Optimized Liposomal Delivery of Bortezomib for Advancing Treatment of Multiple Myeloma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. pH-Dependent Release of BTZ from Boronic Ester Complexes with Selected Polyol Agents
2.3. Preparation of Liposomal BTZ (L-BTZ)
2.4. Fourier Transform Infrared (FT-IR) Spectra
2.5. Cryogenic Transmission Electron Microscopy (Cryo-TEM) Analysis
2.6. Animal Study of L-BTZ Antitumor Activities
2.7. Pharmacokinetics Analysis
2.8. Statistical Analysis
3. Results
3.1. Physical Characterization of Liposomal BTZ (L-BTZ)
3.2. In Vivo Antitumor Efficacy Evaluation of L-BTZ in Human Multiple Myeloma (MM) Xenograft Models
3.3. Therapeutic Efficacy of L-BTZ against a Non-MM Model on C57BL/6 Mice
3.4. Plasma Clearance Kinetics of L-BTZ
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fujino, M. The histopathology of myeloma in the bone marrow. J. Clin. Exp. Hematop. 2018, 58, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Paramore, A.; Frantz, S. Bortezomib. Nat. Rev. Drug Discov. 2003, 2, 611–612. [Google Scholar] [CrossRef] [PubMed]
- Bonvini, P.; Zorzi, E.; Basso, G.; Rosolen, A. Bortezomib-mediated 26S proteasome inhibition causes cell-cycle arrest and induces apoptosis in CD-30+ anaplastic large cell lymphoma. Leukemia 2007, 21, 838–842. [Google Scholar] [CrossRef]
- Curran, M.P.; McKeage, K. Bortezomib: A review of its use in patients with multiple myeloma. Drugs 2009, 69, 859–888. [Google Scholar] [CrossRef] [PubMed]
- Cavaletti, G.; Gilardini, A.; Canta, A.; Rigamonti, L.; Rodriguez-Menendez, V.; Ceresa, C.; Marmiroli, P.; Bossi, M.; Oggioni, N.; D’Incalci, M.; et al. Bortezomib-induced peripheral neurotoxicity: A neurophysiological and pathological study in the rat. Exp. Neurol. 2007, 204, 317–325. [Google Scholar] [CrossRef]
- Cengiz Seval, G.; Beksac, M. The safety of bortezomib for the treatment of multiple myeloma. Expert Opin. Drug Saf. 2018, 17, 953–962. [Google Scholar] [CrossRef]
- Mohan, M.; Matin, A.; Davies, F.E. Update on the optimal use of bortezomib in the treatment of multiple myeloma. Cancer Manag. Res. 2017, 9, 51–63. [Google Scholar] [CrossRef]
- Mikecin, A.-M.; Walker, L.R.; Kuna, M.; Raucher, D. Thermally targeted p21 peptide enhances bortezomib cytotoxicity in androgen-independent prostate cancer cell lines. Anti-Cancer Drugs 2014, 25, 189–199. [Google Scholar] [CrossRef]
- Deshantri, A.K.; Metselaar, J.M.; Zagkou, S.; Storm, G.; Mandhane, S.N.; Fens, M.H.; Schiffelers, R.M. Development and characterization of liposomal formulation of bortezomib. Int. J. Pharm. X 2019, 1, 100011. [Google Scholar] [CrossRef]
- Ashley, J.D.; Stefanick, J.F.; Schroeder, V.A.; Suckow, M.A.; Kiziltepe, T.; Bilgicer, B. Liposomal Bortezomib Nanoparticles via Boronic Ester Prodrug Formulation for Improved Therapeutic Efficacy in Vivo. J. Med. Chem. 2014, 57, 5282–5292. [Google Scholar] [CrossRef]
- Liu, P.; Chen, G.; Zhang, J. A Review of Liposomes as a Drug Delivery System: Current Status of Approved Products, Regulatory Environments, and Future Perspectives. Molecules 2022, 27, 1372. [Google Scholar] [CrossRef]
- Kubiatowicz, L.J.; Mohapatra, A.; Krishnan, N.; Fang, R.H.; Zhang, L. mRNA nanomedicine: Design and recent applications. Exploration 2022, 2, 20210217. [Google Scholar] [CrossRef]
- Coimbra, M.; Isacchi, B.; van Bloois, L.; Torano, J.S.; Ket, A.; Wu, X.; Broere, F.; Metselaar, J.M.; Rijcken, C.J.; Storm, G.; et al. Improving solubility and chemical stability of natural compounds for medicinal use by incorporation into liposomes. Int. J. Pharm. 2011, 416, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Alyane, M.; Barratt, G.; Lahouel, M. Remote loading of doxorubicin into liposomes by transmembrane pH gradient to reduce toxicity toward H9c2 cells. Saudi Pharm. J. 2016, 24, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Bernot, K.M.; Nemer, J.S.; Santhanam, R.; Liu, S.; Zorko, N.A.; Whitman, S.P.; Dickerson, K.E.; Zhang, M.; Yang, X.; McConnell, K.K.; et al. Eradicating acute myeloid leukemia in a MllPTD/wt:Flt3ITD/wt murine model: A path to novel therapeutic approaches for human disease. Blood 2013, 122, 3778–3783. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Pang, J.; Shen, N.; Yan, F.; Wu, L.-C.; Al-Kali, A.; Litzow, M.R.; Peng, Y.; Lee, R.J.; Liu, S. Liposomal bortezomib is active against chronic myeloid leukemia by disrupting the Sp1-BCR/ABL axis. Oncotarget 2016, 7, 36382–36394. [Google Scholar] [CrossRef] [PubMed]
- Deshantri, A.K.; Fens, M.H.; Ruiter, R.W.; Metselaar, J.M.; Storm, G.; Mandhane, S.N.; Graat, G.H.; Lentjes, E.G.; Yuan, H.; de Bruijn, J.D.; et al. Complete Tumor Regression by Liposomal Bortezomib in a Humanized Mouse Model of Multiple Myeloma. HemaSphere 2020, 4, e463. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wen, Y.-H.; Cheng, J.; Cao, G.-P.; Yang, Y.-S. A study of tiron in aqueous solutions for redox flow battery application. Electrochim. Acta 2010, 55, 715–720. [Google Scholar] [CrossRef]
- Ma, Y.F.; Zhang, C.; Wang, Y.; Zhang, L.; Zhang, J.; Shi, J.; Si, J.; Yuan, Y.; Liu, C. Direct three-dimensional printing of a highly customized freestanding hyperelastic bioscaffold for complex craniomaxillofacial reconstruction. Chem. Eng. J. 2021, 411, 128541. [Google Scholar] [CrossRef]
- Ma, Y.F.; Zhang, W.; Wang, Z.; Wang, Z.; Xie, Q.; Niu, H.; Guo, H.; Yuan, Y.; Liu, C. PEGylated poly(glycerol sebacate)-modified calcium phosphate scaffolds with desirable mechanical behavior and enhanced osteogenic capacity. Acta Biomater. 2016, 44, 110–124. [Google Scholar] [CrossRef]
- Ma, Y.; Sun, L.; Zhang, J.; Chiang, C.; Pan, J.; Wang, X.; Kwak, K.J.; Li, H.; Zhao, R.; Rima, X.Y.; et al. Exosomal mRNAs for Angiogenic-Osteogenic Coupled Bone Repair. Adv. Sci. 2023, 10, 2302622. [Google Scholar] [CrossRef] [PubMed]
- Chiang, C.-L.; Ma, Y.; Hou, Y.-C.; Pan, J.; Chen, S.-Y.; Chien, M.-H.; Zhang, Z.-X.; Hsu, W.-H.; Wang, X.; Zhang, J.; et al. Dual targeted extracellular vesicles regulate oncogenic genes in advanced pancreatic cancer. Nat. Commun. 2023, 14, 6692. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Frezza, M.; Schmitt, S.; Kanwar, J.; Dou, Q.P. Bortezomib as the First Proteasome Inhibitor Anticancer Drug: Current Status and Future Perspectives. Curr. Cancer Drug Targets 2011, 11, 239–253. [Google Scholar] [CrossRef]
- Vakili-Ghartavol, R.; Rezayat, S.M.; Faridi-Majidi, R.; Sadri, K.; Jaafari, M.R. Optimization of Docetaxel Loading Conditions in Liposomes: Proposing potential products for metastatic breast carcinoma chemotherapy. Sci. Rep. 2020, 10, 5569. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Garssen, J.; Redegeld, F. The efficacy of bortezomib in human multiple myeloma cells is enhanced by combination with omega-3 fatty acids DHA and EPA: Timing is essential. Clin. Nutr. 2021, 40, 1942–1953. [Google Scholar] [CrossRef] [PubMed]
