Antiseptic-Loaded Casein Hydrogels for Wound Dressings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Hydrogels Preparation
2.3. Hydrogels Characterisation
2.3.1. FTIR Analysis
2.3.2. Swelling Ratio and Equilibrium Water Content
2.3.3. Degradation Assay
2.3.4. SEM
2.3.5. Mechanical Tests
2.4. Drug Loading and Release
2.5. Antibacterial Properties
2.6. Biocompatibility Tests
2.6.1. Irritation Assay (HET-CAM)
2.6.2. Haemocompatibility
2.6.3. Cytotoxicity
2.7. In Vivo Case Study
2.8. Statistical Analysis
3. Results and Discussion
3.1. Hydrogel Characterisation
3.1.1. FTIR Analysis
3.1.2. Swelling Ratio and Equilibrium Water Content
3.1.3. Degradation Assay
3.1.4. SEM
3.1.5. Mechanical Tests
3.2. Drug Loading and Drug Release
3.3. Antibacterial Properties
3.4. Biocompatibility Tests
3.4.1. Irritation Assay (HET-CAM)
3.4.2. Haemocompatibility
3.4.3. Cytotoxicity
3.5. In Vivo Case Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nunan, R.; Harding, K.G.; Martin, P. Clinical Challenges of Chronic Wounds: Searching for an Optimal Animal Model to Recapitulate Their Complexity. Dis. Model. Mech. 2014, 7, 1205–1213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frykberg, R.G.; Banks, J. Challenges in the Treatment of Chronic Wounds. Adv. Wound Care 2015, 4, 560–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reiber, G.E.; Lipsky, B.A.; Gibbons, G.W. The Burden of Diabetic Foot Ulcers. Am. J. Surg. 1998, 176, 5S–10S. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, D.G.; Boulton, A.J.M.; Bus, S.A. Diabetic Foot Ulcers and Their Recurrence. N. Engl. J. Med. 2017, 376, 2367–2375. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, K.; Chauhan, N. Pressure Ulcers: Back to the Basics. Indian J. Plast. Surg. 2012, 45, 244–254. [Google Scholar] [CrossRef] [PubMed]
- Simon, D.A.; Dix, F.P.; McCollum, C.N. Management of Venous Leg Ulcers. BMJ Clinical Res. Ed. 2004, 328, 1358–1362. [Google Scholar] [CrossRef] [Green Version]
- Agale, S.V. Chronic Leg Ulcers: Epidemiology, Aetiopathogenesis, and Management. Ulcers 2013, 2013, 413604. [Google Scholar] [CrossRef] [Green Version]
- Muller, S.D.; Khaw, F.M.; Morris, R.; Crozier, A.E.; Gregg, P.J. Ulceration of the Lower Leg after Total Knee Replacement. J. Bone Jt. Surg. 2001, 83, 1116–1118. [Google Scholar] [CrossRef]
- Schultz, G.; Chin, G.; Moldawer, L.; Diegelmann, R. Principles of Wound Healing. In Mechanisms of Vascular Disease; Barr Smith Press: Adelaide, Australia, 2011; pp. 423–450. ISBN 978-0-9871718-2-5. [Google Scholar]
- Landén, N.X.; Li, D.; Stahle, M. Transition from Inflammation to Proliferation: A Critical Step during Wound Healing. Cell. Mol. Life Sci. 2016, 73, 3861–3885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schultz, G.S.; Sibbald, R.G.; Falanga, V.; Ayello, E.A.; Dowsett, C.; Harding, K.; Romanelli, M.; Stacey, M.C.; Teot, L.; Vanscheidt, W. Wound Bed Preparation: A Systematic Approach to Wound Management. Wound Repair Regen. 2003, 1, S1–S28. [Google Scholar] [CrossRef]
- Strecker-McGraw, M.K.; Jones, T.R.; Baer, D.G. Soft Tissue Wounds and Principles of Healing. Emerg. Med. Clin. North Am. 2007, 25, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Borba, L.J.; Macuhae, F.E.; Kirsner, R.S. Wound Dressings: A Comprehensive Review. Curr. Dermatol. Rep. 2016, 5, 287–297. [Google Scholar] [CrossRef]
- Aljghami, M.E.; Saboor, S.; Amini-Nik, S. Emerging Innovative Wound Dressings. Ann. Biomed. Eng. 2019, 47, 659–675. [Google Scholar] [CrossRef] [PubMed]
- Kamoun, E.A.; Kenawy, E.-R.S.; Chen, X. A Review on Polymeric Hydrogel Membranes for Wound Dressing Applications: PVA-Based Hydrogel Dressings. J. Adv. Res. 2017, 8, 217–233. [Google Scholar] [CrossRef]
- Liang, Y.; He, J.; Guo, B. Functional Hydrogels as Wound Dressing to Enhance Wound Healing. ACS Nano 2021, 15, 12687–12722. [Google Scholar] [CrossRef]
- Rao, K.M.; Narayanan, K.B.; Uthappa, U.T.; Park, P.-H.; Choi, I.; Han, S.S. Tissue Adhesive, Self-Healing, Biocompatible, Hemostasis, and Antibacterial Properties of Fungal-Derived Carboxymethyl Chitosan-Polydopamine Hydrogels. Pharmaceutics 2022, 14, 1028. [Google Scholar] [CrossRef]
- Le, X.T.; Rioux, L.-E.; Turgeon, S.L. Formation and Functional Properties of Protein–Polysaccharide Electrostatic Hydrogels in Comparison to Protein or Polysaccharide Hydrogels. Adv. Colloids Interface Sci. 2017, 239, 127–135. [Google Scholar] [CrossRef]
- Li, N.-N.; Fu, C.-P.; Zhang, L.-M. Using Casein and Oxidized Hyaluronic Acid to Form Biocompatible Composite Hydrogels for Controlled Drug Release. Mater. Sci. Eng. C 2014, 36, 287–293. [Google Scholar] [CrossRef]
- Xu, J.; Fan, Z.; Duan, L.; Gao, G. A Tough, Stretchable, and Extensively Sticky Hydrogel Driven by Milk Protein. Polym. Chem. 2018, 19, 2617–2624. [Google Scholar] [CrossRef]
- Patwa, R.; Zandraa, O.; Capáková, Z.; Saha, N.; Sáha, P. Effect of Iron-Oxide Nanoparticles Impregnated Bacterial Cellulose on Overall Properties of Alginate/Casein Hydrogels: Potential Injectable Biomaterial for Wound Healing Applications. Polymers 2020, 12, 2690. [Google Scholar] [CrossRef]
- Nascimento, L.G.L.; Casanova, F.; Silva, N.F.N.; Teixeira, A.V.N.C.; Carvalho, A.F. Casein-Based Hydrogels: A Mini-Review. Food Chem. 2020, 314, 126063. [Google Scholar] [CrossRef] [PubMed]
- McDonnell, G.; Russell, A.D. Antiseptics and Disinfectants: Activity, Action, and Resistance. Clin. Microbiol. Rev. 1999, 12, 147–179. [Google Scholar] [CrossRef] [Green Version]
- Bajpai, S.K.; Shah, F.F.; Bajpai, M. Dynamic Release of Gentamicin Sulfate (GS) from Alginate Dialdehyde (AD)-Crosslinked Casein (CAS) Films for Antimicrobial Applications. Des. Monomers Polym. 2017, 20, 18–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Liu, X.; Wang, Y.; An, M.; Fan, Y. Casein Micelles Embedded Composite Organohydrogel as Potential Wound Dressing. Int. J. Biol. Macromol. 2022, 211, 678–688. [Google Scholar] [CrossRef] [PubMed]
- Koburger, T.; Hübner, N.O.; Braun, M.; Siebert, J.; Kramer, A. Standardized Comparison of Antiseptic Efficacy of Triclosan, PVP-Iodine, Octenidine Dihydrochloride, Polyhexanide and Chlorhexidine Digluconate. J. Antimicrob. Chemother. 2010, 65, 1712–1719. [Google Scholar] [CrossRef] [Green Version]
- Conceição, T.; Lencastre, H.; Aires-de-Sousa, M. Efficacy of Octenidine against Antibiotic-Resistant Staphylococcus Aureus Epidemic Clones. J. Antimicrob. Chemother. 2016, 71, 2991–2994. [Google Scholar] [CrossRef] [Green Version]
- Karpiński, T.M. Efficacy of Octenidine against Pseudomonas Aeruginosa Strains. Eur. J. Biol. Res. 2019, 9, 135–140. [Google Scholar] [CrossRef]
- Davis, S.C.; Harding, A.; Gil, J.; Parajon, F.; Valdes, J.; Solis, M.; Higa, A. Effectiveness of a Polyhexanide Irrigation Solution on Methicillin-Resistant Staphylococcus Aureus Biofilms in a Porcine Wound Model. Int. Wound J. 2017, 14, 937–944. [Google Scholar] [CrossRef]
- Fabry, W.H.K.; Kock, H.-J.; Vahlensieck, W. Activity of the Antiseptic Polyhexanide against Gram-Negative Bacteria. Microb. Drug Resist. 2014, 20, 138–143. [Google Scholar] [CrossRef]
- Assadian, O.; Hämmerle, G.; Lahnsteiner, E.; Simon, D.; Antunes, J.N.P.; von Hallern, B.; Pilcher, M.; Price, J.; Boulton, Z.; Hunt, S.; et al. Facilitating Wound Bed Preparation: Properties and Clinical Efficacy of Octenidine and Octenidine-Based Products in Modern Wound Management. J. Wound Care 2016, 25, S1–S27. [Google Scholar] [CrossRef]
- Dréno, B.; Zuberbier, T.; Gelmetti, C.; Gontijo, G.; Marinovich, M. Safety Review of Phenoxyethanol When Used as Apreservative in Cosmetics. JEADV Eur. Acad. Dermatol. Venereol. 2019, 33, 15–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgan, P.B. Soft Lens Care Systems. In Contact Lens Practice; Elsevier: Amsterdam, The Netherlands, 2018; pp. 103–112. [Google Scholar]
- Galante, R.; Pinto, T.J.A.; Colaço, R.; Serro, A.P. Sterilization of Hydrogels for Biomedical Applications: A Review. J. Biomed. Mater. Res. B Appl. Biomater. 2018, 106B, 2472–2492. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Lee, J.; Han, S.S.; Oh, K.H.; Nam, K.T.; Sun, J.-Y. Highly Stretchable and Notch-Insensitive Hydrogel Based on Polyacrylamide and Milk Protein. ACS Appl. Mater. Interfaces 2016, 8, 29220–29226. [Google Scholar] [CrossRef]
- Sambrook, J.; Fritsch, E.F.; Maniatis, T. Molecular Cloning: A Laboratory Manual, 2nd ed.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 1989. [Google Scholar]
- Lin, Y.; Wang, S.; Sun, S.; Liang, Y.; Xu, Y.; Hu, H.; Luo, J.; Zhang, H.; Li, G. Highly Tough and Rapid Self-Healing Dual-Physical Crosslinking Poly(DMAA-Co-AM) Hydrogel. RSC Adv. 2021, 11, 32988–32995. [Google Scholar] [CrossRef]
- Massarelli, E.; Silva, D.; Pimenta, A.F.R.; Fernandes, A.I.; Mata, J.L.G.; Armês, H.; Salema-Oom, M.; Saramago, B.; Serro, A.P. Polyvinyl Alcohol/Chitosan Wound Dressings Loaded with Antiseptics. Int. J. Pharm. 2021, 593, 120110. [Google Scholar] [CrossRef]
- Roylance, D. Stress-Strain Curves; Massachusetts Institute of Technology: Cambridge, MA, USA, 2001. [Google Scholar]
- Silva, D.; de Sousa, H.C.; Gil, M.H.; Santos, L.F.; Moutinho, G.M.; Serro, A.P.; Saramago, B. Antibacterial Layer-by-Layer Coatings to Control Drug Release from Soft Contact Lenses Material. Int. J. Pharm. 2018, 553, 186–200. [Google Scholar] [CrossRef] [PubMed]
- Kishore, A.S.; Surekha, P.A.; Sekhar, P.V.R.; Srinivas, A.; Balakrishna Murthy, P. Hen Egg Chorioallantoic Membrane Bioassay: An In Vitro Alternative to Draize Eye Irritation Test for Pesticide Screening. Int. J. Toxicol. 2008, 27, 449–453. [Google Scholar] [CrossRef]
- Arafa, A.A.; Nada, A.A.; Ibrahim, A.Y.; Zahran, M.K.; Hakeim, O.A. Greener Therapeutic PH-Sensing Wound Dressing Based on Curcuma Longa and Cellulose Hydrogel. Eur. Polym. J. 2021, 159, 110744. [Google Scholar] [CrossRef]
- Song, F.; Zhang, L.-M.; Yang, C.; Yan, L. Genipin-Crosslinked Casein Hydrogels for Controlled Drug Delivery. Int. J. Pharm. 2009, 373, 47. [Google Scholar] [CrossRef]
- Agarwal, A.; McAnulty, J.F.; Schurr, M.J.; Murphy, C.J.; Abbott, N.L. Polymeric Materials for Chronic Wound and Burn Dressings. In Advanced Wound Repair Therapies; Woodhead Publishing: Sawston, UK, 2011; pp. 186–208. [Google Scholar]
- Dabiri, G.; Damstetter, E.; Phillips, T. Choosing a Wound Dressing Based on Common Wound Characteristics. Adv. Wound Care 2016, 5, 32–41. [Google Scholar] [CrossRef]
- Weller, C. Interactive Dressings and Their Role in Moist Wound Management. In Advanced Textiles for Wound Care; Woodhead Publishing: Sawston, UK, 2009; pp. 97–113. [Google Scholar]
- Watt, P. Wound Dressings for the Treatment of Wound Infection 2004; WO2004/024196A1; World Intellectual Property Organization: Geneva, Switzerland; pp. 1–16.
- Hasmann, A.; Wehrschuetz-Sigl, E.; Kanzler, G.; Gewessler, U.; Hulla, E.; Schneider, K.P.; Binder, B.; Schintler, M.; Guebitz, G.M. Novel Peptidoglycan-Based Diagnostic Devices for Detection of Wound Infection. Diagn. Microbiol. Infect. Dis. 2011, 71, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Tallian, C.; Tegl, G.; Quadlbauer, L.; Vielnascher, R.; Weinberger, S.; Cremers, R.; Pellis, A.; Salari, J.W.O.; Guebitz, G.M. Lysozyme-Responsive Spray-Dried Chitosan Particles for Early Detection of Wound Infection. ACS Appl. Bio Mater. 2019, 2, 1331–1339. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.-G.; Luo, J.-J.; Yu, Z.-W. Unfolding and Refolding Details of Lysozyme in the Presence of B-Casein Micelles. Phys. Chem. Chem. Phys. 2011, 13, 3429–3436. [Google Scholar] [CrossRef] [PubMed]
- Ozturkoglu-Budak, S. Effect of Different Treatments on the Stability of Lysozyme, Lactoferrin and b-Lactoglobulin in Donkey’smilk. Int. J. Dairy Technol. 2018, 71, 36–45. [Google Scholar] [CrossRef]
- Gomez-Aparicio, L.S.; Bernáldez-Sarabia, J.; Camacho-Villegas, T.A.; Lugo-Fabres, P.H.; Díaz-Martínez, N.E.; Padilla-Camberos, E.; Licea-Navarro, A.; Castro-Ceseña, A.B. Improvement of the Wound Healing Properties of Hydrogels with N-Acetylcysteine through Their Modification with Methacrylate-Containing Polymers. Biomater. Sci. 2021, 9, 726–744. [Google Scholar] [CrossRef]
- Balaji, A.; Jaganathan, S.K.; Ismail, A.F.; Rajasekar, R. Fabrication and Hemocompatibility Assessment of Novel Polyurethane-Based Bio-Nanofibrous Dressing Loaded with Honey and Carica Papaya Extract for the Management of Burn Injuries. