. 2021, 27, 1789–1796. [Google Scholar] [CrossRef] [PubMed]
- Galon, J.; Bruni, D. Approaches to Treat Immune Hot, Altered and Cold Tumours with Combination Immunotherapies. Nat. Rev. Drug Discov. 2019, 18, 197–218. [Google Scholar] [CrossRef]
- Ribas, A.; Dummer, R.; Puzanov, I.; VanderWalde, A.; Andtbacka, R.H.I.; Michielin, O.; Olszanski, A.J.; Malvehy, J.; Cebon, J.; Fernandez, E.; et al. Oncolytic Virotherapy Promotes Intratumoral T Cell Infiltration and Improves Anti-PD-1 Immunotherapy. Cell 2017, 170, 1109–1119.e10. [Google Scholar] [CrossRef]
- Chesney, J.; Puzanov, I.; Collichio, F.; Singh, P.; Milhem, M.M.; Glaspy, J.; Hamid, O.; Ross, M.; Friedlander, P.; Garbe, C.; et al. Randomized, Open-Label Phase II Study Evaluating the Efficacy and Safety of Talimogene Laherparepvec in Combination With Ipilimumab Versus Ipilimumab Alone in Patients With Advanced, Unresectable Melanoma. J. Clin. Oncol. 2018, 36, 1658–1667. [Google Scholar] [CrossRef] [PubMed]
- Ribas, A.; Chesney, J.; Long, G.V.; Kirkwood, J.M.; Dummer, R.; Puzanov, I.; Hoeller, C.; Gajewski, T.F.; Gutzmer, R.; Rutkowski, P.; et al. 1037O MASTERKEY-265: A Phase III, Randomized, Placebo (Pbo)-Controlled Study of Talimogene Laherparepvec (T) plus Pembrolizumab (P) for Unresectable Stage IIIB–IVM1c Melanoma (MEL). Ann. Oncol. 2021, 32, S868–S869. [Google Scholar] [CrossRef]
- Goldmacher, G.V.; Khilnani, A.D.; Andtbacka, R.H.I.; Luke, J.J.; Hodi, F.S.; Marabelle, A.; Harrington, K.; Perrone, A.; Tse, A.; Madoff, D.C.; et al. Response Criteria for Intratumoral Immunotherapy in Solid Tumors: ItRECIST. J. Clin. Oncol. 2020, 38, 2667–2676. [Google Scholar] [CrossRef]
- Pascual, T.; Cejalvo, J.M.; Oliveira, M.; Vidal, M.; Vega, E.; Ganau, S.; Julve, A.; Zamora, E.; Miranda, I.; Delgado, A.; et al. SOLTI-1503 PROMETEO TRIAL: Combination of Talimogene Laherparepvec with Atezolizumab in Early Breast Cancer. Future Oncol. 2020, 16, 1801–1813. [Google Scholar] [CrossRef]
- Kelly, C.M.; Antonescu, C.R.; Bowler, T.; Munhoz, R.; Chi, P.; Dickson, M.A.; Gounder, M.M.; Keohan, M.L.; Movva, S.; Dholakia, R.; et al. Objective Response Rate Among Patients With Locally Advanced or Metastatic Sarcoma Treated With Talimogene Laherparepvec in Combination With Pembrolizumab: A Phase 2 Clinical Trial. JAMA Oncol. 2020, 6, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Harrington, K.J.; Kong, A.; Mach, N.; Chesney, J.A.; Fernandez, B.C.; Rischin, D.; Cohen, E.E.W.; Radcliffe, H.-S.; Gumuscu, B.; Cheng, J.; et al. Talimogene Laherparepvec and Pembrolizumab in Recurrent or Metastatic Squamous Cell Carcinoma of the Head and Neck (MASTERKEY-232): A Multicenter, Phase 1b Study. Clin. Cancer Res. 2020, 26, 5153–5161. [Google Scholar] [CrossRef]
- Mineta, T.; Rabkin, S.D.; Yazaki, T.; Hunter, W.D.; Martuza, R.L. Attenuated Multi-Mutated Herpes Simplex Virus-1 for the Treatment of Malignant Gliomas. Nat. Med. 1995, 1, 938–943. [Google Scholar] [CrossRef]
- Goldstein, D.J.; Weller, S.K. An ICP6::LacZ Insertional Mutagen Is Used to Demonstrate That the UL52 Gene of Herpes Simplex Virus Type 1 Is Required for Virus Growth and DNA Synthesis. J. Virol. 1988, 62, 2970–2977. [Google Scholar] [CrossRef]
- Monga, V.; Miller, B.J.; Tanas, M.; Boukhar, S.; Allen, B.; Anderson, C.; Stephens, L.; Hartwig, S.; Varga, S.; Houtman, J.; et al. Intratumoral Talimogene Laherparepvec Injection with Concurrent Preoperative Radiation in Patients with Locally Advanced Soft-Tissue Sarcoma of the Trunk and Extremities: Phase IB/II Trial. J. Immunother. Cancer 2021, 9, e003119. [Google Scholar] [CrossRef]
- Soliman, H.; Hogue, D.; Han, H.; Mooney, B.; Costa, R.; Lee, M.C.; Niell, B.; Williams, A.; Chau, A.; Falcon, S.; et al. A Phase I Trial of Talimogene Laherparepvec in Combination with Neoadjuvant Chemotherapy for the Treatment of Nonmetastatic Triple-Negative Breast Cancer. Clin. Cancer Res. 2021, 27, 1012–1018. [Google Scholar] [CrossRef]
- Todo, T.; Ino, Y.; Ohtsu, H.; Shibahara, J.; Tanaka, M. A Phase I/II Study of Triple-Mutated Oncolytic Herpes Virus G47∆ in Patients with Progressive Glioblastoma. Nat. Commun. 2022, 13, 4119. [Google Scholar] [CrossRef] [PubMed]
- Sugawara, K.; Iwai, M.; Ito, H.; Tanaka, M.; Seto, Y.; Todo, T. Oncolytic Herpes Virus G47Δ Works Synergistically with CTLA-4 Inhibition via Dynamic Intratumoral Immune Modulation. Mol. Ther. Oncolytics 2021, 22, 129–142. [Google Scholar] [CrossRef]
- Todo, T.; Ito, H.; Ino, Y.; Ohtsu, H.; Ota, Y.; Shibahara, J.; Tanaka, M. Intratumoral Oncolytic Herpes Virus G47∆ for Residual or Recurrent Glioblastoma: A Phase 2 Trial. Nat. Med. 2022, 28, 1630–1639. [Google Scholar] [CrossRef] [PubMed]
- Cui, C.; Wang, X.; Lian, B.; Ji, Q.; Zhou, L.; Chi, Z.; Si, L.; Sheng, X.; Kong, Y.; Yu, J.; et al. OrienX010, an Oncolytic Virus, in Patients with Unresectable Stage IIIC–IV Melanoma: A Phase Ib Study. J. Immunother. Cancer 2022, 10, e004307. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Spiess, P.E.; Sexton, W.J.; Gilbert, S.M.; Poch, M.A.; Pow-Sang, J.M.; Zhang, J.; Dhillon, J.; Thomas, K.; Borjas, G.; et al. Preliminary Results from Phase Ib/II Neoadjuvant CG0070 and Nivolumab (N) for Cisplatin (C)-Ineligible Muscle Invasive Bladder Cancer (MIBC). J. Clin. Oncol. 2022, 40, 4574. [Google Scholar] [CrossRef]
- Packiam, V.T.; Lamm, D.L.; Barocas, D.A.; Trainer, A.; Fand, B.; Davis, R.L.; Clark, W.; Kroeger, M.; Dumbadze, I.; Chamie, K.; et al. An Open Label, Single-Arm, Phase II Multicenter Study of the Safety and Efficacy of CG0070 Oncolytic Vector Regimen in Patients with BCG-Unresponsive Non-Muscle-Invasive Bladder Cancer: Interim Results. Urol. Oncol. 2018, 36, 440–447. [Google Scholar] [CrossRef]
- Li, R.; Steinberg, G.; Lamm, D.; Uchio, E.; Packiam, V.; Kamat, A.; Chisamore, M.; McAdory, J.; Grandi, P.; Kim, J.-H.; et al. 955 CORE1: Phase 2, Single Arm Study of CG0070 Combined with Pembrolizumab in Patients with Non Muscle Invasive Bladder Cancer (NMIBC) Unresponsive to Bacillus Calmette-Guerin (BCG). J. Immunother. Cancer 2021, 9, A1005. [Google Scholar] [CrossRef]
- Zamarin, D.; Odunsi, K.; Zsiros, E.; Slomovitz, B.M.; Pimentel, A.; Duska, L.R.; Reilley, M.; Nemunaitis, J.J.; Hamouda, D.M.; Patel, H.; et al. Study to Evaluate Intraperitoneal (IP) ONCOS-102 with Systemic Durvalumab in Patients with Peritoneal Disease Who Have Epithelial Ovarian (OC) or Metastatic Colorectal Cancer (CRC): Phase 2 Results 1. J. Clin. Oncol. 2022, 40, 2600. [Google Scholar] [CrossRef]
- Heo, J.; Liang, J.-D.; Kim, C.W.; Woo, H.Y.; Shih, I.-L.; Su, T.-H.; Lin, Z.-Z.; Chang, S.; Urata, Y.; Chen, P.-J. Safety and Dose-Escalation Study of a Targeted Oncolytic Adenovirus, Suratadenoturev (OBP-301), in Patients with Refractory Advanced Liver Cancer: Phase I Clinical Trial. J. Clin. Oncol. 2022, 40, 459. [Google Scholar] [CrossRef]
- Lang, F.F.; Conrad, C.; Gomez-Manzano, C.; Yung, W.K.A.; Sawaya, R.; Weinberg, J.S.; Prabhu, S.S.; Rao, G.; Fuller, G.N.; Aldape, K.D.; et al. Phase I Study of DNX-2401 (Delta-24-RGD) Oncolytic Adenovirus: Replication and Immunotherapeutic Effects in Recurrent Malignant Glioma. J. Clin. Oncol. 2018, 36, 1419–1427. [Google Scholar] [CrossRef]
- Ruano, D.; López-Martín, J.A.; Moreno, L.; Lassaletta, Á.; Bautista, F.; Andión, M.; Hernández, C.; González-Murillo, Á.; Melen, G.; Alemany, R.; et al. First-in-Human, First-in-Child Trial of Autologous MSCs Carrying the Oncolytic Virus Icovir-5 in Patients with Advanced Tumors. Mol. Ther. 2020, 28, 1033–1042. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Carbonero, R.; Bazan-Peregrino, M.; Gil-Martín, M.; Álvarez, R.; Macarulla, T.; Riesco-Martinez, M.C.; Verdaguer, H.; Guillén-Ponce, C.; Farrera-Sal, M.; Moreno, R.; et al. Phase I, Multicenter, Open-Label Study of Intravenous VCN-01 Oncolytic Adenovirus with or without Nab-Paclitaxel plus Gemcitabine in Patients with Advanced Solid Tumors. J. Immunother. Cancer 2022, 10, e003255. [Google Scholar] [CrossRef] [PubMed]
- Machiels, J.-P.; Salazar, R.; Rottey, S.; Duran, I.; Dirix, L.; Geboes, K.; Wilkinson-Blanc, C.; Pover, G.; Alvis, S.; Champion, B.; et al. A Phase 1 Dose Escalation Study of the Oncolytic Adenovirus Enadenotucirev, Administered Intravenously to Patients with Epithelial Solid Tumors (EVOLVE). J. Immunother. Cancer 2019, 7, 20. [Google Scholar] [CrossRef] [PubMed]
- Moreno, V.; Barretina-Ginesta, M.-P.; García-Donas, J.; Jayson, G.C.; Roxburgh, P.; Vázquez, R.M.; Michael, A.; Antón-Torres, A.; Brown, R.; Krige, D.; et al. Safety and Efficacy of the Tumor-Selective Adenovirus Enadenotucirev with or without Paclitaxel in Platinum-Resistant Ovarian Cancer: A Phase 1 Clinical Trial. J. Immunother. Cancer 2021, 9, e003645. [Google Scholar] [CrossRef] [PubMed]
- Fares, J.; Ahmed, A.U.; Ulasov, I.V.; Sonabend, A.M.; Miska, J.; Lee-Chang, C.; Balyasnikova, I.V.; Chandler, J.P.; Portnow, J.; Tate, M.C.; et al. Neural Stem Cell Delivery of an Oncolytic Adenovirus in Newly Diagnosed Malignant Glioma: A First-in-Human, Phase 1, Dose-Escalation Trial. Lancet Oncol. 2021, 22, 1103–1114. [Google Scholar] [CrossRef]
- Musher, B.L.; Smaglo, B.G.; Abidi, W.; Othman, M.; Patel, K.; Jawaid, S.; Jing, J.; Brisco, A.; Wenthe, J.; Eriksson, E.; et al. A Phase I/II Study of LOAd703, a TMZ-CD40L/4-1BBL-Armed Oncolytic Adenovirus, Combined with Nab-Paclitaxel and Gemcitabine in Advanced Pancreatic Cancer. J. Clin. Oncol. 2022, 40, 4138. [Google Scholar] [CrossRef]
- Lee, J.-C.; Shin, D.W.; Yang, S.Y.; Kim, M.J.; Jung, J.H.; Kang, J.; Kim, J.; Hwang, J.-H. Tolerability and Safety of a Replication-Competent Adenovirus-Mediated Double Suicide Gene Therapy (Ad5-YCD/MutTK(SR39)Rep-ADP) with Chemotherapy in Locally Advanced Pancreatic Cancer: Phase 1 Trial. J. Clin. Oncol. 2019, 37, e15761. [Google Scholar] [CrossRef]
- Barton, K.N.; Siddiqui, F.; Pompa, R.; Freytag, S.O.; Khan, G.; Dobrosotskaya, I.; Ajlouni, M.; Zhang, Y.; Cheng, J.; Movsas, B.; et al. Phase I Trial of Oncolytic Adenovirus-Mediated Cytotoxic and Interleukin-12 Gene Therapy for the Treatment of Metastatic Pancreatic Cancer. Mol. Ther. Oncolytics 2021, 20, 94–104. [Google Scholar] [CrossRef]
- Aggarwal, C.; Haas, A.; Gordon, S.W.; Mehra, R.; Lee, P.M.; Bestvina, C.M.; Maldonado, F.; Velcheti, V.; Herbst, R.S.; Bell, S.D.; et al. First Report of Safety/Tolerability and Preliminary Antitumor Activity of CAN-2409 in Inadequate Responders to Immune Checkpoint Inhibitors for Stage III/IV NSCLC. J. Clin. Oncol. 2022, 40, 9037. [Google Scholar] [CrossRef]
- Zhao, R.; Cosman, R.; Aggarwal, N.; O’Grady, A.; Hsu, E.; Ardolino, L.; Xia, H.; Chi, Y.; Qui, S.; Murad, Y.; et al. Initial Results from a First in Human Trial Incorporating Accelerated Dose Titration of a Novel Immune Stimulating Oncolytic Virus—VG161. J. Clin. Oncol. 2021, 39, e14574. [Google Scholar] [CrossRef]
- Andtbacka, R.H.I.; Ross, M.I.; Agarwala, S.S.; Taylor, M.H.; Vetto, J.T.; Neves, R.I.; Daud, A.; Khong, H.T.; Ungerleider, R.S.; Tanaka, M. Efficacy and Genetic Analysis for a Phase II Multicenter Trial of HF10, a Replication-Competent HSV-1 Oncolytic Immunotherapy, and Ipilimumab Combination Treatment in Patients with Stage IIIb-IV Unresectable or Metastatic Melanoma. J. Clin. Oncol. 2018, 36, 9541. [Google Scholar] [CrossRef]
- Hashimoto, Y.; Ueno, M.; Tanaka, M.; Ikeda, M. Results from Phase I Study of the Oncolytic Viral Immunotherapy Agent Canerpaturev (C-REV) in Combination with Gemcitabine plus Nab-Paclitaxel for Unresectable Pancreatic Cancer. J. Clin. Oncol. 2019, 37, 325. [Google Scholar] [CrossRef]
- Milhem, M.M.; Vanderwalde, A.M.; Bowles, T.L.; Sacco, J.J.; Niu, J.; Tsai, K.K.; Chesney, J.A.; Chmielowski, B.; Samson, A.; Rhodes, T.D.; et al. Updated Results from the Skin Cancer Cohorts from an Ongoing Phase 1/2 Multicohort Study of RP1, an Enhanced Potency Oncolytic HSV, Combined with Nivolumab (IGNYTE). J. Clin. Oncol. 2022, 40, 9553. [Google Scholar] [CrossRef]
- Streby, K.A.; Currier, M.A.; Triplet, M.; Ott, K.; Dishman, D.J.; Vaughan, M.R.; Ranalli, M.A.; Setty, B.; Skeens, M.A.; Whiteside, S.; et al. First-in-Human Intravenous Seprehvir in Young Cancer Patients: A Phase 1 Clinical Trial. Mol. Ther. 2019, 27, 1930–1938. [Google Scholar] [CrossRef]
- Friedman, G.K.; Johnston, J.M.; Bag, A.K.; Bernstock, J.D.; Li, R.; Aban, I.; Kachurak, K.; Nan, L.; Kang, K.-D.; Totsch, S.; et al. Oncolytic HSV-1 G207 Immunovirotherapy for Pediatric High-Grade Gliomas. N. Engl. J. Med. 2021, 384, 1613–1622. [Google Scholar] [CrossRef]
