Modern Approaches for the Treatment of Heart Failure: Recent Advances and Future Perspectives
Abstract
:1. Introduction
2. Pharmacological Therapies for Heart Failure
2.1. Pharmacological Therapies for HF: Angiotensin Receptor–Neprilysin Inhibitor (ARNI)
2.2. Pharmacological Therapies for HF: Sodium-Glucose Co-Transporter-2 Inhibitors (SGLT2i)
2.3. Pharmacological Therapies for HF: Soluble Guanylate Cyclase Activator-Vericiguat
2.4. Pharmacological Therapies for HF: Cardiac Myosin Activation—Omecamtiv Mecarbil
2.5. Pharmacological Therapies for HF: Amino Acid Orexigenic Peptide Hormone—Ghrelin
3. Non-Pharmacological Therapies for Heart Failure
3.1. Neuromodulatory Approaches
3.2. Respiratory Disorders Implicated in Heart Failure
3.3. Devices for Decongestion in HF
3.4. Ongoing Trials for Non-Pharmacological Therapies for HF
Neuromodulatory Approaches | Mechanisms of Action | Clinical Trial/Study | Main Findings | Limitations |
---|---|---|---|---|
Cardiac sympathetic denervation | surgical antiadrenergic denervation | Vaseghi et al. Schwartz et al. | →antiarrhythmic effects; →improvements in HR variability and autonomic nervous system [90,91,92,93,94,95,96] | →limited data exist on the benefits of sympathetic denervation in HF patients. |
Renal denervation | frequency-based catheter renal nerve ablation | REACH pilot study | →improvements in both symptoms and exercise ability [101] | →the RDT-PEF (Renal Denervation in Heart Failure with Preserved Ejection Fraction) trial was prematurely disrupted due to enrollment challenges, leaving it underpowered to determine whether RDN positively affected QOL, exercise function, biomarkers, and left heart remodeling in HFpEF patients [153]. |
RE-ADAPT-HF UNLOAD-HFpEF | →enrolling →enrolling | →future randomized, blinded, sham-controlled clinical studies are necessary to establish the impact of RDN on the morbidity of HFrEF and HFpEF patients. | ||
Vagus nerve stimulation (VNS) | electrical stimulation of the vagus nerve | Schwartz et al. | →improvement in functional status, quality of life (QoL), and left ventricular volume in HFrEF [105] | |
NECTAR-HF (NCT01385176) | →favorable long-term safety profile; failed to show that VNS improved clinic outcomes versus OMT [106] | →VNS has a considerable favorable effect on the functional state of the patient, but with no effect on the prognosis [107]. | ||
INOVATE-HF (NCT01303718) | →quality of life, NYHA class, and 6 min walking distance were favorably affected by vagus nerve stimulation; failed to show that VNS improved clinic outcomes versus OMT [107] | →the lack of a control group in the ANTHEM-HF trial is a considerable limitation; to avoid the placebo effect and validate the procedure’s safety, a randomised, controlled clinical trial is required [108]. | ||
ANTHEM-HF (NCT01823887) | →chronic open-loop left- or right-side VNS is feasible and well tolerated in HFrEF patients [108] | →no significant echocardiographic improvements nor reduction levels of NTpro BNP have been documented in any study [107]. | ||
ANTHEM-HFrEF (NCT03425422) | →enrolling; test the impact of Vitaria system on cardiovascular mortality and HF hospitalization in patients with HF and reduced EF (HFrEF) [109] | |||
Tragus nerve stimulation | non-invasive transcutaneous approach to VNS that stimulates the auricular branch of the vagus nerve | Zhou et al. | →lowered both systolic and diastolic blood pressure; →left ventricular hypertrophy, circumferential strain, and diastolic function; →reduced inflammatory cell infiltration and fibrosis within the ventricle and induced downregulation of pro-inflammatory and pro-fibrotic genes [112] | →previous research has a number of limitations, including the absence of a well-controlled placebo group and longitudinal data and the limited sample populations; the optimal stimulation settings have yet to be established. →longitudinal data are required to assess the long-term impact of LLTS. |
Tran et al. | → improved the longitudinal mechanics of the left ventricle and the heart rate variability (HRV) in patients with HFrEF [113] | →moreover, there is no validated biomarker for measuring the efficacy of LLTS [154]. | ||
Dasari et al. | → improved microcirculation [114] | |||
Cardiac contractility modulation (CCM) | myocardial non-excitatory electrical impulses delivered during the absolute refractory period that increases left ventricular contractility as a result of calcium handling improvements by phosphorylation of phospholamban and upregulation of SERCA-2A | FIX-HF-3 | →improvements in LVEF, 6 min walk distance (6MWD), NYHA functional class, and quality of life in HFrEF NYHA III patients [119,120] | →the impact of CCM on parameters such as left ventricular diastolic volumes has not been investigated systematically. |
FIX-CHF-4 | →consistent improvement linked with QoL indicators at 6 months of therapy in HFrEF patients who received CCM [121] | →CCM may only be effective when administered to viable, non-necrotic myocardium; however, this has not been fully investigated in preclinical or clinical research. | ||
FIX-HF-5 (NCT00112125) | →subgroup analysis revealed improvements in ventilatory anaerobic threshold were observed in patients with ejection fraction ranging from 25% to 45% [121,122] | →likewise, the advantages of CCM in CRT “non-responder” patients are inadequately documented. →in the study conducted by Kuschyk et al., there was an increased number of adverse outcomes, including two fatalities. | ||
FIX-HF-5C (NCT01381172) | →statistically significant improvements in NYHA class, 6MWD, QoL, a composite reduction in hospitalization, and cardiovascular mortality [122] | →prospective trial results are inadequate, and it is essential that this disparity be settled prior to expanding usage in populations with medically optimal adjusted HFrEF, narrow QRS duration, and persistent symptoms [116]. | ||
Baroreceptor activation therapy (BAT) | electrical stimulation of carotid sinus baroreceptors lowers SNS activity and increases parasympathetic tone | BeAT-HF (NCT02627196) | →BAT is safe and effective; →BAT significantly improved QoL and 6MWD, and reduced NT-proBNP levels [127] | →BAT requires larger-scale studies with extended follow-up periods, a wider cohort of patients, and defined outcomes, including mortality risks, before this procedure can be included in HF clinical practice [155]. |
Splanchnic nerve modulation (SNM) | modulation of splanchnic nerve activity reduces cardiac filling pressures | REBALANCE-HF (NCT04592445) | →the preliminary results from this ongoing trial show that GSN ablation is efficient in reducing PCWP during exercise, with improving the symptoms but without a significant change in exercise capacity [140] | →the safety and effectiveness of SNM in the management of HF must be explored more extensively; the latest scientific studies are centered on limited patient groups with minimal follow-up; the aforementioned proof-of-concept clinical trials lacked a control group [132]. |
4. Future Perspectives of HF Management—Artificial Intelligence
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pellicori, P.; Khan, M.J.I.; Graham, F.J.; Cleland, J.G.F. New perspectives and future directions in the treatment of heart failure. Heart Fail. Rev. 2019, 25, 147–159. [Google Scholar] [CrossRef] [PubMed]
- Groenewegen, A.; Rutten, F.H.; Mosterd, A.; Hoes, A.W. Epidemiology of heart failure. Eur. J. Heart Fail. 2020, 22, 1342–1356. [Google Scholar] [CrossRef] [PubMed]
- Jones, N.R.; Roalfe, A.K.; Adoki, I.; Hobbs, F.D.R.; Taylor, C.J. Survival of patients with chronic heart failure in the community: A systematic review and meta-analysis. Eur. J. Heart Fail. 2019, 21, 1306–1325. [Google Scholar] [CrossRef] [PubMed]
- Correale, M.; Tricarico, L.; Fortunato, M.; Mazzeo, P.; Nodari, S.; Di Biase, M.; Brunetti, N.D. New targets in heart failure drug therapy. Front Cardiovasc Med. 2021, 8, 665797. [Google Scholar] [CrossRef] [PubMed]
- D’Elia, E.; Iacovoni, A.; Vaduganathan, M.; Lorini, F.L.; Perlini, S.; Senni, M. Neprilysin inhibition in heart failure: Mechanisms and substrates beyond modulating natriuretic peptides. Eur. J. Heart Fail. 2017, 19, 710–717. [Google Scholar] [CrossRef]