- Korani, M.; Ghaffari, S.; Attar, H.; Mashreghi, M.; Jaafari, M.R. Preparation and characterization of nanoliposomal bortezomib formulations and evaluation of their anti-cancer efficacy in mice bearing C26 colon carcinoma and B16F0 melanoma. Nanomed. Nanotechnol. Biol. Med. 2019, 20, 102013. [Google Scholar] [CrossRef]
- Zuccari, G.; Milelli, A.; Pastorino, F.; Loi, M.; Petretto, A.; Parise, A.; Marchetti, C.; Minarini, A.; Cilli, M.; Emionite, L.; et al. Tumor vascular targeted liposomal-bortezomib minimizes side effects and increases therapeutic activity in human neuroblastoma. J. Control. Release 2015, 211, 44–52. [Google Scholar] [CrossRef]
- Llobet, D.; Eritja, N.; Encinas, M.; Sorolla, A.; Yeramian, A.; Schoenenberger, J.A.; Llombart-Cussac, A.; Marti, R.M.; Matias-Guiu, X.; Dolcet, X. Antioxidants block proteasome inhibitor function in endometrial carcinoma cells. Anti-Cancer Drugs 2008, 19, 115–124. [Google Scholar] [CrossRef]
- Kim, T.Y.; Park, J.; Oh, B.; Min, H.J.; Jeong, T.-S.; Lee, J.H.; Park, S.B.; Lee, D.S. The Korean Multiple Myeloma Working Party (KMMWP) (-)-Epigallocatechin-3-Gallate (EGCG), Green Tea Component, Antagonize the Anti-Myeloma Activity of Proteasome Inhibitor PS-341 by Direct Chemical Interaction. Blood 2007, 110, 4850. [Google Scholar] [CrossRef]
Treatment Group | Tumor Size (mm3) Mean ± SEM | T/C * (%) | TGI * (%) | p-Value a | MST * (Days) | ILS * (%) | p-Value b |
---|---|---|---|---|---|---|---|
Normal Saline | 1736.51 ± 314.77 | - | - | - | 24 | - | - |
Free BTZ, 0.5 mg/kg | 1549.21 ± 308.56 | 89.21 | 10.79 | 0.899 | 26 | 8 | 0.428 |
L-BTZ, 0.5 mg/kg | 744.42 ± 109.04 | 42.87 | 57.13 | 0.019 | 28 | 17 | 0.006 |
L-BTZ, 0.3 mg/kg | 1658.03 ± 368.92 | 95.48 | 4.52 | 0.887 | 21 | −13 | 0.635 |
Treatment Group | Tumor Size (mm3) Mean ± SEM | T/C * (%) | TGI * (%) | p-Value |
---|---|---|---|---|
Normal Saline | 1704.2 ± 179.78 | - | - | - |
Free BTZ, 1.0 mg/kg | 993.6 ± 111.47 | 58.3 | 41.7 | 0.0118 |
L-BTZ, 1.0 mg/kg | 716.0 ± 123.91 | 42.0 | 58.0 | 0.0007 |
L-BTZ, 0.5 mg/kg | 1095.0 ± 135.23 | 64.3 | 35.7 | 0.0329 |
0.6 mg/kg Free BTZ | 0.6 mg/kg L-BTZ | |
---|---|---|
AUC0−t (ng × h/mL) | 183 | 9895 |
AUC0−∞ (ng × h/mL) | 318 | 9947 |
CLss/F a (mL/h/kg) | 1889 | 60 |
Vz/F b (mL/kg) | 37,517 | 220 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Kuo, J.C.-T.; Huang, Y.; Hu, Y.; Deng, L.; Yung, B.C.; Zhao, X.; Zhang, Z.; Pan, J.; Ma, Y.; et al. Optimized Liposomal Delivery of Bortezomib for Advancing Treatment of Multiple Myeloma. Pharmaceutics 2023, 15, 2674. https://doi.org/10.3390/pharmaceutics15122674
Zhang C, Kuo JC-T, Huang Y, Hu Y, Deng L, Yung BC, Zhao X, Zhang Z, Pan J, Ma Y, et al. Optimized Liposomal Delivery of Bortezomib for Advancing Treatment of Multiple Myeloma. Pharmaceutics. 2023; 15(12):2674. https://doi.org/10.3390/pharmaceutics15122674
Chicago/Turabian StyleZhang, Chi, Jimmy Chun-Tien Kuo, Yirui Huang, Yingwen Hu, Lan Deng, Bryant C. Yung, Xiaobin Zhao, Zhongkun Zhang, Junjie Pan, Yifan Ma, and et al. 2023. "Optimized Liposomal Delivery of Bortezomib for Advancing Treatment of Multiple Myeloma" Pharmaceutics 15, no. 12: 2674. https://doi.org/10.3390/pharmaceutics15122674
APA StyleZhang, C., Kuo, J. C.-T., Huang, Y., Hu, Y., Deng, L., Yung, B. C., Zhao, X., Zhang, Z., Pan, J., Ma, Y., & Lee, R. J. (2023). Optimized Liposomal Delivery of Bortezomib for Advancing Treatment of Multiple Myeloma. Pharmaceutics, 15(12), 2674. https://doi.org/10.3390/pharmaceutics15122674