- Haydon, A.M.; Kichenadasse, G.; Kirkwood, J.M.; Kaufman, H.E.; Buchbinder, E.I.; Ganju, V.; Barve, M.A.; Jiang, H.; Xu, H.; Zhou, X.; et al. A Phase 1, Open-Label, Dose Escalation Study of the Safety and Tolerability of T3011 in Advanced Cutaneous or Subcutaneous Malignancies. J. Clin. Oncol. 2021, 39, 2526. [Google Scholar] [CrossRef]
- Chiocca, E.A.; Solomon, I.; Nakashima, H.; Lawler, S.E.; Triggs, D.; Zhang, A.; Grant, J.; Reardon, D.A.; Wen, P.Y.; Lee, E.Q.; et al. First-in-Human CAN-3110 (ICP-34.5 Expressing HSV-1 Oncolytic Virus) in Patients with Recurrent High-Grade Glioma. J. Clin. Oncol. 2021, 39, 2009. [Google Scholar] [CrossRef]
- Zhang, B.; Huang, J.; Tang, J.; Hu, S.; Luo, S.; Luo, Z.; Zhou, F.; Tan, S.; Ying, J.; Chang, Q.; et al. Intratumoral OH2, an Oncolytic Herpes Simplex Virus 2, in Patients with Advanced Solid Tumors: A Multicenter, Phase I/II Clinical Trial. J. Immunother. Cancer 2021, 9, e002224. [Google Scholar] [CrossRef]
- Wang, X.; Cui, C.; Lian, B.; Si, L.; Chi, Z.; Sheng, X.; Kong, Y.; Hu, H.; Gu, X.; Li, C.; et al. A Phase Ia/Ib Study Evaluating the Safety and Efficacy of Intratumorally Administrated OH2, an Oncolytic Herpes Simplex Virus 2, in Unresected Stage IIIC to IV Melanoma Patients. J. Clin. Oncol. 2022, 40, e21537. [Google Scholar] [CrossRef]
- Mahalingam, D.; Chen, S.; Xie, P.; Kalyan, A.; Kircher, S.M.; Kocherginsky, M.; Xu, J.; Maurer, V.; de Viveiros, P.A.H.; Vagia, E.; et al. Treatment with Pembrolizumab in Combination with the Oncolytic Virus Pelareorep Promotes Anti-Tumor Immunity in Patients with Advanced Pancreatic Adenocarcinoma. J. Clin. Oncol. 2021, 39, 4144. [Google Scholar] [CrossRef]
- Husseini, F.; Delord, J.-P.; Fournel-Federico, C.; Guitton, J.; Erbs, P.; Homerin, M.; Halluard, C.; Jemming, C.; Orange, C.; Limacher, J.-M.; et al. Vectorized Gene Therapy of Liver Tumors: Proof-of-Concept of TG4023 (MVA-FCU1) in Combination with Flucytosine. Ann. Oncol. 2017, 28, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Holloway, R.W.; Kendrick, J.E.; Stephens, A.; Kennard, J.; Burt, J.; LeBlanc, J.; Sellers, K.; Smith, J.; Coakley, S. Phase 1b Study of Oncolytic Vaccinia Virus GL-ONC1 in Recurrent Ovarian Cancer (ROC). J. Clin. Oncol. 2018, 36, 5577. [Google Scholar] [CrossRef]
- Morelli, M.P.; Xie, C.; Brar, G.; Floudas, C.S.; Fioravanti, S.; Walker, M.; Mabry-Hrones, D.; Greten, T.F. A Phase I/II Study of Pexa-Vec Oncolytic Virus in Combination with Immune Checkpoint Inhibition in Refractory Colorectal Cancer: Safety Report. J. Clin. Oncol. 2019, 37, 646. [Google Scholar] [CrossRef]
- Annels, N.E.; Mansfield, D.; Arif, M.; Ballesteros-Merino, C.; Simpson, G.R.; Denyer, M.; Sandhu, S.S.; Melcher, A.A.; Harrington, K.J.; Davies, B.; et al. Phase I Trial of an ICAM-1-Targeted Immunotherapeutic-Coxsackievirus A21 (CVA21) as an Oncolytic Agent Against Non Muscle-Invasive Bladder Cancer. Clin. Cancer Res. 2019, 25, 5818–5831. [Google Scholar] [CrossRef] [PubMed]
- Curti, B.D.; Richards, J.M.; Hallmeyer, S.; Faries, M.B.; Andtbacka, R.H.I.; Daniels, G.A.; Grose, M.; Shafren, D. Activity of a Novel Immunotherapy Combination of Intralesional Coxsackievirus A21 and Systemic Ipilimumab in Advanced Melanoma Patients Previously Treated with Anti-PD1 Blockade Therapy. J. Clin. Oncol. 2017, 35, 3014. [Google Scholar] [CrossRef]
- Naik, S.; Leibovich, B.C.; Miest, T.; Bardot, S.; Young, P.R.; Boorjian, S.A.; Gonzalgo, M.L.; Herrera Hernandez, L.; Tollefson, M.K.; Karnes, J.; et al. Safety and Efficacy of Neoadjuvant Intravesical Oncolytic MV-NIS in Patients with Urothelial Carcinoma. J. Clin. Oncol. 2022, 40, 509. [Google Scholar] [CrossRef]
- Beasley, G.M.; Nair, S.K.; Farrow, N.E.; Landa, K.; Selim, M.A.; Wiggs, C.A.; Jung, S.-H.; Bigner, D.D.; True Kelly, A.; Gromeier, M.; et al. Phase I Trial of Intratumoral PVSRIPO in Patients with Unresectable, Treatment-Refractory Melanoma. J. Immunother. Cancer 2021, 9, e002203. [Google Scholar] [CrossRef]
- Desjardins, A.; Gromeier, M.; Herndon, J.E.; Beaubier, N.; Bolognesi, D.P.; Friedman, A.H.; Friedman, H.S.; McSherry, F.; Muscat, A.M.; Nair, S.; et al. Recurrent Glioblastoma Treated with Recombinant Poliovirus. N. Engl. J. Med. 2018, 379, 150–161. [Google Scholar] [CrossRef]
- Hajda, J.; Leuchs, B.; Angelova, A.L.; Frehtman, V.; Rommelaere, J.; Mertens, M.; Pilz, M.; Kieser, M.; Krebs, O.; Dahm, M.; et al. Phase 2 Trial of Oncolytic H-1 Parvovirus Therapy Shows Safety and Signs of Immune System Activation in Patients With Metastatic Pancreatic Ductal Adenocarcinoma. Clin. Cancer Res. 2021, 27, 5546–5556. [Google Scholar] [CrossRef]
- Merchan, J.R.; Patel, M.; Cripe, T.P.; Old, M.O.; Strauss, J.F.; Thomassen, A.; Diaz, R.M.; Peng, K.W.; Russell, S.J.; Russell, L.; et al. Relationship of Infusion Duration to Safety, Efficacy, and Pharmacodynamics (PD): Second Part of a Phase I-II Study Using VSV-IFNβ-NIS (VV1) Oncolytic Virus in Patients with Refractory Solid Tumors. J. Clin. Oncol. 2020, 38, 3090. [Google Scholar] [CrossRef]
- Andtbacka, R.H.I.; Curti, B.; Daniels, G.A.; Hallmeyer, S.; Whitman, E.D.; Lutzky, J.; Spitler, L.E.; Zhou, K.; Bommareddy, P.K.; Grose, M.; et al. Clinical Responses of Oncolytic Coxsackievirus A21 (V937) in Patients With Unresectable Melanoma. J. Clin. Oncol. 2021, 39, 3829–3838. [Google Scholar] [CrossRef] [PubMed]
- Pol, J.G.; Workenhe, S.T.; Konda, P.; Gujar, S.; Kroemer, G. Cytokines in Oncolytic Virotherapy. Cytokine Growth Factor Rev. 2020, 56, 4–27. [Google Scholar] [CrossRef] [PubMed]
- Mahalingam, D.; Wilkinson, G.A.; Eng, K.H.; Fields, P.; Raber, P.; Moseley, J.L.; Cheetham, K.; Coffey, M.; Nuovo, G.; Kalinski, P.; et al. Pembrolizumab in Combination with the Oncolytic Virus Pelareorep and Chemotherapy in Patients with Advanced Pancreatic Adenocarcinoma: A Phase Ib Study. Clin. Cancer Res. 2020, 26, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Mahalingam, D.; Fountzilas, C.; Moseley, J.; Noronha, N.; Tran, H.; Chakrabarty, R.; Selvaggi, G.; Coffey, M.; Thompson, B.; Sarantopoulos, J. A Phase II Study of REOLYSIN® (Pelareorep) in Combination with Carboplatin and Paclitaxel for Patients with Advanced Malignant Melanoma. Cancer Chemother. Pharmacol. 2017, 79, 697–703. [Google Scholar] [CrossRef]
- Jonker, D.J.; Tang, P.A.; Kennecke, H.; Welch, S.A.; Cripps, M.C.; Asmis, T.; Chalchal, H.; Tomiak, A.; Lim, H.; Ko, Y.-J.; et al. A Randomized Phase II Study of FOLFOX6/Bevacizumab with or without Pelareorep in Patients With Metastatic Colorectal Cancer: IND.210, a Canadian Cancer Trials Group Trial. Clin. Colorectal Cancer 2018, 17, 231–239.e7. [Google Scholar] [CrossRef]
- Bernstein, V.; Ellard, S.L.; Dent, S.F.; Tu, D.; Mates, M.; Dhesy-Thind, S.K.; Panasci, L.; Gelmon, K.A.; Salim, M.; Song, X.; et al. A Randomized Phase II Study of Weekly Paclitaxel with or without Pelareorep in Patients with Metastatic Breast Cancer: Final Analysis of Canadian Cancer Trials Group IND.213. Breast Cancer Res. Treat. 2018, 167, 485–493. [Google Scholar] [CrossRef]
- Bradbury, P.A.; Morris, D.G.; Nicholas, G.; Tu, D.; Tehfe, M.; Goffin, J.R.; Shepherd, F.A.; Gregg, R.W.; Rothenstein, J.; Lee, C.; et al. Canadian Cancer Trials Group (CCTG) IND211: A Randomized Trial of Pelareorep (Reolysin) in Patients with Previously Treated Advanced or Metastatic Non-Small Cell Lung Cancer Receiving Standard Salvage Therapy. Lung Cancer 2018, 120, 142–148. [Google Scholar] [CrossRef]
- Park, B.-H.; Hwang, T.; Liu, T.-C.; Sze, D.Y.; Kim, J.-S.; Kwon, H.-C.; Oh, S.Y.; Han, S.-Y.; Yoon, J.-H.; Hong, S.-H.; et al. Use of a Targeted Oncolytic Poxvirus, JX-594, in Patients with Refractory Primary or Metastatic Liver Cancer: A Phase I Trial. Lancet Oncol. 2008, 9, 533–542. [Google Scholar] [CrossRef]
- Kim, J.H.; Oh, J.Y.; Park, B.H.; Lee, D.E.; Kim, J.S.; Park, H.E.; Roh, M.S.; Je, J.E.; Yoon, J.H.; Thorne, S.H.; et al. Systemic Armed Oncolytic and Immunologic Therapy for Cancer with JX-594, a Targeted Poxvirus Expressing GM-CSF. Mol. Ther. 2006, 14, 361–370. [Google Scholar] [CrossRef]
- Moehler, M.; Heo, J.; Lee, H.C.; Tak, W.Y.; Chao, Y.; Paik, S.W.; Yim, H.J.; Byun, K.S.; Baron, A.; Ungerechts, G.; et al. Vaccinia-Based Oncolytic Immunotherapy Pexastimogene Devacirepvec in Patients with Advanced Hepatocellular Carcinoma after Sorafenib Failure: A Randomized Multicenter Phase IIb Trial (TRAVERSE). Oncoimmunology 2019, 8, 1615817. [Google Scholar] [CrossRef]
- Park, S.H.; Breitbach, C.J.; Lee, J.; Park, J.O.; Lim, H.Y.; Kang, W.K.; Moon, A.; Mun, J.-H.; Sommermann, E.M.; Maruri Avidal, L.; et al. Phase 1b Trial of Biweekly Intravenous Pexa-Vec (JX-594), an Oncolytic and Immunotherapeutic Vaccinia Virus in Colorectal Cancer. Mol. Ther. 2015, 23, 1532–1540. [Google Scholar] [CrossRef] [PubMed]
- Heo, J.; Reid, T.; Ruo, L.; Breitbach, C.J.; Rose, S.; Bloomston, M.; Cho, M.; Lim, H.Y.; Chung, H.C.; Kim, C.W.; et al. Randomized Dose-Finding Clinical Trial of Oncolytic Immunotherapeutic Vaccinia JX-594 in Liver Cancer. Nat. Med. 2013, 19, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Cripe, T.P.; Ngo, M.C.; Geller, J.I.; Louis, C.U.; Currier, M.A.; Racadio, J.M.; Towbin, A.J.; Rooney, C.M.; Pelusio, A.; Moon, A.; et al. Phase 1 Study of Intratumoral Pexa-Vec (JX-594), an Oncolytic and Immunotherapeutic Vaccinia Virus, in Pediatric CANCER patients. Mol. Ther. 2015, 23, 602–608. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Jiang, Z.; Zhang, Y.; Huang, X.; Liu, Q. Efficacy and Safety of Oncolytic Viruses in Randomized Controlled Trials: A Systematic Review and Meta-Analysis. Cancers 2020, 12, 1416. [Google Scholar] [CrossRef] [PubMed]
- Gállego Pérez-Larraya, J.; Garcia-Moure, M.; Labiano, S.; Patiño-García, A.; Dobbs, J.; Gonzalez-Huarriz, M.; Zalacain, M.; Marrodan, L.; Martinez-Velez, N.; Puigdelloses, M.; et al. Oncolytic DNX-2401 Virus for Pediatric Diffuse Intrinsic Pontine Glioma. N. Engl. J. Med. 2022, 386, 2471–2481. [Google Scholar] [CrossRef]
- Cui, C.; Lian, B.; Wang, X.; Yin, S.; Cong, Y.; Yang, Y.; Chi, Z.; Si, L.; Sheng, X.; Kong, Y.; et al. Analysis of Overall Survival (OS) and Relapse-Free-Survival (RFS) in the Phase 1b Clinical Trial of Anti–PD-1 Ab (Toripalimab) plus Intralesional Injection of OrienX010 in Stage Ⅳ Melanoma with Liver Metastases. J. Clin. Oncol. 2022, 40, 9551. [Google Scholar] [CrossRef]
- Hirvinen, M.; Rajecki, M.; Kapanen, M.; Parviainen, S.; Rouvinen-Lagerström, N.; Diaconu, I.; Nokisalmi, P.; Tenhunen, M.; Hemminki, A.; Cerullo, V. Immunological Effects of a Tumor Necrosis Factor Alpha-Armed Oncolytic Adenovirus. Hum. Gene Ther. 2015, 26, 134–144. [Google Scholar] [CrossRef]
- Moon, E.K.; Wang, L.-C.S.; Bekdache, K.; Lynn, R.C.; Lo, A.; Thorne, S.H.; Albelda, S.M. Intra-Tumoral Delivery of CXCL11 via a Vaccinia Virus, but Not by Modified T Cells, Enhances the Efficacy of Adoptive T Cell Therapy and Vaccines. Oncoimmunology 2018, 7, e1395997. [Google Scholar] [CrossRef]
- Liu, Z.; Ravindranathan, R.; Li, J.; Kalinski, P.; Guo, Z.S.; Bartlett, D.L. CXCL11-Armed Oncolytic Poxvirus Elicits Potent Antitumor Immunity and Shows Enhanced Therapeutic Efficacy. Oncoimmunology 2016, 5, e1091554. [Google Scholar] [CrossRef]
- Hutzler, S.; Erbar, S.; Jabulowsky, R.A.; Hanauer, J.R.H.; Schnotz, J.H.; Beissert, T.; Bodmer, B.S.; Eberle, R.; Boller, K.; Klamp, T.; et al. Antigen-Specific Oncolytic MV-Based Tumor Vaccines through Presentation of Selected Tumor-Associated Antigens on Infected Cells or Virus-Like Particles. Sci. Rep. 2017, 7, 16892. [Google Scholar] [CrossRef]
- Bilusic, M.; McMahon, S.; Madan, R.A.; Karzai, F.; Tsai, Y.-T.; Donahue, R.N.; Palena, C.; Jochems, C.; Marté, J.L.; Floudas, C.; et al. Phase I Study of a Multitargeted Recombinant Ad5 PSA/MUC-1/Brachyury-Based Immunotherapy Vaccine in Patients with Metastatic Castration-Resistant Prostate Cancer (mCRPC). J. Immunother. Cancer 2021, 9, e002374. [Google Scholar] [CrossRef] [PubMed]
- Ye, K.; Li, F.; Wang, R.; Cen, T.; Liu, S.; Zhao, Z.; Li, R.; Xu, L.; Zhang, G.; Xu, Z.; et al. An Armed Oncolytic Virus Enhances the Efficacy of Tumor-Infiltrating Lymphocyte Therapy by Converting Tumors to Artificial Antigen Presenting Cells in Situ. Mol. Ther. 2022, 30, 00370-7. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, E.; Milenova, I.; Wenthe, J.; Ståhle, M.; Leja-Jarblad, J.; Ullenhag, G.; Dimberg, A.; Moreno, R.; Alemany, R.; Loskog, A. Shaping the Tumor Stroma and Sparking Immune Activation by CD40 and 4-1BB Signaling Induced by an Armed Oncolytic Virus. Clin. Cancer Res. 2017, 23, 5846–5857. [Google Scholar] [CrossRef] [PubMed]
- Speck, T.; Heidbuechel, J.P.W.; Veinalde, R.; Jaeger, D.; von Kalle, C.; Ball, C.R.; Ungerechts, G.; Engeland, C.E. Targeted BiTE Expression by an Oncolytic Vector Augments Therapeutic Efficacy Against Solid Tumors. Clin. Cancer Res. 2018, 24, 2128–2137. [Google Scholar] [CrossRef]
- Liu, C.; Sun, B.; An, N.; Tan, W.; Cao, L.; Luo, X.; Yu, Y.; Feng, F.; Li, B.; Wu, M.; et al. Inhibitory Effect of Survivin Promoter-Regulated Oncolytic Adenovirus Carrying P53 Gene against Gallbladder Cancer. Mol. Oncol. 2011, 5, 545–554. [Google Scholar] [CrossRef]
- Russell, L.; Swanner, J.; Jaime-Ramirez, A.C.; Wang, Y.; Sprague, A.; Banasavadi-Siddegowda, Y.; Yoo, J.Y.; Sizemore, G.M.; Kladney, R.; Zhang, J.; et al. PTEN Expression by an Oncolytic Herpesvirus Directs T-Cell Mediated Tumor Clearance. Nat. Commun. 2018, 9, 5006. [Google Scholar] [CrossRef]
- Vijayakumar, G.; McCroskery, S.; Palese, P. Engineering Newcastle Disease Virus as an Oncolytic Vector for Intratumoral Delivery of Immune Checkpoint Inhibitors and Immunocytokines. J. Virol. 2020, 94, e01677-19. [Google Scholar] [CrossRef]
- Xiao, T.; Fan, J.K.; Huang, H.L.; Gu, J.F.; Li, L.-Y.; Liu, X.Y. VEGI-Armed Oncolytic Adenovirus Inhibits Tumor Neovascularization and Directly Induces Mitochondria-Mediated Cancer Cell Apoptosis. Cell Res. 2010, 20, 367–378. [Google Scholar] [CrossRef]
- Foloppe, J.; Kintz, J.; Futin, N.; Findeli, A.; Cordier, P.; Schlesinger, Y.; Hoffmann, C.; Tosch, C.; Balloul, J.-M.; Erbs, P. Targeted Delivery of a Suicide Gene to Human Colorectal Tumors by a Conditionally Replicating Vaccinia Virus. Gene Ther. 2008, 15, 1361–1371. [Google Scholar] [CrossRef]
- Berraondo, P.; Etxeberria, I.; Ponz-Sarvise, M.; Melero, I. Revisiting Interleukin-12 as a Cancer Immunotherapy Agent. Clin. Cancer Res. 2018, 24, 2716–2718. [Google Scholar] [CrossRef]
- Roth, J.C.; Cassady, K.A.; Cody, J.J.; Parker, J.N.; Price, K.H.; Coleman, J.M.; Peggins, J.O.; Noker, P.E.; Powers, N.W.; Grimes, S.D.; et al. Evaluation of the SAFETY and biodistribution of M032, an Attenuated Herpes Simplex Virus Type 1 Expressing hIL-12, after Intracerebral Administration to Aotus Nonhuman Primates. Hum. Gene Ther. Clin. Dev. 2014, 25, 16–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veinalde, R.; Grossardt, C.; Hartmann, L.; Bourgeois-Daigneault, M.-C.; Bell, J.C.; Jäger, D.; von Kalle, C.; Ungerechts, G.; Engeland, C.E. Oncolytic Measles Virus Encoding Interleukin-12 Mediates Potent Antitumor Effects through T Cell Activation. Oncoimmunology 2017, 6, e1285992. [Google Scholar] [CrossRef]
- Poutou, J.; Bunuales, M.; Gonzalez-Aparicio, M.; Garcia-Aragoncillo, E.; Quetglas, J.I.; Casado, R.; Bravo-Perez, C.; Alzuguren, P.; Hernandez-Alcoceba, R. Safety and Antitumor Effect of Oncolytic and Helper-Dependent Adenoviruses Expressing Interleukin-12 Variants in a Hamster Pancreatic Cancer Model. Gene Ther. 2015, 22, 696–706. [Google Scholar] [CrossRef]
- Saha, D.; Martuza, R.L.; Rabkin, S.D. Macrophage Polarization Contributes to Glioblastoma Eradication by Combination Immunovirotherapy and Immune Checkpoint Blockade. Cancer Cell 2017, 32, 253–267.e5. [Google Scholar] [CrossRef]
- Backhaus, P.S.; Veinalde, R.; Hartmann, L.; Dunder, J.E.; Jeworowski, L.M.; Albert, J.; Hoyler, B.; Poth, T.; Jäger, D.; Ungerechts, G.; et al. Immunological Effects and Viral Gene Expression Determine the Efficacy of Oncolytic Measles Vaccines Encoding IL-12 or IL-15 Agonists. Viruses 2019, 11, 914. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.-M.; Guz-Montgomery, K.; Saha, D. Oncolytic Virus Encoding a Master Pro-Inflammatory Cytokine Interleukin 12 in Cancer Immunotherapy. Cells 2020, 9, 400. [Google Scholar] [CrossRef] [PubMed]
- Carswell, E.A.; Old, L.J.; Kassel, R.L.; Green, S.; Fiore, N.; Williamson, B. An Endotoxin-Induced Serum Factor That Causes Necrosis of Tumors. Proc. Natl. Acad. Sci. USA 1975, 72, 3666–3670. [Google Scholar] [CrossRef]
- Beug, S.T.; Pichette, S.J.; St-Jean, M.; Holbrook, J.; Walker, D.E.; LaCasse, E.C.; Korneluk, R.G. Combination of IAP Antagonists and TNF-α-Armed Oncolytic Viruses Induce Tumor Vascular Shutdown and Tumor Regression. Mol. Ther. Oncolytics 2018, 10, 28–39. [Google Scholar] [CrossRef]
- Nagarsheth, N.; Wicha, M.S.; Zou, W. Chemokines in the Cancer Microenvironment and Their Relevance in Cancer Immunotherapy. Nat. Rev. Immunol. 2017, 17, 559–572. [Google Scholar] [CrossRef]
- Eckert, E.C.; Nace, R.A.; Tonne, J.M.; Evgin, L.; Vile, R.G.; Russell, S.J. Generation of a Tumor-Specific Chemokine Gradient Using Oncolytic Vesicular Stomatitis Virus Encoding CXCL9. Mol. Ther. Oncolytics 2020, 16, 63–74. [Google Scholar] [CrossRef]
- Jou, J.; Harrington, K.J.; Zocca, M.-B.; Ehrnrooth, E.; Cohen, E.E.W. The Changing Landscape of Therapeutic Cancer Vaccines—Novel Platforms and Neoantigen Identification. Clin. Cancer Res. 2021, 27, 689–703. [Google Scholar] [CrossRef]
- Wolf, Y.; Anderson, A.C.; Kuchroo, V.K. TIM3 Comes of Age as an Inhibitory Receptor. Nat. Rev. Immunol. 2020, 20, 173–185. [Google Scholar] [CrossRef] [PubMed]
- Ruffo, E.; Wu, R.C.; Bruno, T.C.; Workman, C.J.; Vignali, D.A.A. Lymphocyte-Activation Gene 3 (LAG3): The next Immune Checkpoint Receptor. Semin. Immunol. 2019, 42, 101305. [Google Scholar] [CrossRef] [PubMed]
- Zamarin, D.; Holmgaard, R.B.; Ricca, J.; Plitt, T.; Palese, P.; Sharma, P.; Merghoub, T.; Wolchok, J.D.; Allison, J.P. Intratumoral Modulation of the Inducible Co-Stimulator ICOS by Recombinant Oncolytic Virus Promotes Systemic Anti-Tumour Immunity. Nat. Commun. 2017, 8, 14340. [Google Scholar] [CrossRef] [PubMed]
- Labrijn, A.F.; Janmaat, M.L.; Reichert, J.M.; Parren, P.W.H.I. Bispecific Antibodies: A Mechanistic Review of the Pipeline. Nat. Rev. Drug Discov. 2019, 18, 585–608. [Google Scholar] [CrossRef]
- Guo, Z.S.; Lotze, M.T.; Zhu, Z.; Storkus, W.J.; Song, X.-T. Bi- and Tri-Specific T Cell Engager-Armed Oncolytic Viruses: Next-Generation Cancer Immunotherapy. Biomedicines 2020, 8, 204. [Google Scholar] [CrossRef]
- Freedman, J.D.; Hagel, J.; Scott, E.M.; Psallidas, I.; Gupta, A.; Spiers, L.; Miller, P.; Kanellakis, N.; Ashfield, R.; Fisher, K.D.; et al. Oncolytic Adenovirus Expressing Bispecific Antibody Targets T-Cell Cytotoxicity in Cancer Biopsies. EMBO Mol. Med. 2017, 9, 1067–1087. [Google Scholar] [CrossRef]
- Khalique, H.; Baugh, R.; Dyer, A.; Scott, E.M.; Frost, S.; Larkin, S.; Lei-Rossmann, J.; Seymour, L.W. Oncolytic Herpesvirus Expressing PD-L1 BiTE for Cancer Therapy: Exploiting Tumor Immune Suppression as an Opportunity for Targeted Immunotherapy. J. Immunother. Cancer 2021, 9, e001292. [Google Scholar] [CrossRef]
- Hollingsworth, R.E.; Lee, W.H. Tumor Suppressor Genes: New Prospects for Cancer Research. J. Natl. Cancer Inst. 1991, 83, 91–96. [Google Scholar] [CrossRef]
- Bressy, C.; Hastie, E.; Grdzelishvili, V.Z. Combining Oncolytic Virotherapy with P53 Tumor Suppressor Gene Therapy. Mol. Ther.-Oncolytics 2017, 5, 20–40. [Google Scholar] [CrossRef]
- Wang, X.; Su, C.; Cao, H.; Li, K.; Chen, J.; Jiang, L.; Zhang, Q.; Wu, X.; Jia, X.; Liu, Y.; et al. A Novel Triple-Regulated Oncolytic Adenovirus Carrying P53 Gene Exerts Potent Antitumor Efficacy on Common Human Solid Cancers. Mol. Cancer Ther. 2008, 7, 1598–1603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, X.; Liu, J.; Yang, C.; Su, C.; Zhou, C.; Zhang, Q.; Li, L.; Wu, H.; Liu, X.; Wu, M.; et al. 5/35 Fiber-Modified Conditionally Replicative Adenovirus Armed with P53 Shows Increased Tumor-Suppressing Capacity to Breast Cancer Cells. Hum. Gene Ther. 2011, 22, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Heideman, D.A.M.; Steenbergen, R.D.M.; van der Torre, J.; Scheffner, M.; Alemany, R.; Gerritsen, W.R.; Meijer, C.J.L.M.; Snijders, P.J.F.; van Beusechem, V.W. Oncolytic Adenovirus Expressing a P53 Variant Resistant to Degradation by HPV E6 Protein Exhibits Potent and Selective Replication in Cervical Cancer. Mol. Ther. 2005, 12, 1083–1090. [Google Scholar] [CrossRef] [PubMed]
- Sauthoff, H.; Pipiya, T.; Chen, S.; Heitner, S.; Cheng, J.; Huang, Y.Q.; Rom, W.N.; Hay, J.G. Modification of the P53 Transgene of a Replication-Competent Adenovirus Prevents Mdm2- and E1b-55kD-Mediated Degradation of P53. Cancer Gene Ther. 2006, 13, 686–695. [Google Scholar] [CrossRef]
- Cui, C.-X.; Li, Y.-Q.; Sun, Y.-J.; Zhu, Y.-L.; Fang, J.-B.; Bai, B.; Li, W.-J.; Li, S.-Z.; Ma, Y.-Z.; Li, X.; et al. Antitumor Effect of a Dual Cancer-Specific Oncolytic Adenovirus on Prostate Cancer PC-3 Cells. Urol. Oncol. 2019, 37, 352.e1–352.e18. [Google Scholar] [CrossRef]
- Wu, Y.; He, J.; Geng, J.; An, Y.; Ye, X.; Yan, S.; Yu, Q.; Yin, J.; Zhang, Z.; Li, D. Recombinant Newcastle Disease Virus Expressing Human TRAIL as a Potential Candidate for Hepatoma Therapy. Eur. J. Pharmacol. 2017, 802, 85–92. [Google Scholar] [CrossRef]
- Koval, O.; Kochneva, G.; Tkachenko, A.; Troitskaya, O.; Sivolobova, G.; Grazhdantseva, A.; Nushtaeva, A.; Kuligina, E.; Richter, V. Recombinant Vaccinia Viruses Coding Transgenes of Apoptosis-Inducing Proteins Enhance Apoptosis But Not Immunogenicity of Infected Tumor Cells. BioMed Res. Int. 2017, 2017, 3620510. [Google Scholar] [CrossRef]
- Puzanov, I.; Milhem, M.M.; Minor, D.; Hamid, O.; Li, A.; Chen, L.; Chastain, M.; Gorski, K.S.; Anderson, A.; Chou, J.; et al. Talimogene Laherparepvec in Combination With Ipilimumab in Previously Untreated, Unresectable Stage IIIB-IV Melanoma. J. Clin. Oncol. 2016, 34, 2619–2626. [Google Scholar] [CrossRef]
- Tian, C.; Liu, J.; Zhou, H.; Li, J.; Sun, C.; Zhu, W.; Yin, Y.; Li, X. Enhanced Anti-Tumor Response Elicited by a Novel Oncolytic HSV-1 Engineered with an Anti-PD-1 Antibody. Cancer Lett. 2021, 518, 49–58. [Google Scholar] [CrossRef]
- Garcia, J.; Hurwitz, H.I.; Sandler, A.B.; Miles, D.; Coleman, R.L.; Deurloo, R.; Chinot, O.L. Bevacizumab (Avastin®) in Cancer Treatment: A Review of 15 Years of Clinical Experience and Future Outlook. Cancer Treat. Rev. 2020, 86, 102017. [Google Scholar] [CrossRef]
- Löhr, M.; Müller, P.; Karle, P.; Stange, J.; Mitzner, S.; Jesnowski, R.; Nizze, H.; Nebe, B.; Liebe, S.; Salmons, B.; et al. Targeted Chemotherapy by Intratumour Injection of Encapsulated Cells Engineered to Produce CYP2B1, an Ifosfamide Activating Cytochrome P450. Gene Ther. 1998, 5, 1070–1078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, N.K.; Youngs, D.J.; Neoptolemos, J.P.; Friedlos, F.; Knox, R.J.; Springer, C.J.; Anlezark, G.M.; Michael, N.P.; Melton, R.G.; Ford, M.J.; et al. Sensitization of Colorectal and Pancreatic Cancer Cell Lines to the Prodrug 5-(Aziridin-1-yl)-2,4-Dinitrobenzamide (CB1954) by Retroviral Transduction and Expression of the E. coli Nitroreductase Gene. Cancer Gene Ther. 1997, 4, 229–238. [Google Scholar] [PubMed]
- Rouanet, M.; Lebrin, M.; Gross, F.; Bournet, B.; Cordelier, P.; Buscail, L. Gene Therapy for Pancreatic Cancer: Specificity, Issues and Hopes. Int. J. Mol. Sci. 2017, 18, 1231. [Google Scholar] [CrossRef]
- Harrington, K.; Freeman, D.J.; Kelly, B.; Harper, J.; Soria, J.-C. Optimizing Oncolytic Virotherapy in Cancer Treatment. Nat. Rev. Drug Discov. 2019, 18, 689–706. [Google Scholar] [CrossRef]
- Andtbacka, R.H.I.; Ross, M.; Puzanov, I.; Milhem, M.; Collichio, F.; Delman, K.A.; Amatruda, T.; Zager, J.S.; Cranmer, L.; Hsueh, E.; et al. Patterns of Clinical Response with Talimogene Laherparepvec (T-VEC) in Patients with Melanoma Treated in the OPTiM Phase III Clinical Trial. Ann. Surg. Oncol. 2016, 23, 4169–4177. [Google Scholar] [CrossRef] [PubMed]
- Kumar, T.R.S.; Soppimath, K.; Nachaegari, S.K. Novel Delivery Technologies for Protein and Peptide Therapeutics. Curr. Pharm. Biotechnol. 2006, 7, 261–276. [Google Scholar] [CrossRef]
- Parveen, S.; Sahoo, S.K. Nanomedicine: Clinical Applications of Polyethylene Glycol Conjugated proteins and Drugs. Clin. Pharmacokinet. 2006, 45, 965–988. [Google Scholar] [CrossRef]
- Doronin, K.; Shashkova, E.V.; May, S.M.; Hofherr, S.E.; Barry, M.A. Chemical Modification with High Molecular Weight Polyethylene Glycol Reduces Transduction of Hepatocytes and Increases Efficacy of Intravenously Delivered Oncolytic Adenovirus. Hum. Gene Ther. 2009, 20, 975–988. [Google Scholar] [CrossRef]
- Hill, C.; Grundy, M.; Bau, L.; Wallington, S.; Balkaran, J.; Ramos, V.; Fisher, K.; Seymour, L.; Coussios, C.; Carlisle, R. Polymer Stealthing and Mucin-1 Retargeting for Enhanced Pharmacokinetics of an Oncolytic Vaccinia Virus. Mol. Ther. Oncolytics 2021, 21, 47–61. [Google Scholar] [CrossRef]
- Pack, D.W.; Hoffman, A.S.; Pun, S.; Stayton, P.S. Design and Development of Polymers for Gene Delivery. Nat. Rev. Drug Discov. 2005, 4, 581–593. [Google Scholar] [CrossRef]
- Moghimi, S.M.; Hunter, A.C.; Murray, J.C. Long-Circulating and Target-Specific Nanoparticles: Theory to Practice. Pharmacol. Rev. 2001, 53, 283–318. [Google Scholar] [PubMed]
- Huang, L.-L.; Li, X.; Zhang, J.; Zhao, Q.R.; Zhang, M.J.; Liu, A.-A.; Pang, D.-W.; Xie, H.-Y. MnCaCs-Biomineralized Oncolytic Virus for Bimodal Imaging-Guided and Synergistically Enhanced Anticancer Therapy. Nano Lett. 2019, 19, 8002–8009. [Google Scholar] [CrossRef] [PubMed]
- Jung, B.-K.; Oh, E.; Hong, J.; Lee, Y.; Park, K.D.; Yun, C.-O. A Hydrogel Matrix Prolongs Persistence and Promotes Specific Localization of an Oncolytic Adenovirus in a Tumor by Restricting Nonspecific Shedding and an Antiviral Immune Response. Biomaterials 2017, 147, 26–38. [Google Scholar] [CrossRef]
- Du, Y.; Wei, Q.; Zhao, L.; Fan, C.; Guo, L.; Ye, J.; Li, Y. Hydrogel-Based Co-Delivery of CIK Cells and Oncolytic Adenovirus Armed with IL12 and IL15 for Cancer Immunotherapy. Biomed. Pharmacother. 2022, 151, 113110. [Google Scholar] [CrossRef] [PubMed]
- Hill, C.; Carlisle, R. Achieving Systemic delivery of Oncolytic Viruses. Expert Opin. Drug Deliv. 2019, 16, 607–620. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.-W.; Lee, Y.S.; Yun, C.-O.; Kim, S.W. Polymeric Oncolytic Adenovirus for Cancer Gene Therapy. J. Control. Release 2015, 219, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Tresilwised, N.; Pithayanukul, P.; Holm, P.S.; Schillinger, U.; Plank, C.; Mykhaylyk, O. Effects of Nanoparticle Coatings on the Activity of Oncolytic Adenovirus-Magnetic Nanoparticle Complexes. Biomaterials 2012, 33, 256–269. [Google Scholar] [CrossRef]
- Choi, J.-W.; Park, J.W.; Na, Y.; Jung, S.-J.; Hwang, J.K.; Choi, D.; Lee, K.G.; Yun, C.-O. Using a Magnetic Field to Redirect an Oncolytic Adenovirus Complexed with Iron Oxide Augments Gene Therapy Efficacy. Biomaterials 2015, 65, 163–174. [Google Scholar] [CrossRef]
- Roy, D.G.; Bell, J.C.; Bourgeois-Daigneault, M.-C. Magnetic Targeting of Oncolytic VSV-Based Therapies Improves Infection of Tumor Cells in the Presence of Virus-Specific Neutralizing Antibodies in Vitro. Biochem. Biophys. Res. Commun. 2020, 526, 641–646. [Google Scholar] [CrossRef]
- Dai, Y.; Bai, X.; Jia, L.; Sun, H.; Feng, Y.; Wang, L.; Zhang, C.; Chen, Y.; Ji, Y.; Zhang, D.; et al. Precise Control of Customized Macrophage Cell Robot for Targeted Therapy of Solid Tumors with Minimal Invasion. Small 2021, 17, e2103986. [Google Scholar] [CrossRef]
- Mo, S.; Coussios, C.-C.; Seymour, L.; Carlisle, R. Ultrasound-Enhanced Drug Delivery for Cancer. Expert Opin. Drug Deliv. 2012, 9, 1525–1538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Myers, R.; Coviello, C.; Erbs, P.; Foloppe, J.; Rowe, C.; Kwan, J.; Crake, C.; Finn, S.; Jackson, E.; Balloul, J.-M.; et al. Polymeric Cups for Cavitation-mediated Delivery of Oncolytic Vaccinia Virus. Mol. Ther. 2016, 24, 1627–1633. [Google Scholar] [CrossRef] [PubMed]
- Baruch, E.N.; Berg, A.L.; Besser, M.J.; Schachter, J.; Markel, G. Adoptive T Cell Therapy: An Overview of Obstacles and Opportunities. Cancer 2017, 123, 2154–2162. [Google Scholar] [CrossRef] [PubMed]
- Depil, S.; Duchateau, P.; Grupp, S.A.; Mufti, G.; Poirot, L. ‘‘Off-the-Shelf’’ Allogeneic CAR T Cells: Development and challenges. Nat. Rev. Drug Discov. 2020, 19, 185–199. [Google Scholar] [CrossRef]
- Adair, R.A.; Roulstone, V.; Scott, K.J.; Morgan, R.; Nuovo, G.J.; Fuller, M.; Beirne, D.; West, E.J.; Jennings, V.A.; Rose, A.; et al. Cell Carriage, Delivery, and Selective Replication of an Oncolytic Virus in Tumor in Patients. Sci. Transl. Med. 2012, 4, 138ra77. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Hall, R.; Lesniak, M.; Ahmed, A. Stem Cell-Based Cell Carrier for Targeted Oncolytic Virotherapy: Translational Opportunity and Open Questions. Viruses 2015, 7, 6200–6217. [Google Scholar] [CrossRef]
- Roy, D.G.; Bell, J.C. Cell Carriers for Oncolytic Viruses: Current Challenges and Future Directions. Oncolytic Virotherapy 2013, 2, 47–56. [Google Scholar] [CrossRef]
- McKenna, M.K.; Englisch, A.; Brenner, B.; Smith, T.; Hoyos, V.; Suzuki, M.; Brenner, M.K. Mesenchymal Stromal Cell Delivery of Oncolytic Immunotherapy Improves CAR-T Cell Antitumor Activity. Mol. Ther. 2021, 29, 1808–1820. [Google Scholar] [CrossRef]
- Yoon, A.-R.; Hong, J.; Li, Y.; Shin, H.C.; Lee, H.; Kim, H.S.; Yun, C.-O. Mesenchymal Stem Cell-Mediated Delivery of an Oncolytic Adenovirus Enhances Antitumor Efficacy in Hepatocellular Carcinoma. Cancer Res. 2019, 79, 4503–4514. [Google Scholar] [CrossRef]
- Valipour, B.; Velaei, K.; Abedelahi, A.; Karimipour, M.; Darabi, M.; Charoudeh, H.N. NK Cells: An Attractive Candidate for Cancer Therapy. J. Cell. Physiol. 2019, 234, 19352–19365. [Google Scholar] [CrossRef]
- Rezvani, K.; Rouce, R.; Liu, E.; Shpall, E. Engineering Natural Killer Cells for Cancer Immunotherapy. Mol. Ther. 2017, 25, 1769–1781. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Gao, Q.; Xu, Z.; Cai, L.; Chen, S.; Zhang, X.; Cao, P.; Chen, G. An Inter-Supplementary Biohybrid System Based on Natural Killer Cells for the Combinational Immunotherapy and Virotherapy of Cancer. Adv. Sci. 2022, 9, e2103470. [Google Scholar] [CrossRef] [PubMed]
- Evgin, L.; Kottke, T.; Tonne, J.; Thompson, J.; Huff, A.L.; van Vloten, J.; Moore, M.; Michael, J.; Driscoll, C.; Pulido, J.; et al. Oncolytic Virus-Mediated Expansion of Dual-Specific CAR T Cells Improves Efficacy against Solid Tumors in Mice. Sci. Transl. Med. 2022, 14, eabn2231. [Google Scholar] [CrossRef]
- Zheng, D.-W.; Li, R.-Q.; An, J.-X.; Xie, T.-Q.; Han, Z.-Y.; Xu, R.; Fang, Y.; Zhang, X.-Z. Prebiotics-Encapsulated Probiotic Spores Regulate Gut Microbiota and Suppress Colon Cancer. Adv. Mater. 2020, 32, e2004529. [Google Scholar] [CrossRef] [PubMed]
- Zheng, D.-W.; Chen, Y.; Li, Z.-H.; Xu, L.; Li, C.-X.; Li, B.; Fan, J.-X.; Cheng, S.-X.; Zhang, X.-Z. Optically-Controlled Bacterial Metabolite for Cancer Therapy. Nat. Commun. 2018, 9, 1680. [Google Scholar] [CrossRef]
- Geng, Z.; Cao, Z.; Liu, R.; Liu, K.; Liu, J.; Tan, W. Aptamer-Assisted Tumor Localization of Bacteria for Enhanced Biotherapy. Nat. Commun. 2021, 12, 6584. [Google Scholar] [CrossRef]
- Sun, M.; Yang, S.; Huang, H.; Gao, P.; Pan, S.; Cheng, Z.; He, Z.; Wang, Z.; Sun, J.; Liu, F. Boarding Oncolytic Viruses onto Tumor-Homing Bacterium-Vessels for Augmented Cancer Immunotherapy. Nano Lett. 2022, 22, 5055–5064. [Google Scholar] [CrossRef]
- Schenk, E.L.; Mandrekar, S.J.; Dy, G.K.; Aubry, M.C.; Tan, A.D.; Dakhil, S.R.; Sachs, B.A.; Nieva, J.J.; Bertino, E.; Lee Hann, C.; et al. A Randomized Double-Blind Phase II Study of the Seneca Valley Virus (NTX-010) versus Placebo for Patients with Extensive-Stage SCLC (ES SCLC) Who Were Stable or Responding after at Least Four Cycles of Platinum-Based Chemotherapy: North Central Cancer Treatment Group (Alliance) N0923 Study. J. Thorac. Oncol. 2020, 15, 110–119. [Google Scholar] [CrossRef]
- Kuczynski, E.A.; Vermeulen, P.B.; Pezzella, F.; Kerbel, R.S.; Reynolds, A.R. Vessel Co-Option in Cancer. Nat. Rev. Clin. Oncol. 2019, 16, 469–493. [Google Scholar] [CrossRef]
- Jain, R.K.; Stylianopoulos, T. Delivering Nanomedicine to Solid Tumors. Nat. Rev. Clin. Oncol. 2010, 7, 653–664. [Google Scholar] [CrossRef]
- Ricca, J.M.; Oseledchyk, A.; Walther, T.; Liu, C.; Mangarin, L.; Merghoub, T.; Wolchok, J.D.; Zamarin, D. Pre-existing Immunity to Oncolytic Virus Potentiates Its Immunotherapeutic Efficacy. Mol. Ther. 2018, 26, 1008–1019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferguson, M.S.; Lemoine, N.R.; Wang, Y. Systemic Delivery of Oncolytic Viruses: Hopes and Hurdles. Adv. Virol. 2012, 2012, 805629. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, N.; McKenna, M.K.; Rosewell Shaw, A.; Suzuki, M. Clinical CAR-T Cell and Oncolytic Virotherapy for Cancer Treatment. Mol. Ther. 2021, 29, 505–520. [Google Scholar] [CrossRef] [PubMed]
- Breitbach, C.J.; Burke, J.; Jonker, D.; Stephenson, J.; Haas, A.R.; Chow, L.Q.M.; Nieva, J.; Hwang, T.-H.; Moon, A.; Patt, R.; et al. Intravenous Delivery of a Multi-Mechanistic Cancer-Targeted Oncolytic Poxvirus in Humans. Nature 2011, 477, 99–102. [Google Scholar] [CrossRef]
- Ferguson, M.S.; Chard Dunmall, L.S.; Gangeswaran, R.; Marelli, G.; Tysome, J.R.; Burns, E.; Whitehead, M.A.; Aksoy, E.; Alusi, G.; Hiley, C.; et al. Transient Inhibition of PI3Kδ Enhances the Therapeutic Effect of Intravenous Delivery of Oncolytic Vaccinia Virus. Mol. Ther. 2020, 28, 1263–1275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Genetic Modification | Transgenes | Virus | Models | Main Results |
---|---|---|---|---|
Cytokines | GM-CSF | HSV-1 | Clinical trials of Melanoma etc. | Approved by the FDA [15] |
IL-12 (NCT02062827) | HSV-1 | Phase I study of glioma | Not published | |
TNF-α | Vesicular stomatitis virus | Refractory orthotopic mouse model of mammary cancer (combined with SMC) | Prolonged survival and slower tumor growth [87] | |
Chemokines | CXCL11 | Vaccina virus | intraperitoneal mouse models of mesothelioma and colon cancer | Induction of systemic antitumor immunity and better survival [88,89] |
CXCL9, CXCL10, IFN (NCT04053283) | Adenovirus | Phase I clinical trial of epithelial tumors | Not published | |
Tumor specific antigens | Claudin-6 | Measles virus | B16-hCD46/mCLDN6 melanoma mouse models | Inhibit metastasis and increase the therapeutic efficacy [90] |
PSA, brachyury, MUC-1 | Vaccina virus | Phase I clinical trial of castration-resistant prostate cancer | Well tolerated [91] | |
Cell surface molecules | OX40L (and IL-12) | HSV-1 | Patient-derived oral xenograft and syngeneic colon and pancreatic mouse tumor models | Complete tumor regression [92] |
CD40L, 4-1BBL | Adenovirus | In vivo xenograft mouse models of pancreatic cancer | Reduced tumor burden [93] | |
BiTE | α-CD3-VH/L,α-TAA-VH/L | Measles virus | Syngeneic and xenograft mouse models of melanoma and colorectal cancer | Protective antitumor immunity and prolonged survival [94] |
Tumor-suppressor genes | P53 | Adenovirus | EH-GB1 xenografts mouse model | Inhibit tumor growth [95] |
PTEN | HSV-1 | Intracranial tumor mouse model | Long-term survival and prime anti-cancer T-cell immunity [96] | |
Immune checkpoint inhibitors | Anti PD-1/PD-L1 (and IL-12) | Newcastle disease viruses | B16-F10 melanoma mouse model | Induce tumor control and survival benefits [97] |
Anti-angiogenic transgenes | VEGI-251(and E1B 55 kDa deletion) | Adenovirus | Human cervical and colorectal tumor xenografts mouse model | Inhibit tumor growth [98] |
Genes associated with cytotoxic medicine | FCU1 | Vaccina virus | Orthotopic liver metastasis of colon cancer xenografts mouse model (combined with SMC) | Substantial tumor growth retardation [99] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, Q.; Wu, Y.; Albers, A.; Fang, M.; Qian, X. Strategies for Advanced Oncolytic Virotherapy: Current Technology Innovations and Clinical Approaches. Pharmaceutics 2022, 14, 1811. https://doi.org/10.3390/pharmaceutics14091811
Ji Q, Wu Y, Albers A, Fang M, Qian X. Strategies for Advanced Oncolytic Virotherapy: Current Technology Innovations and Clinical Approaches. Pharmaceutics. 2022; 14(9):1811. https://doi.org/10.3390/pharmaceutics14091811
Chicago/Turabian StyleJi, Qing, Yuchen Wu, Andreas Albers, Meiyu Fang, and Xu Qian. 2022. "Strategies for Advanced Oncolytic Virotherapy: Current Technology Innovations and Clinical Approaches" Pharmaceutics 14, no. 9: 1811. https://doi.org/10.3390/pharmaceutics14091811
APA StyleJi, Q., Wu, Y., Albers, A., Fang, M., & Qian, X. (2022). Strategies for Advanced Oncolytic Virotherapy: Current Technology Innovations and Clinical Approaches. Pharmaceutics, 14(9), 1811. https://doi.org/10.3390/pharmaceutics14091811