- Ferrari, L.; Sada, S.; GrAM (Gruppo di Autoformazione Metodologica). Efficacy of angiotensin-neprilysin inhibition versus enalapril in patient with heart failure with a reduced ejection fraction. Intern Emerg Med. 2015, 10, 369–371. [Google Scholar] [CrossRef]
- Kuchulakanti, P.K. ARNI in cardiovascular disease: Current evidence and future perspectives. Future Cardiol. 2020, 16, 505–515. [Google Scholar] [CrossRef]
- Greenberg, B. Angiotensin Receptor-Neprilysin Inhibition (ARNI) in Heart Failure. Int. J. Heart Fail. 2020, 2, 73. [Google Scholar] [CrossRef]
- McMurray, J.J.V.; Packer, M.; Desai, A.S.; Gong, J.; Lefkowitz, M.P.; Rizkala, A.R.; Rouleau, J.L.; Shi, V.C.; Solomon, S.D.; Swedberg, K.; et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N. Engl. J. Med. 2014, 371, 993–1004. [Google Scholar] [CrossRef]
- Velazquez, E.J.; Morrow, D.A.; DeVore, A.D.; Duffy, C.I.; Ambrosy, A.P.; McCague, K.; Rocha, R.; Braunwald, E. Angiotensin-Neprilysin Inhibition in Acute Decompensated Heart Failure. N. Engl. J. Med. 2018, 380, 539–548. [Google Scholar] [CrossRef]
- Ambrosy, A.P.; Mentz, R.J.; Fiuzat, M.; Cleland, J.G.F.; Greene, S.J.; O’Connor, C.M.; Teerlink, J.R.; Zannad, F.; Solomon, S.D. The role of angiotensin receptor-neprilysin inhibitors in cardiovascular disease-existing evidence, knowledge gaps, and future directions. Eur. J. Heart Fail. 2018, 20, 963–972. [Google Scholar] [CrossRef] [PubMed]
- Solomon, S.D.; McMurray, J.J.V.; Anand, I.S.; Ge, J.; Lam, C.S.P.; Maggioni, A.P.; Martinez, F.; Packer, M.; Pfeffer, M.A.; Pieske, B.; et al. Angiotensin-Neprilysin Inhibition in Heart Failure with Preserved Ejection Fraction. N. Engl. J. Med. 2019, 381, 1609–1620. [Google Scholar] [CrossRef]
- Heidenreich, P.A.; Bozkurt, B.; Aguilar, D.; Allen, L.A.; Byun, J.J.; Colvin, M.M.; Deswal, A.; Drazner, M.H.; Dunlay, S.M.; Evers, L.R.; et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure: A report of the american college of cardiology/american heart association joint committee on clinical practice guidelines. Circulation 2022, 145, e895–e1032. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef]
- Fitchett, D.; Zinman, B.; Wanner, C.; Lachin, J.M.; Hantel, S.; Salsali, A.; Johansen, O.E.; Woerle, H.J.; Broedl, U.C.; Inzucchi, S.E. Heart failure outcomes with empagliflozin in patients with type 2 diabetes at high cardiovascular risk: Results of the EMPA-REG OUTCOME® trial. Eur. Heart J. 2016, 37, 1526–1534. [Google Scholar] [CrossRef] [PubMed]
- Rådholm, K.; Figtree, G.; Perkovic, V.; Solomon, S.D.; Mahaffey, K.W.; de Zeeuw, D.; Fulcher, G.; Barrett, T.D.; Shaw, W.; Desai, M.; et al. Canagliflozin and heart failure in type 2 diabetes mellitus: Results from the CANVAS program. Circulation 2018, 138, 458–468. [Google Scholar] [CrossRef]
- Kato, E.T.; Silverman, M.G.; Mosenzon, O.; Zelniker, T.A.; Cahn, A.; Furtado, R.H.M.; Kuder, J.; Murphy, S.A.; Bhatt, D.L.; Leiter, L.A.; et al. Effect of dapagliflozin on heart failure and mortality in type 2 diabetes mellitus. Circulation 2019, 139, 2528–2536. [Google Scholar] [CrossRef]
- Bhatt, D.L.; Szarek, M.; Steg, P.G.; Cannon, C.P.; Leiter, L.A.; McGuire, D.K.; Lewis, J.B.; Riddle, M.C.; Voors, A.A.; Metra, M.; et al. Sotagliflozin in Patients with Diabetes and Recent Worsening Heart Failure. N. Engl. J. Med. 2021, 384, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Serenelli, M.; Böhm, M.; Inzucchi, S.E.; Køber, L.; Kosiborod, M.N.; Martinez, F.A.; Ponikowski, P.; Sabatine, M.S.; Solomon, S.D.; DeMets, D.L.; et al. Effect of dapagliflozin according to baseline systolic blood pressure in the Dapagliflozin and Prevention of Adverse Outcomes in Heart Failure trial (DAPA-HF). Eur. Heart J. 2020, 41, 3402–3418. [Google Scholar] [CrossRef]
- Nassif, M.E.; Qintar, M.; Windsor, S.L.; Jermyn, R.; Shavelle, D.M.; Tang, F.; Lamba, S.; Bhatt, K.; Brush, J.; Civitello, A.; et al. Empagliflozin Effects on Pulmonary Artery Pressure in Patients With Heart Failure: Results From the EMBRACE-HF Trial. Circulation 2021, 143, 1673–1686. [Google Scholar] [CrossRef]
- Neuen, B.L.; Young, T.; Heerspink, H.J.L.; Neal, B.; Perkovic, V.; Billot, L.; Mahaffey, K.W.; Charytan, D.M.; Wheeler, D.C.; Arnott, C.; et al. SGLT2 inhibitors for the prevention of kidney failure in patients with type 2 diabetes: A systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2019, 7, 845–854. [Google Scholar] [CrossRef]
- Santos-Gallego, C.G.; Vargas-Delgado, A.P.; Requena-Ibanez, J.A.; Garcia-Ropero, A.; Mancini, D.; Pinney, S.; Macaluso, F.; Sartori, S.; Roque, M.; Sabatel-Perez, F.; et al. Randomized trial of empagliflozin in nondiabetic patients with heart failure and reduced ejection fraction. J. Am. Coll. Cardiol. 2021, 77, 243–255. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.M.Y.; Brooksbank, K.J.M.; Wetherall, K.; Mangion, K.; Roditi, G.; Campbell, R.T.; Berry, C.; Chong, V.; Coyle, L.; Docherty, K.F.; et al. Effect of Empagliflozin on Left Ventricular Volumes in Patients With Type 2 Diabetes, or Prediabetes, and Heart Failure With Reduced Ejection Fraction (SUGAR-DM-HF). Circulation 2021, 143, 516–525. [Google Scholar] [CrossRef] [PubMed]
- Omar, M.; Jensen, J.; Ali, M.; Frederiksen, P.H.; Kistorp, C.; Videbæk, L.; Poulsen, M.K.; Tuxen, C.D.; Möller, S.; Gustafsson, F.; et al. Associations of empagliflozin with left ventricular volumes, mass, and function in patients with heart failure and reduced ejection fraction: A substudy of the empire HF randomized clinical trial. JAMA Cardiol. 2021, 6, 836–840. [Google Scholar] [CrossRef] [PubMed]
- Zinman, B.; Wanner, C.; Lachin, J.M.; Fitchett, D.; Bluhmki, E.; Hantel, S.; Mattheus, M.; Devins, T.; Johansen, O.E.; Woerle, H.J.; et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med. 2015, 373, 2117–2128. [Google Scholar] [CrossRef]
- Fitchett, D.; McKnight, J.; Lee, J.; George, J.; Mattheus, M.; Woerle, H.J.; Inzucchi, S.E. P4903Empagliflozin reduces heart failure irrespective of control of blood pressure, low density lipoprotein cholesterol and HbA1c. Eur. Heart J. 2017, 38 (Suppl. S1), ehx493.P4903. [Google Scholar] [CrossRef]
- Mahaffey, K.W.; Neal, B.; Perkovic, V.; de Zeeuw, D.; Fulcher, G.; Erondu, N.; Shaw, W.; Fabbrini, E.; Sun, T.; Li, Q.; et al. Canagliflozin for primary and secondary prevention of cardiovascular events: Results from the CANVAS program (canagliflozin cardiovascular assessment study). Circulation 2018, 137, 323–334. [Google Scholar] [CrossRef]
- Wiviott, S.D.; Raz, I.; Bonaca, M.P.; Mosenzon, O.; Kato, E.T.; Cahn, A.; Silverman, M.G.; Zelniker, T.A.; Kuder, J.F.; Murphy, S.A.; et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 2019, 380, 347–357. [Google Scholar] [CrossRef]
- Kosiborod, M.; Cavender, M.A.; Fu, A.Z.; Wilding, J.P.; Khunti, K.; Holl, R.W.; Norhammar, A.; Birkeland, K.I.; Jørgensen, M.E.; Thuresson, M.; et al. Lower Risk of Heart Failure and Death in Patients Initiated on Sodium-Glucose Cotransporter-2 Inhibitors Versus Other Glucose-Lowering Drugs: The CVD-REAL Study (Comparative Effectiveness of Cardiovascular Outcomes in New Users of Sodium-Glucose Cotransporter-2 Inhibitors). Circulation 2017, 136, 249–259. [Google Scholar]
- Patorno, E.; Pawar, A.; Franklin, J.M.; Najafzadeh, M.; Déruaz-Luyet, A.; Brodovicz, K.G.; Sambevski, S.; Bessette, L.G.; Santiago Ortiz, A.J.; Kulldorff, M.; et al. Empagliflozin and the risk of heart failure hospitalization in routine clinical care. Circulation 2019, 139, 2822–2830. [Google Scholar] [CrossRef]
- McMurray, J.J.V.; Solomon, S.D.; Inzucchi, S.E.; Køber, L.; Kosiborod, M.N.; Martinez, F.A.; Ponikowski, P.; Sabatine, M.S.; Anand, I.S.; Bělohlávek, J.; et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N. Engl. J. Med. 2019, 381, 1995–2008. [Google Scholar] [CrossRef] [Green Version]
- Anker, S.D.; Butler, J.; Filippatos, G.; Khan, M.S.; Marx, N.; Lam, C.S.P.; Schnaidt, S.; Ofstad, A.P.; Brueckmann, M.; Jamal, W.; et al. Effect of Empagliflozin on Cardiovascular and Renal Outcomes in Patients With Heart Failure by Baseline Diabetes Status: Results From the EMPEROR-Reduced Trial. Circulation 2021, 143, 337–349. [Google Scholar] [CrossRef] [PubMed]
- Packer, M.; Anker, S.D.; Butler, J.; Filippatos, G.; Pocock, S.J.; Carson, P.; Januzzi, J.; Verma, S.; Tsutsui, H.; Brueckmann, M.; et al. Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. N. Engl. J. Med. 2020, 383, 1413–1424. [Google Scholar] [CrossRef] [PubMed]
- Petrie, M.C.; Verma, S.; Docherty, K.F.; Inzucchi, S.E.; Anand, I.; Belohlávek, J.; Böhm, M.; Chiang, C.-E.; Chopra, V.K.; de Boer, R.A.; et al. Effect of dapagliflozin on worsening heart failure and cardiovascular death in patients with heart failure with and without diabetes. JAMA 2020, 323, 1353–1368. [Google Scholar] [CrossRef]
- Writing Committee; Maddox, T.M.; Januzzi, J.L.; Allen, L.A.; Breathett, K.; Butler, J.; Davis, L.L.; Fonarow, G.C.; Ibrahim, N.E.; Lindenfeld, J.; et al. 2021 update to the 2017 ACC expert consensus decision pathway for optimization of heart failure treatment: Answers to 10 pivotal issues about heart failure with reduced ejection fraction: A report of the american college of cardiology solution set oversight committee. J. Am. Coll. Cardiol. 2021, 77, 772–810. [Google Scholar] [PubMed]
- Seferović, P.M.; Fragasso, G.; Petrie, M.; Mullens, W.; Ferrari, R.; Thum, T.; Bauersachs, J.; Anker, S.D.; Ray, R.; Çavuşoğlu, Y.; et al. Sodium-glucose co-transporter 2 inhibitors in heart failure: Beyond glycaemic control. A position paper of the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2020, 22, 1495–1503. [Google Scholar] [CrossRef]
- Gladden, J.D.; Chaanine, A.H.; Redfield, M.M. Heart Failure with Preserved Ejection Fraction. Annu. Rev. Med. 2018, 69, 65–79. [Google Scholar] [CrossRef]
- Nassif, M.E.; Windsor, S.L.; Borlaug, B.A.; Kitzman, D.W.; Shah, S.J.; Tang, F.; Khariton, Y.; Malik, A.O.; Khumri, T.; Umpierrez, G.; et al. The SGLT2 inhibitor dapagliflozin in heart failure with preserved ejection fraction: A multicenter randomized trial. Nat. Med. 2021, 27, 1954–1960. [Google Scholar] [CrossRef]
- Solomon, S.D.; McMurray, J.J.V.; Claggett, B.; de Boer, R.A.; DeMets, D.; Hernandez, A.F.; Inzucchi, S.E.; Kosiborod, M.N.; Lam, C.S.P.; Martinez, F.; et al. Dapagliflozin in Heart Failure with Mildly Reduced or Preserved Ejection Fraction. N. Engl. J. Med. 2022, 10, 184–197. [Google Scholar] [CrossRef]
- Anker, S.D.; Butler, J.; Filippatos, G.; Ferreira, J.P.; Bocchi, E.; Böhm, M.; Inzucchi, S.E.; Kosiborod, M.N.; Lam, C.S.P.; Martinez, F.; et al. Empagliflozin in Heart Failure with a Preserved Ejection Fraction. N. Engl. J. Med. 2021, 385, 1451–1461. [Google Scholar] [CrossRef]
- Butler, J.; Packer, M.; Filippatos, G.; Ferreira, J.P.; Zeller, C.; Schnee, J.; Brueckmann, M.; Pocock, S.J.; Zannad, F.; Anker, S.D. Effect of empagliflozin in patients with heart failure across the spectrum of left ventricular ejection fraction. Eur. Heart J. 2022, 43, 416–426. [Google Scholar] [CrossRef] [PubMed]
- Butler, J.; Filippatos, G.; Jamal Siddiqi, T.; Brueckmann, M.; Böhm, M.; Chopra, V.K.; Pedro Ferreira, J.; Januzzi, J.L.; Kaul, S.; Piña, I.L.; et al. Empagliflozin, Health Status, and Quality of Life in Patients With Heart Failure and Preserved Ejection Fraction: The EMPEROR-Preserved Trial. Circulation 2022, 145, 184–193. [Google Scholar] [CrossRef]
- Perkovic, V.; Jardine, M.J.; Neal, B.; Bompoint, S.; Heerspink, H.J.L.; Charytan, D.M.; Edwards, R.; Agarwal, R.; Bakris, G.; Bull, S.; et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N. Engl. J. Med. 2019, 380, 2295–2306. [Google Scholar] [CrossRef] [PubMed]
- Heerspink, H.J.L.; Stefánsson, B.V.; Correa-Rotter, R.; Chertow, G.M.; Greene, T.; Hou, F.-F.; Mann, J.F.E.; McMurray, J.J.V.; Lindberg, M.; Rossing, P.; et al. Dapagliflozin in Patients with Chronic Kidney Disease. N. Engl. J. Med. 2020, 383, 1436–1446. [Google Scholar] [CrossRef]
- EMPA-KIDNEY Collaborative Group. Design, recruitment, and baseline characteristics of the EMPA-KIDNEY trial. Nephrol. Dial. Transplant. 2022, 37, 1317–1329. [Google Scholar] [CrossRef] [PubMed]
- Gheorghiade, M.; Marti, C.N.; Sabbah, H.N.; Roessig, L.; Greene, S.J.; Böhm, M.; Burnett, J.C.; Campia, U.; Cleland, J.G.F.; Collins, S.P.; et al. Soluble guanylate cyclase: A potential therapeutic target for heart failure. Heart Fail. Rev. 2013, 18, 123–134. [Google Scholar] [CrossRef] [PubMed]
- Emdin, M.; Aimo, A.; Castiglione, V.; Vergaro, G.; Georgiopoulos, G.; Saccaro, L.F.; Lombardi, C.M.; Passino, C.; Cerbai, E.; Metra, M.; et al. Targeting cyclic guanosine monophosphate to treat heart failure: JACC review topic of the week. J. Am. Coll. Cardiol. 2020, 76, 1795–1807. [Google Scholar] [CrossRef] [PubMed]
- Stasch, J.-P.; Pacher, P.; Evgenov, O.V. Soluble guanylate cyclase as an emerging therapeutic target in cardiopulmonary disease. Circulation 2011, 123, 2263–2273. [Google Scholar] [CrossRef]
- Follmann, M.; Ackerstaff, J.; Redlich, G.; Wunder, F.; Lang, D.; Kern, A.; Fey, P.; Griebenow, N.; Kroh, W.; Becker-Pelster, E.-M.; et al. Discovery of the soluble guanylate cyclase stimulator vericiguat (BAY 1021189) for the treatment of chronic heart failure. J. Med. Chem. 2017, 60, 5146–5161. [Google Scholar] [CrossRef]
- Armstrong, P.W.; Pieske, B.; Anstrom, K.J.; Ezekowitz, J.; Hernandez, A.F.; Butler, J.; Lam, C.S.P.; Ponikowski, P.; Voors, A.A.; Jia, G.; et al. Vericiguat in Patients with Heart Failure and Reduced Ejection Fraction. N. Engl. J. Med. 2020, 382, 1883–1893. [Google Scholar] [CrossRef]
- Erdmann, E.; Semigran, M.J.; Nieminen, M.S.; Gheorghiade, M.; Agrawal, R.; Mitrovic, V.; Mebazaa, A. Cinaciguat, a soluble guanylate cyclase activator, unloads the heart but also causes hypotension in acute decompensated heart failure. Eur. Heart J. 2013, 34, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Gheorghiade, M.; Greene, S.J.; Butler, J.; Filippatos, G.; Lam, C.S.P.; Maggioni, A.P.; Ponikowski, P.; Shah, S.J.; Solomon, S.D.; Kraigher-Krainer, E.; et al. Effect of Vericiguat, a Soluble Guanylate Cyclase Stimulator, on Natriuretic Peptide Levels in Patients With Worsening Chronic Heart Failure and Reduced Ejection Fraction: The SOCRATES-REDUCED Randomized Trial. JAMA 2015, 314, 2251–2262. [Google Scholar] [CrossRef] [PubMed]
- Boettcher, M.; Thomas, D.; Mueck, W.; Loewen, S.; Arens, E.; Yoshikawa, K.; Becker, C. Safety, pharmacodynamic, and phar-macokinetic characterization of vericiguat: Results from six phase I studies in healthy subjects. Eur. J. Clin. Pharmacol. 2021, 77, 527–537. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, P.W.; Lam, C.S.P.; Anstrom, K.J.; Ezekowitz, J.; Hernandez, A.F.; O’Connor, C.M.; Pieske, B.; Ponikowski, P.; Shah, S.J.; Solomon, S.D.; et al. Effect of Vericiguat vs Placebo on Quality of Life in Patients With Heart Failure and Preserved Ejection Fraction: The VITALITY-HFpEF Random-ized Clinical Trial. JAMA 2020, 324, 1512–1521. [Google Scholar] [CrossRef] [PubMed]
- Cruz, L.; Ryan, J.J. Nitric oxide signaling in heart failure with preserved ejection fraction. JACC Basic Transl. Sci. 2017, 2, 341–343. [Google Scholar] [CrossRef]
- Kassis-George, H.; Verlinden, N.J.; Fu, S.; Kanwar, M. Vericiguat in Heart Failure with a Reduced Ejection Fraction: Patient Selection and Special Considerations. Ther. Clin. Risk Manag. 2022, 18, 315–322. [Google Scholar] [CrossRef]
- Lombardi, C.M.; Cimino, G.; Pagnesi, M.; Dell’Aquila, A.; Tomasoni, D.; Ravera, A.; Inciardi, R.; Carubelli, V.; Vizzardi, E.; Nodari, S.; et al. Vericiguat for Heart Failure with Reduced Ejection Fraction. Curr. Cardiol. Rep. 2021, 23, 144. [Google Scholar] [CrossRef]
- Teerlink, J.R.; Diaz, R.; Felker, G.M.; McMurray, J.J.V.; Metra, M.; Solomon, S.D.; Adams, K.F.; Anand, I.; Arias-Mendoza, A.; Biering-Sørensen, T.; et al. Cardiac Myosin Activation with Omecamtiv Mecarbil in Systolic Heart Failure. N. Engl. J. Med. 2021, 384, 105–116. [Google Scholar] [CrossRef]
- Teerlink, J.R.; Diaz, R.; Felker, G.M.; McMurray, J.J.V.; Metra, M.; Solomon, S.D.; Biering-Sørensen, T.; Böhm, M.; Bonder-man, D.; Fang, J.C.; et al. Effect of ejection fraction on clinical outcomes in patients treated with omecamtiv mecarbil in GALACTIC-HF. J. Am. Coll. Cardiol. 2021, 78, 97–108. [Google Scholar] [CrossRef]
- Writing Committee Members; Yancy, C.W.; Jessup, M.; Bozkurt, B.; Butler, J.; Casey, D.E.; Colvin, M.M.; Drazner, M.H.; Filippatos, G.; Fonarow, G.C.; et al. 2016 ACC/AHA/HFSA focused update on new pharmacological therapy for heart failure: An update of the 2013 ACCF/AHA guideline for the management of heart failure: A report of the american college of cardiology/american heart association task force on clinical practice guidelines and the heart failure society of America. Circulation 2016, 134, e282–e293. [Google Scholar]
- Kramer, D.G.; Trikalinos, T.A.; Kent, D.M.; Antonopoulos, G.V.; Konstam, M.A.; Udelson, J.E. Quantitative evaluation of drug or device effects on ventricular remodeling as predictors of therapeutic effects on mortality in patients with heart failure and reduced ejection fraction: A meta-analytic approach. J. Am. Coll. Cardiol. 2010, 56, 392–406. [Google Scholar] [CrossRef] [PubMed]
- Psotka, M.A.; Teerlink, J.R. Direct Myosin Activation by Omecamtiv Mecarbil for Heart Failure with Reduced Ejection Frac-tion. Handb. Exp. Pharmacol. 2017, 243, 465–490. [Google Scholar] [PubMed]
- Malik, F.I.; Hartman, J.J.; Elias, K.A.; Morgan, B.P.; Rodriguez, H.; Brejc, K.; Anderson, R.L.; Sueoka, S.H.; Lee, K.H.; Finer, J.T.; et al. Cardiac myosin activation: A potential therapeutic approach for systolic heart failure. Science 2011, 331, 1439–1443. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, T.; Miller, P.E.; McCullough, M.; Desai, N.R.; Riello, R.; Psotka, M.; Böhm, M.; Allen, L.A.; Teerlink, J.R.; Rosano, G.M.C.; et al. Why has positive inotropy failed in chronic heart failure? Lessons from prior inotrope trials. Eur. J. Heart Fail. 2019, 21, 1064–1078. [Google Scholar] [CrossRef]
- Teerlink, J.R.; Felker, G.M.; McMurray, J.J.V.; Solomon, S.D.; Adams, K.F.; Cleland, J.G.F.; Ezekowitz, J.A.; Goudev, A.; Macdonald, P.; Metra, M.; et al. Chronic Oral Study of Myosin Activation to Increase Contractility in Heart Failure (COSMIC-HF): A phase 2, pharmacokinetic, randomised, placebo-controlled trial. Lancet 2016, 388, 2895–2903. [Google Scholar] [CrossRef]
- Biering-Sorensen, T.; Teerlink, J.; Felker, G.M.; McMurray, J.; Malik, F.; Honarpour, N.; Monsalvo, M.L.; Johnston, J.; Solomon, S.D. The cardiac myosin activator, omecamtiv mecarbil, improves left ventricular myocardial deformation in chronic heart failure (cosmic-hf). J. Am. Coll. Cardiol. 2017, 69, 858. [Google Scholar] [CrossRef]
- Teerlink, J.R.; Diaz, R.; Felker, G.M.; McMurray, J.J.V.; Metra, M.; Solomon, S.D.; Legg, J.C.; Büchele, G.; Varin, C.; Kurtz, C.E.; et al. Omecamtiv Mecarbil in Chronic Heart Failure With Reduced Ejection Fraction: Rationale and Design of GALACTIC-HF. JACC Heart Fail. 2020, 8, 329–340. [Google Scholar] [CrossRef]
- Teerlink, J.R.; Diaz, R.; Felker, G.M.; McMurray, J.J.V.; Metra, M.; Solomon, S.D.; Adams, K.F.; Anand, I.; Arias-Mendoza, A.; Biering-Sørensen, T.; et al. Omecamtiv mecarbil in chronic heart failure with reduced ejection fraction: GALACTIC-HF baseline characteristics and comparison with contemporary clinical trials. Eur. J. Heart Fail. 2020, 22, 2160–2171. [Google Scholar] [CrossRef]
- Date, Y.; Kojima, M.; Hosoda, H.; Sawaguchi, A.; Mondal, M.S.; Suganuma, T.; Matsukura, S.; Kangawa, K.; Nakazato, M. Ghrelin, a novel growth hor-mone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology 2000, 141, 4255–4261. [Google Scholar] [CrossRef]
- Kojima, M.; Kangawa, K. Ghrelin: Structure and function. Physiol. Rev. 2005, 85, 495–522. [Google Scholar] [CrossRef]
- Nagaya, N.; Uematsu, M.; Kojima, M.; Ikeda, Y.; Yoshihara, F.; Shimizu, W.; Hosoda, H.; Hirota, Y.; Ishida, H.; Mori, H.; et al. Chronic administration of ghrelin improves left ventricular dysfunction and attenuates development of cardiac cachexia in rats with heart failure. Circulation 2001, 104, 1430–1435. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.; Ren, Y.; Liu, X.; Li, W.G.; Yang, J.; Geng, B.; Weintraub, N.L.; Tang, C. Protective effects of ghrelin on ischemia/reperfusion injury in the isolated rat heart. J. Cardiovasc. Pharmacol. 2004, 43, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Ledderose, C.; Kreth, S.; Beiras-Fernandez, A. Ghrelin, a novel peptide hormone in the regulation of energy balance and cardiovascular function. Recent. Pat. Endocr. Metab. Immune Drug Discov. 2011, 5, 1–6. [Google Scholar] [CrossRef]
- Gupta, S.; Mitra, A. Heal the heart through gut (hormone) ghrelin: A potential player to combat heart failure. Heart Fail. Rev. 2021, 26, 417–435. [Google Scholar] [CrossRef] [PubMed]
- Nagaya, N.; Miyatake, K.; Uematsu, M.; Oya, H.; Shimizu, W.; Hosoda, H.; Kojima, M.; Nakanishi, N.; Mori, H.; Kangawa, K. Hemodynamic, renal, and hormonal effects of ghrelin infusion in patients with chronic heart failure. J. Clin. Endocrinol. Metab. 2001, 86, 5854–5859. [Google Scholar] [CrossRef]
- Nagaya, N.; Moriya, J.; Yasumura, Y.; Uematsu, M.; Ono, F.; Shimizu, W.; Ueno, K.; Kitakaze, M.; Miyatake, K.; Kangawa, K. Effects of ghrelin administration on left ventricular function, exercise capacity, and muscle wasting in patients with chronic heart failure. Circulation 2004, 110, 3674–3679. [Google Scholar] [CrossRef]
- Yuan, M.-J.; Li, W.; Zhong, P. Research progress of ghrelin on cardiovascular disease. Biosci. Rep. 2021, 41, BSR20203387. [Google Scholar] [CrossRef]
- Sobowale, C.O.; Hori, Y.; Ajijola, O.A. Neuromodulation therapy in heart failure: Combined use of drugs and devices. J. Innov. Cardiac. Rhythm Manag. 2020, 11, 4151–4159. [Google Scholar] [CrossRef]
- Elsevier Health Sciences. Guyton and Hall Textbook of Medical Physiology E-Book; Hall, J.E., Hall, M.E., Eds.; Elsevier Health Sciences: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Krahl, S.E.; Clark, K.B. Vagus nerve stimulation for epilepsy: A review of central mechanisms. Surg. Neurol. Int. 2012, 3 (Suppl. S4), S255–S259. [Google Scholar] [CrossRef]
- Florea, V.G.; Cohn, J.N. The autonomic nervous system and heart failure. Circ. Res. 2014, 114, 1815–1826. [Google Scholar] [CrossRef]
- Bylund, D.B.; Eikenberg, D.C.; Hieble, J.P.; Langer, S.Z.; Lefkowitz, R.J.; Minneman, K.P.; Molinoff, P.B.; Ruffolo, R.R.; Trendelenburg, U. International Union of Pharmacology nomenclature of adrenoceptors. Pharmacol. Rev. 1994, 46, 121–136. [Google Scholar] [PubMed]
- Port, J.D.; Bristow, M.R. Altered beta-adrenergic receptor gene regulation and signaling in chronic heart failure. J. Mol. Cell Cardiol. 2001, 33, 887–905. [Google Scholar] [CrossRef] [PubMed]
- Patel, H.C.; Rosen, S.D.; Lindsay, A.; Hayward, C.; Lyon, A.R.; di Mario, C. Targeting the autonomic nervous system: Measuring autonomic function and novel devices for heart failure management. Int. J. Cardiol. 2013, 170, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Orso, F.; Fabbri, G.; Maggioni, A.P. Epidemiology of heart failure. Handb. Exp. Pharmacol. 2017, 243, 15–33. [Google Scholar]
- Triposkiadis, F.; Karayannis, G.; Giamouzis, G.; Skoularigis, J.; Louridas, G.; Butler, J. The sympathetic nervous system in heart failure physiology, pathophysiology, and clinical implications. J. Am. Coll. Cardiol. 2009, 54, 1747–1762. [Google Scholar] [CrossRef]
- Olshansky, B.; Sabbah, H.N.; Hauptman, P.J.; Colucci, W.S. Parasympathetic nervous system and heart failure: Patho-physiology and potential implications for therapy. Circulation 2008, 118, 863–871. [Google Scholar] [CrossRef]
- Bibevski, S.; Dunlap, M.E. Evidence for impaired vagus nerve activity in heart failure. Heart Fail. Rev. 2011, 16, 129–135. [Google Scholar] [CrossRef]
- Motte, S.; Mathieu, M.; Brimioulle, S.; Pensis, A.; Ray, L.; Ketelslegers, J.-M.; Montano, N.; Naeije, R.; van de Borne, P.; Entee, K.M. Respiratory-related heart rate variability in progressive experimental heart failure. Am. J. Physiol. Heart Circ. Physiol. 2005, 289, H1729–H1735. [Google Scholar] [CrossRef]
- Buckley, U.; Yamakawa, K.; Takamiya, T.; Andrew Armour, J.; Shivkumar, K.; Ardell, J.L. Targeted stellate decentralization: Implications for sympathetic control of ventricular electrophysiology. Heart Rhythm. 2016, 13, 282–288. [Google Scholar] [CrossRef]
- Witt, C.M.; Bolona, L.; Kinney, M.O.; Moir, C.; Ackerman, M.J.; Kapa, S.; Asirvatham, S.J.; McLeod, C.J. Denervation of the extrinsic cardiac sympathetic nervous system as a treatment modality for arrhythmia. Europace 2017, 19, 1075–1083. [Google Scholar] [CrossRef]
- Vaseghi, M.; Barwad, P.; Malavassi Corrales, F.J.; Tandri, H.; Mathuria, N.; Shah, R.; Sorg, J.M.; Gima, J.; Mandal, K.; Sàenz Morales, L.C.; et al. Cardiac sympathetic denervation for refractory ventricular arrhythmias. J. Am. Coll. Cardiol. 2017, 69, 3070–3080. [Google Scholar] [CrossRef] [PubMed]
- Schneider, H.E.; Steinmetz, M.; Krause, U.; Kriebel, T.; Ruschewski, W.; Paul, T. Left cardiac sympathetic denervation for the management of life-threatening ventricular tachyarrhythmias in young patients with catecholaminergic polymorphic ven-tricular tachycardia and long QT syndrome. Clin. Res. Cardiol. 2013, 102, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Shah, R.; Assis, F.; Alugubelli, N.; Okada, D.R.; Cardoso, R.; Shivkumar, K.; Tandri, H. Cardiac sympathetic denervation for refractory ventricular arrhythmias in patients with structural heart disease: A systematic review. Heart Rhythm. 2019, 16, 1499–1505. [Google Scholar] [CrossRef] [PubMed]
- Hofferberth, S.C.; Cecchin, F.; Loberman, D.; Fynn-Thompson, F. Left thoracoscopic sympathectomy for cardiac denervation in patients with life-threatening ventricular arrhythmias. J. Thorac. Cardiovasc. Surg. 2014, 147, 404–409. [Google Scholar] [CrossRef]
- Schwartz, P.J. Cardiac sympathetic denervation to prevent life-threatening arrhythmias. Nat. Rev. Cardiol. 2014, 11, 346–353. [Google Scholar] [CrossRef]
- Schirmer, S.H.; Sayed, M.M.Y.A.; Reil, J.-C.; Ukena, C.; Linz, D.; Kindermann, M.; Laufs, U.; Mahfoud, F.; Böhm, M. Improvements in left ventricular hypertrophy and diastolic function following renal denervation: Effects beyond blood pressure and heart rate reduction. J. Am. Coll. Cardiol. 2014, 63, 1916–1923. [Google Scholar] [CrossRef]
- Chen, W.; Ling, Z.; Xu, Y.; Liu, Z.; Su, L.; Du, H.; Xiao, P.; Lan, X.; Shan, Q.; Yin, Y. Preliminary effects of renal denervation with saline irrigated catheter on cardiac systolic function in patients with heart failure: A Prospective, Randomized, Controlled, Pilot Study. Catheter. Cardiovasc. Interv. 2017, 89, E153–E161. [Google Scholar] [CrossRef]
- Schiller, A.M.; Haack, K.K.V.; Pellegrino, P.R.; Curry, P.L.; Zucker, I.H. Unilateral renal denervation improves autonomic balance in conscious rabbits with chronic heart failure. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2013, 305, R886–R892. [Google Scholar] [CrossRef]
- Akinseye, O.A.; Ralston, W.F.; Johnson, K.C.; Ketron, L.L.; Womack, C.R.; Ibebuogu, U.N. Renal sympathetic denervation: A comprehensive review. Curr. Probl. Cardiol. 2021, 46, 100598. [Google Scholar] [CrossRef]
- Davies, J.E.; Manisty, C.H.; Petraco, R.; Barron, A.J.; Unsworth, B.; Mayet, J.; Hamady, M.; Hughes, A.D.; Sever, P.S.; Sobotka, P.A.; et al. First-in-man safety evaluation of renal denervation for chronic systolic heart failure: Primary outcome from REACH-Pilot study. Int. J. Cardiol. 2013, 162, 189–192. [Google Scholar] [CrossRef]
- Xia, Z.; Han, L.; Pellegrino, P.R.; Schiller, A.M.; Harrold, L.D.; Lobato, R.L.; Lisco, S.J.; Zucker, I.H.; Wang, H.-J. Safety and efficacy of renal denervation in patients with heart failure with reduced ejection fraction (HFrEF): A systematic review and meta-analysis. Heliyon 2022, 8, e08847. [Google Scholar] [CrossRef] [PubMed]
- Pavlov, V.A.; Tracey, K.J. The vagus nerve and the inflammatory reflex--linking immunity and metabolism. Nat. Rev. Endo-crinol. 2012, 8, 743–754. [Google Scholar] [CrossRef] [PubMed]
- Kittipibul, V.; Fudim, M. Tackling inflammation in heart failure with preserved ejection fraction: Resurrection of vagus nerve stimulation? J. Am. Heart Assoc. 2022, 11, e024481. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, P.J.; De Ferrari, G.M.; Sanzo, A.; Landolina, M.; Rordorf, R.; Raineri, C.; Campana, C.; Revera, M.; Ajmone-Marsan, N.; Tavazzi, L.; et al. Long term vagal stimulation in patients with advanced heart failure: First experience in man. Eur. J. Heart Fail. 2008, 10, 884–891. [Google Scholar] [CrossRef]
- Zannad, F.; De Ferrari, G.M.; Tuinenburg, A.E.; Wright, D.; Brugada, J.; Butter, C.; Klein, H.; Stolen, C.; Meyer, S.; Stein, K.M.; et al. Chronic vagal stimulation for the treatment of low ejection fraction heart failure: Results of the NEural Cardiac TherApy foR Heart Failure (NECTAR-HF) randomized controlled trial. Eur. Heart J. 2015, 36, 425–433. [Google Scholar] [CrossRef] [PubMed]
- Gold, M.R.; Van Veldhuisen, D.J.; Hauptman, P.J.; Borggrefe, M.; Kubo, S.H.; Lieberman, R.A.; Milasinovic, G.; Berman, B.J.; Djordjevic, S.; Neelagaru, S.; et al. Vagus Nerve Stimulation for the Treatment of Heart Failure: The INOVATE-HF Trial. J. Am. Coll. Cardiol. 2016, 68, 149–158. [Google Scholar] [CrossRef]
- Premchand, R.K.; Sharma, K.; Mittal, S.; Monteiro, R.; Dixit, S.; Libbus, I.; DiCarlo, L.A.; Ardell, J.L.; Rector, T.S.; Amurthur, B.; et al. Autonomic regulation therapy via left or right cervical vagus nerve stimulation in patients with chronic heart failure: Results of the ANTHEM-HF trial. J. Card. Fail. 2014, 20, 808–816. [Google Scholar] [CrossRef]
- Fudim, M.; Abraham, W.T.; von Bardeleben, R.S.; Lindenfeld, J.; Ponikowski, P.P.; Salah, H.M.; Khan, M.S.; Sievert, H.; Stone, G.W.; Anker, S.D.; et al. Device Therapy in Chronic Heart Failure: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2021, 78, 931–956. [Google Scholar] [CrossRef]
- Akdemir, B.; Benditt, D.G. Vagus nerve stimulation: An evolving adjunctive treatment for cardiac disease. Anatol. J. Cardiol. 2016, 16, 804–810. [Google Scholar] [CrossRef]
- Deuchars, S.A.; Lall, V.K.; Clancy, J.; Mahadi, M.; Murray, A.; Peers, L.; Deuchars, J. Mechanisms underpinning sympathetic nervous activity and its modulation using transcutaneous vagus nerve stimulation. Exp. Physiol. 2018, 103, 326–331. [Google Scholar] [CrossRef]
- Zhou, L.; Filiberti, A.; Humphrey, M.B.; Fleming, C.D.; Scherlag, B.J.; Po, S.S.; Stavrakis, S. Low-level transcutaneous vagus nerve stimulation attenuates cardiac remodelling in a rat model of heart failure with preserved ejection fraction. Exp. Physiol. 2019, 104, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Tran, N.; Asad, Z.; Elkholey, K.; Scherlag, B.J.; Po, S.S.; Stavrakis, S. Autonomic neuromodulation acutely ameliorates left ventricular strain in humans. J. Cardiovasc. Transl. Res. 2019, 12, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Dasari, T.W.; Gabor, F.; Csipo, T.; Palacios, F.S.; Yabluchanskiy, A.; Samannan, R.; Po, S. Non-invasive Neuromodulation of Vagus Activity Improves Endothelial Function in Patients with Heart Failure with Reduced Ejection Fraction: A Randomized Study. J Card. Fail. 2018, 24, S59–S60. [Google Scholar] [CrossRef] [Green Version]
- Abi-Samra, F.; Gutterman, D. Cardiac contractility modulation: A novel approach for the treatment of heart failure. Heart Fail. Rev. 2016, 21, 645–660. [Google Scholar] [CrossRef] [PubMed]
- Patel, P.A.; Nadarajah, R.; Ali, N.; Gierula, J.; Witte, K.K. Cardiac contractility modulation for the treatment of heart failure with reduced ejection fraction. Heart Fail. Rev. 2021, 26, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Chinyere, I.R.; Balakrishnan, M.; Hutchinson, M.D. The emerging role of cardiac contractility modulation in heart failure treatment. Curr. Opin. Cardiol. 2022, 37, 30–35. [Google Scholar] [CrossRef]
- Pappone, C.; Augello, G.; Rosanio, S.; Vicedomini, G.; Santinelli, V.; Romano, M.; Agricola, E.; Maggi, F.; Buchmayr, G.; Moretti, G.; et al. First human chronic experience with cardiac contractility modulation by nonexcitatory electrical currents for treating systolic heart failure: Mid-term safety and efficacy results from a multicenter study. J. Cardiovasc. Electrophysiol. 2004, 15, 418–427. [Google Scholar] [CrossRef]
- Stix, G.; Borggrefe, M.; Wolpert, C.; Hindricks, G.; Kottkamp, H.; Böcker, D.; Wichter, T.; Mika, Y.; Ben-Haim, S.; Burkhoff, D.; et al. Chronic electrical stimulation during the absolute refractory period of the myocardium improves severe heart failure. Eur. Heart J. 2004, 25, 650–655. [Google Scholar] [CrossRef]
- Borggrefe, M.M.; Lawo, T.; Butter, C.; Schmidinger, H.; Lunati, M.; Pieske, B.; Misier, A.R.; Curnis, A.; Böcker, D.; Remppis, A.; et al. Randomized, double blind study of non-excitatory, cardiac contractility modulation electrical impulses for symptomatic heart failure. Eur. Heart J. 2008, 29, 1019–1028. [Google Scholar] [CrossRef]
- Kadish, A.; Nademanee, K.; Volosin, K.; Krueger, S.; Neelagaru, S.; Raval, N.; Obel, O.; Weiner, S.; Wish, M.; Carson, P.; et al. A randomized controlled trial evaluating the safety and efficacy of cardiac contractility modulation in advanced heart failure. Am. Heart J. 2011, 161, 329–337.e1. [Google Scholar] [CrossRef]
- Abraham, W.T.; Kuck, K.-H.; Goldsmith, R.L.; Lindenfeld, J.; Reddy, V.Y.; Carson, P.E.; Mann, D.L.; Saville, B.; Parise, H.; Chan, R.; et al. A randomized controlled trial to evaluate the safety and efficacy of cardiac contractility modulation. JACC Heart Fail. 2018, 6, 874–883. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, N.A.; Singh, J.P. Novel interventional therapies to modulate the autonomic tone in heart failure. JACC Heart Fail. 2015, 3, 786–802. [Google Scholar] [CrossRef]
- Iliescu, R.; Tudorancea, I.; Lohmeier, T.E. Baroreflex activation: From mechanisms to therapy for cardiovascular disease. Curr. Hypertens. Rep. 2014, 16, 453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buckley, U.; Shivkumar, K.; Ardell, J.L. Autonomic regulation therapy in heart failure. Curr Heart Fail Rep. 2015, 12, 284–293. [Google Scholar] [CrossRef] [PubMed]
- Gronda, E.; Seravalle, G.; Brambilla, G.; Costantino, G.; Casini, A.; Alsheraei, A.; Lovett, E.G.; Mancia, G.; Grassi, G. Chronic baroreflex activation effects on sympathetic nerve traffic, baroreflex function, and cardiac haemodynamics in heart failure: A proof-of-concept study. Eur. J. Heart Fail. 2014, 16, 977–983. [Google Scholar] [CrossRef] [PubMed]
- Zile, M.R.; Lindenfeld, J.; Weaver, F.A.; Zannad, F.; Galle, E.; Rogers, T.; Abraham, W.T. Baroreflex activation therapy in patients with heart failure with reduced ejection fraction. J. Am. Coll. Cardiol. 2020, 76, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Obokata, M.; Olson, T.P.; Reddy, Y.N.V.; Melenovsky, V.; Kane, G.C.; Borlaug, B.A. Haemodynamics, dyspnoea, and pulmonary reserve in heart failure with preserved ejection fraction. Eur. Heart J. 2018, 39, 2810–2821. [Google Scholar] [CrossRef]
- Reddy, Y.N.V.; Olson, T.P.; Obokata, M.; Melenovsky, V.; Borlaug, B.A. Hemodynamic correlates and diagnostic role of cardio-pulmonary exercise testing in heart failure with preserved ejection fraction. JACC Heart Fail. 2018, 6, 665–675. [Google Scholar] [CrossRef]
- Dorfs, S.; Zeh, W.; Hochholzer, W.; Jander, N.; Kienzle, R.-P.; Pieske, B.; Neumann, F.J. Pulmonary capillary wedge pressure during exercise and long-term mortality in patients with suspected heart failure with preserved ejection fraction. Eur. Heart J. 2014, 35, 3103–3112. [Google Scholar] [CrossRef]
- Fudim, M.; Khan, M.S.; Paracha, A.A.; Sunagawa, K.; Burkhoff, D. Targeting preload in heart failure: Splanchnic nerve blockade and beyond. Circ. Heart Fail. 2022, 15, e009340. [Google Scholar] [CrossRef]
- Fudim, M.; Ponikowski, P.P.; Burkhoff, D.; Dunlap, M.E.; Sobotka, P.A.; Molinger, J.; Patel, M.R.; Felker, G.M.; Hernandez, A.F.; Litwin, S.E.; et al. Splanchnic nerve modulation in heart failure: Mechanistic overview, initial clinical experience, and safety considerations. Eur. J. Heart Fail. 2021, 23, 1076–1084. [Google Scholar] [CrossRef] [PubMed]
- Burkhoff, D.; Tyberg, J.V. Why does pulmonary venous pressure rise after onset of LV dysfunction: A theoretical analysis. Am. J. Physiol. 1993, 265 Pt 2, H1819–H1828. [Google Scholar] [CrossRef]
- Fudim, M.; Patel, M.R.; Boortz-Marx, R.; Borlaug, B.A.; DeVore, A.D.; Ganesh, A.; Green, C.L.; Lopes, R.D.; Mentz, R.J.; Patel, C.B.; et al. Splanchnic nerve block mediated changes in stressed blood volume in heart failure. JACC Heart Fail. 2021, 9, 293–300. [Google Scholar] [CrossRef]
- Fudim, M.; Ganesh, A.; Green, C.; Jones, W.S.; Blazing, M.A.; Devore, A.D.; Felker, G.M.; Kiefer, T.L.; Kong, D.F.; Boortz-Marx, R.L.; et al. Splanchnic nerve block for decompensated chronic heart failure: Splanchnic-HF. Eur. Hear. J. 2018, 39, 4255–4256. [Google Scholar] [CrossRef] [PubMed]
- Fudim, M.; Jones, W.S.; Boortz-Marx, R.L.; Ganesh, A.; Green, C.L.; Hernandez, A.F.; Patel, M.R. Splanchnic nerve block for acute heart failure. Circulation 2018, 138, 951–953. [Google Scholar] [CrossRef] [PubMed]
- Gajewski, P.; Fudim, M.; Kittipibul, V.; Engelman, Z.J.; Biegus, J.; Zymliński, R.; Ponikowski, P. Early Hemodynamic Changes following Surgical Ablation of the Right Greater Splanchnic Nerve for the Treatment of Heart Failure with Preserved Ejection Fraction. J. Clin. Med. 2022, 11, 1063. [Google Scholar] [CrossRef] [PubMed]
- Fudim, M.; Engelman, Z.J.; Reddy, V.Y.; Shah, S.J. Splanchnic nerve ablation for volume management in heart failure. JACC Basic Transl. Sci. 2022, 7, 319–321. [Google Scholar] [CrossRef]
- Fudim, M.; Fail, P.S.; Litwin, S.E.; Shaburishvili, T.; Goyal, P.; Hummel, S.; Borlaug, B.A.; Mohan, R.C.; Patel, R.B.; Mitter, S.S.; et al. Endovascular Ablation of the Right Greater Splanchnic Nerve in Heart Failure with Preserved Ejection Fraction: Early Results of the REBALANCE-HF Trial Roll-in Cohort. Eur. J. Heart Fail. 2022, 24, 1410–1414. [Google Scholar] [CrossRef]
- Sorimachi, H.; Burkhoff, D.; Verbrugge, F.H.; Omote, K.; Obokata, M.; Reddy, Y.N.V.; Takahashi, N.; Sunagawa, K.; Borlaug, B.A. Obesity, venous capacitance, and venous compliance in heart failure with preserved ejection fraction. Eur. J. Heart Fail. 2021, 23, 1648–1658. [Google Scholar] [CrossRef]
- Costanzo, M.R.; Ponikowski, P.; Coats, A.; Javaheri, S.; Augostini, R.; Goldberg, L.R.; Holcomb, R.; Kao, A.; Khayat, R.N.; Oldenburg, O.; et al. Phrenic nerve stimulation to treat patients with central sleep apnoea and heart failure. Eur. J. Heart Fail. 2018, 20, 1746–1754. [Google Scholar] [CrossRef]
- Fudim, M.; Mirro, M.; Goldberg, L.R. Synchronized diaphragmatic stimulation for the treatment of symptomatic heart failure: A novel implantable therapy concept. JACC Basic Transl. Sci. 2022, 7, 322–323. [Google Scholar] [CrossRef] [PubMed]
- Costanzo, M.R.; Ponikowski, P.; Javaheri, S.; Augostini, R.; Goldberg, L.; Holcomb, R.; Kao, A.; Khayat, R.N.; Oldenburg, O.; Stellbrink, C.; et al. Transvenous neurostimulation for central sleep apnoea: A randomised controlled trial. Lancet 2016, 388, 974–982. [Google Scholar] [CrossRef]
- Costanzo, M.R.; Javaheri, S.; Ponikowski, P.; Oldenburg, O.; Augostini, R.; Goldberg, L.R.; Stellbrink, C.; Fox, H.; Schwartz, A.R.; Gupta, S.; et al. Transvenous Phrenic Nerve Stimulation for Treatment of Central Sleep Apnea: Five-Year Safety and Efficacy Outcomes. Nat. Sci. Sleep 2021, 13, 515–526. [Google Scholar] [CrossRef] [PubMed]
- Guzik, M.; Urban, S.; Iwanek, G.; Biegus, J.; Ponikowski, P.; Zymliński, R. Novel therapeutic devices in heart failure. J. Clin. Med. 2022, 11, 4303. [Google Scholar] [CrossRef] [PubMed]
- Beeler, R.; Schoenenberger, A.W.; Bauer, P.; Kobza, R.; Bergner, M.; Mueller, X.; Schlaepfer, R.; Zuber, M.; Erne, S.; Erne, P. Improvement of cardiac function with device-based diaphragmatic stimulation in chronic heart failure patients: The randomized, open-label, crossover Epiphrenic II Pilot Trial. Eur. J. Heart Fail. 2014, 16, 342–349. [Google Scholar] [CrossRef]
- Cleland, J.G.F.; Young, R.; Jorbenadze, A.; Shaburishvili, T.; Demyanchuk, V.; Buriak, R.; Todurov, B.; Rudenko, K.; Zuber, M.; Stämpfli, S.F.; et al. A First in Human Mul-ti-center, Open Label, Prospective Study to Evaluate Safety, Usability and Performance of the VisONE System for Heart Failure with a Reduced Left Ventricular Ejection Fraction. J. Card. Fail. 2020, 26, S64. [Google Scholar] [CrossRef]
- Biegus, J.; Zymlinski, R.; Siwolowski, P.; Testani, J.; Szachniewicz, J.; Tycińska, A.; Banasiak, W.; Halpert, A.; Levin, H.; Ponikowski, P. Controlled decongestion by Reprieve therapy in acute heart failure: Results of the TARGET-1 and TARGET-2 studies. Eur. J. Heart Fail. 2019, 21, 1079–1087. [Google Scholar] [CrossRef]
- Zymliński, R.; Dierckx, R.; Biegus, J.; Vanderheyden, M.; Bartunek, J.; Ponikowski, P. Novel IVC doraya catheter provides congestion relief in patients with acute heart failure. JACC Basic Transl. Sci. 2022, 7, 326–327. [Google Scholar] [CrossRef]
- Kapur, N.K.; Kiernan, M.S.; Gorgoshvili, I.; Yousefzai, R.; Vorovich, E.E.; Tedford, R.J.; Sauer, A.J.; Abraham, J.; Resor, C.D.; Kimmelstiel, C.D.; et al. Intermittent Occlusion of the Superior Vena Cava to Improve Hemodynamics in Patients With Acutely Decompensated Heart Failure: The VENUS-HF Early Feasibility Study. Circ. Heart Fail. 2022, 15, e008934. [Google Scholar] [CrossRef]
- Abraham, W.T.; Jonas, M.; Dongaonkar, R.M.; Geist, B.; Ueyama, Y.; Render, K.; Youngblood, B.; Muir, W.; Hamlin, R.; Del Rio, C.L. Direct Interstitial Decongestion in an Animal Model of Acute-on-Chronic Ischemic Heart Failure. JACC Basic Transl. Sci. 2021, 6, 872–881. [Google Scholar] [CrossRef]
- Aronson, D.; Nitzan, Y.; Petcherski, S.; Bravo, E.; Habib, M.; Burkhoff, D.; Abraham, W.T. Enhancing sweat rate using a novel device for the treatment of congestion in heart failure. Eur. Heart J. 2021, 42 (Suppl. S1), ehab724–ehab1056. [Google Scholar] [CrossRef]
- Patel, H.C.; Rosen, S.D.; Hayward, C.; Vassiliou, V.; Smith, G.C.; Wage, R.R.; Bailey, J.; Rajani, R.; Lindsay, A.C.; Pennell, D.J.; et al. Renal denervation in heart failure with preserved ejection fraction (RDT-PEF): A randomized controlled trial. Eur. J. Heart Fail. 2016, 18, 703–712. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Po, S.S.; Amil, F.; Dasari, T.W. Non-invasive Low-level Tragus Stimulation in Cardiovascular Diseases. Arrhythm. Electrophysiol. Rev. 2020, 9, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Babar, N.; Giedrimiene, D. Updates on Baroreflex Activation Therapy and Vagus Nerve Stimulation for Treatment of Heart Failure With Reduced Ejection Fraction. Cardiol. Res. 2022, 13, 11. [Google Scholar] [CrossRef]
- Speech Analysis App Predicts Worsening Heart Failure before Symptom Onset [Internet]. Available online: https://www.escardio.org/The-ESC/Press-Office/Press-releases/Speech-analysis-app-predicts-worsening-heart-failure-before-symptom-onset (accessed on 11 June 2022).
- Ski, C.F.; Thompson, D.R.; Brunner-La Rocca, H.-P. Putting AI at the centre of heart failure care. ESC Heart Fail. 2020, 7, 3257–3258. [Google Scholar] [CrossRef]
- Weber, G.M. Using artificial intelligence in an intelligent way to improve efficiency of a heart failure care team. J. Card. Fail. 2018, 24, 363–364. [Google Scholar] [CrossRef]
- Johnson, K.W.; Torres Soto, J.; Glicksberg, B.S.; Shameer, K.; Miotto, R.; Ali, M.; Ashley, E.; Dudley, J.T. Artificial intelligence in cardiology. J. Am. Coll. Cardiol. 2018, 71, 2668–2679. [Google Scholar] [CrossRef]
- Barrett, M.; Boyne, J.; Brandts, J.; Brunner-La Rocca, H.-P.; De Maesschalck, L.; De Wit, K.; Dixon, L.; Eurlings, C.; Fitzsimons, D.; Golubnitschaja, O.; et al. Artificial intelligence sup-ported patient self-care in chronic heart failure: A paradigm shift from reactive to predictive, preventive and personalised care. EPMA J. 2019, 10, 445–464. [Google Scholar] [CrossRef] [PubMed]
- Knackstedt, C.; Bekkers, S.C.A.M.; Schummers, G.; Schreckenberg, M.; Muraru, D.; Badano, L.P.; Franke, A.; Bavishi, C.; Omar, A.M.S.; Sengupta, P.P. Fully Automated Versus Standard Tracking of Left Ventricular Ejection Fraction and Longitudinal Strain: The FAST-EFs Multicenter Study. J. Am. Coll. Cardiol. 2015, 66, 1456–1466. [Google Scholar] [CrossRef]
- DeCara, J.M.; Lang, R.M.; Koch, R.; Bala, R.; Penzotti, J.; Spencer, K.T. The use of small personal ultrasound devices by internists without formal training in echocardiography. Eur. J. Echocardiogr. 2003, 4, 141–147. [Google Scholar] [CrossRef]
- Bernard, O.; Lalande, A.; Zotti, C.; Cervenansky, F.; Yang, X.; Heng, P.-A.; Cetin, I.; Lekadir, K.; Camara, O.; Gonzalez Ballester, M.A.; et al. Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved? IEEE Trans. Med. Imaging 2018, 37, 2514–2525. [Google Scholar] [CrossRef] [PubMed]
- Laser, K.T.; Horst, J.-P.; Barth, P.; Kelter-Klöpping, A.; Haas, N.A.; Burchert, W.; Kececioglu, D.; Körperich, H. Knowledge-based reconstruction of right ventricular volumes using real-time three-dimensional echocardiographic as well as cardiac magnetic resonance images: Comparison with a cardiac magnetic resonance standard. J. Am. Soc. Echocardiogr. 2014, 27, 1087–1097. [Google Scholar] [CrossRef] [PubMed]
- Luo, G.; Dong, S.; Wang, K.; Zuo, W.; Cao, S.; Zhang, H. Multi-Views Fusion CNN for Left Ventricular Volumes Estimation on Cardiac MR Images. IEEE Trans. Biomed. Eng. 2018, 65, 1924–1934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bratt, A.; Kim, J.; Pollie, M.; Beecy, A.N.; Tehrani, N.H.; Codella, N.; Perez-Johnston, R.; Palumbo, M.C.; Alakbarli, J.; Colizza, W.; et al. Machine learning derived segmentation of phase velocity encoded cardiovascular magnetic resonance for fully automated aortic flow quantification. J. Cardiovasc. Magn. Reson. 2019, 21, 1. [Google Scholar] [CrossRef]
- Kirschbaum, S.; Aben, J.-P.; Baks, T.; Moelker, A.; Gruszczynska, K.; Krestin, G.P.; van der Giessen, W.J.; Duncker, D.J.; de Feyter, P.J.; van Geuns, R.-J.M. Accurate automatic papillary muscle identification for quantitative left ventricle mass measurements in cardiac magnetic resonance imaging. Acad. Radiol. 2008, 15, 1227–1233. [Google Scholar] [CrossRef]
- Gao, S.; van ’t Klooster, R.; Brandts, A.; Roes, S.D.; Alizadeh Dehnavi, R.; de Roos, A.; Westenberg, J.J.M.; van der Geest, R.J. Quantification of common carotid artery and descending aorta vessel wall thickness from MR vessel wall imaging using a fully automated processing pipeline. J. Magn. Reson. Imaging. 2017, 45, 215–228. [Google Scholar] [CrossRef]
- Zreik, M.; Lessmann, N.; van Hamersvelt, R.W.; Wolterink, J.M.; Voskuil, M.; Viergever, M.A.; Leiner, T.; Išgum, I. Deep learning analysis of the myocardium in coronary CT angiography for identification of patients with functionally significant coronary artery stenosis. Med. Image Anal. 2018, 44, 72–85. [Google Scholar] [CrossRef]
- Zolfaghar, K.; Meadem, N.; Teredesai, A.; Roy, S.B.; Chin, S.-C.; Muckian, B. Big data solutions for predicting risk-of-readmission for congestive heart failure patients. In Proceedings of the 2013 IEEE International Conference on Big Data, Santa Clara, CA, USA, 6–9 October 2013; pp. 64–71. [Google Scholar]
- Vedomske, M.A.; Brown, D.E.; Harrison, J.H. Random Forests on Ubiquitous Data for Heart Failure 30-Day Readmissions Prediction. In Proceedings of the 2013 12th International Conference on Machine Learning and Applications, Miami, FL, USA, 4–7 December 2013; pp. 415–421. [Google Scholar]
- Basu Roy, S.; Teredesai, A.; Zolfaghar, K.; Liu, R.; Hazel, D.; Newman, S.; Marinez, A. Dynamic Hierarchical Classification for Patient Risk-of-Readmission. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining—KDD, Sydney, Australia, 10–13 August 2015; ACM Press: New York, NY, USA, 2015; pp. 1691–1700. [Google Scholar]
- Koulaouzidis, G.; Iakovidis, D.K.; Clark, A.L. Telemonitoring predicts in advance heart failure admissions. Int. J. Cardiol. 2016, 216, 78–84. [Google Scholar] [CrossRef]
- Kang, Y.; McHugh, M.D.; Chittams, J.; Bowles, K.H. Utilizing home healthcare electronic health records for telehomecare patients with heart failure: A decision tree approach to detect associations with rehospitalizations. Comput. Inform. Nurs. 2016, 34, 175–182. [Google Scholar] [CrossRef]
- Kawai, A.; Patel, H.; Kaye, D.; Nanayakkara, S. 768 Machine Learning Prediction Tools for All-Cause Readmissions in Pa-tients Hospitalised for Heart Failure Using Routinely Collected Medical Record Data. Heart Lung Circ. 2020, 29, S382. [Google Scholar] [CrossRef]
- Palant, A.; Zippel-Schultz, B.; Brandts, J.; Eurlings, C.; Barrett, M.; Murphy, M.; Furtado Da Luz Brzychcyk, E.; Hill, L.; Dixon, L.; Fitzsimons, D.; et al. 18 Heart Failure Patient and Caregiver Needs and Expectations Regarding Self-Management via Digital Health—The Passion-HF Project; Oral Abstract Presentations; BMJ Publishing Group Ltd and British Cardiovascular Society: London, UK, 2020; pp. A12.2–A13. [Google Scholar]
- Beam, A.L.; Manrai, A.K.; Ghassemi, M. Challenges to the reproducibility of machine learning models in health care. JAMA 2020, 323, 305–306. [Google Scholar] [CrossRef] [PubMed]
Drug Class | Clinical Trial/Study | Main Findings | Ongoing Trials | |
---|---|---|---|---|
Dual angiotensin receptor and neprilysin inhibitors (ARNI) | Omapatrilat | OVERTURE | →not superior to an angiotensin-converting enzyme (ACE) inhibitor alone in lowering the rate of heart failure (HF) hospitalization or mortality risk [7] | |
OCTAVE | →omapatrilat group was more likely to reach blood pressure target; →increased incidence of angioedema [8] | |||
Sacubitril/valsartan | PARADIGM-HF (NCT01035255) | →superior to enalapril in reducing the risks of death and heart failure hospitalization (HHF); →decreased the symptoms and physical limitations of HF; →lower incidence of renal function impairment, hyperpotassemia in sacubitril/valsartan group [9] | 1. PARAGLIDE-HF (NCT03988634) will assess the effects of sacubitril/valsartan vs. valsartan monotherapy on NT-proBNP levels, clinical outcomes, safety, and tolerability in HFpEF patients admitted for acute decompensated HF. 2. NCT04587947 will assess the effect of sacubitril/valsartan on the autonomic cardiac nerve system by monitoring HRV in HF patients. 3. TurkuPET (NCT03300427) will assess the effects of six weeks of sacubitril/valsartan versus valsartan on cardiac oxygen consumption and cardiac work efficiency in patients with NYHA class II and III HFrEF. | |
PIONEER-HF (NCT02554890) | →in acute decompensated heart failure with reduced ejection fraction (HFrEF), a greater reduction in the N-terminal pro B-type natriuretic peptide (NT-proBNP) concentration was obtained with sacubitril–valsartan than with enalapril [10] | 4. NCT04688294 will assess the effects of sacubitril/valsartan in the treatment of congestive HF patients, as well as the drug’s adverse effects by monitoring renal function and serum electrolytes. 5. ARNICFH (NCT05089539) will assess the effects of ARNI on cardiac fibrosis in HFpEF patients. 6. NCT03928158 will assess the effects of sacubitril/valsartan vs. valsartan treatments in patients with advanced LV hypertrophy and HFpEF. 7. PARABLE (NCT04687111) will assess the hypothesis that sacubitril/valsartan might improve left atrial structure and function as well as left ventricular structure and function in asymptomatic HFpEF patients. 8. ENVAD-HF (NCT04103554) will assess sacubitril/valsartan in advanced HF and left ventricular assist device recipients. | ||
PARAGON-HF (NCT01920711) | →no significant benefit in patients with HF and preserved ejection fraction (HFpEF) regarding total hospitalizations for HF and death from cardiovascular causes [12] | |||
Sodium-glucose co-transporter-2 inhibitors (SGLT2i) | Canagliflozin | CANVAS (NCT01032629 and CANVAS-R (NCT01989754) | →in patients with type 2 diabetes (T2D) and an elevated risk of cardiovascular disease, canagliflozin treatment was associated with a lower risk of cardiovascular events; → possible benefit of canagliflozin in preventing the progression of albuminuria [16] | 1. NCT05364190 will assess the efficacy and safety of the early initiation of canagliflozin treatment in hospitalized heart failure patients with volume overload (warm-wet) who require the use of an I.V loop diuretic during the hospitalization period. |
CREDENCE (NCT02065791) | →in patients with T2D and kidney disease, canagliflozin treatment showed a lower risk of kidney failure and cardiovascular events [16] | |||
Dapagliflozin | DECLARE-TIMI58 (NCT01730534) | →in patients with T2D at risk for atherosclerotic cardiovascular disease, dapagliflozin treatment was associated with a lower rate of cardiovascular death or HHF [17] | 1. DAPA-RESPONSE-AHF (NCT05406505) will assess the effect of dapagliflozin in patients with acute heart failure. | |
DAPA-HF (NCT03036124) | →in patients with HF, dapagliflozin was superior to placebo at preventing cardiovascular deaths and heart failure events, irrespective of the presence or absence of diabetes [19] | NCT05346653 will assess the effects of SGLT2i in acute decompensated heart failure. | ||
PRESERVED-HF (NCT03030235) | →12 weeks of dapagliflozin treatment significantly improved symptoms, physical limitations, and exercise function in HF with preserved ejection fraction (HFpEF) patients [38] | NCT05278962 will assess the outcomes of SGLT2i in HF patients with left ventricular assist devices. | ||
DELIVER (NCT03619213) | →trial completed with results regarding the efficacy and safety of dapagliflozin in HFpEF patients available later in 2022 [39] | ICARD (NCT05420285) will assess the cardiometabolic mechanistic effects on the myocardium of dapagliflozin in HFrEF patients. | ||
Empagliflozin | EMPA-REG OUTCOME (NCT01131676) | →superior to placebo in reducing cardiovascular events, including cardiovascular death, all-cause mortality, and HHF [15] | 1. DRIP-AHF-1 (NCT05305495) will assess the effect of empagliflozin in acute heart failure. 2. NCT05139472 will assess the impact of empagliflozin on functional capacity in HFpEF. | |
EMPEROR-Reduced (NCT03057977) | →superior to placebo in improving HF outcomes (cardiovascular death or HHF) [32] | |||
EMPEROR-Preserved (NCT03057951) | →reduced the combined risk of cardiovascular death or HHF in HFpEF patients [40] | |||
EMPA-CKD (NCT03594110) | →ongoing trial; it assesses the effect of empagliflozin on kidney disease progression or cardiovascular death versus placebo | |||
Sotagliflozin | SOLOIST-WHF (NCT03521934) | →a significantly lower total number of deaths from cardiovascular causes and hospitalizations and urgent visits for HF than placebo [18] | ||
Soluble guanylate cyclase activator (sGC) | Vericiguat | SOCRATES-REDUCED (NCT01951625) | →in patients with worsening chronic HF and reduced left ventricular ejection fraction (LVEF), no statistically significant effects on NT-proBNP levels at 12 weeks was observed in the vericiguat group [52] | 1. VICTOR (NCT05093933) will assess the efficacy and safety of vericiguat in HFrEF patients, specifically those with symptomatic chronic HfrEF who have not had a recent hospitalization for heart failure or need for outpatient intravenous (IV) diuretics. |
VICTORIA (NCT02861534) | →a lower incidence of death from cardiovascular causes or HHF in patients receiving vericiguat [50] | |||
VITALITY-HfpEF (NCT03547583) | →no improvement in the quality of life (QoL) at 24 weeks in HfpEF patients receiving vericiguat [54] | |||
Cardiac myosin activators | Omecamtiv mecarbil | COSMIC-HF (NCT01786512) | →improvement of systolic ejection time, stroke volume, left ventricular end-diastolic diameter, heart rate, and NT-proBNP in the pharmacokinetic-titration group [65] | |
GALACTIC-HF (NCT02929329) | →a lower incidence of the primary composite of an HF event or death from cardiovascular causes in the omecamtiv mecarbil group than placebo [59] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popa, I.P.; Haba, M.Ș.C.; Mărănducă, M.A.; Tănase, D.M.; Șerban, D.N.; Șerban, L.I.; Iliescu, R.; Tudorancea, I. Modern Approaches for the Treatment of Heart Failure: Recent Advances and Future Perspectives. Pharmaceutics 2022, 14, 1964. https://doi.org/10.3390/pharmaceutics14091964
Popa IP, Haba MȘC, Mărănducă MA, Tănase DM, Șerban DN, Șerban LI, Iliescu R, Tudorancea I. Modern Approaches for the Treatment of Heart Failure: Recent Advances and Future Perspectives. Pharmaceutics. 2022; 14(9):1964. https://doi.org/10.3390/pharmaceutics14091964
Chicago/Turabian StylePopa, Irene Paula, Mihai Ștefan Cristian Haba, Minela Aida Mărănducă, Daniela Maria Tănase, Dragomir N. Șerban, Lăcrămioara Ionela Șerban, Radu Iliescu, and Ionuț Tudorancea. 2022. "Modern Approaches for the Treatment of Heart Failure: Recent Advances and Future Perspectives" Pharmaceutics 14, no. 9: 1964. https://doi.org/10.3390/pharmaceutics14091964
APA StylePopa, I. P., Haba, M. Ș. C., Mărănducă, M. A., Tănase, D. M., Șerban, D. N., Șerban, L. I., Iliescu, R., & Tudorancea, I. (2022). Modern Approaches for the Treatment of Heart Failure: Recent Advances and Future Perspectives. Pharmaceutics, 14(9), 1964. https://doi.org/10.3390/pharmaceutics14091964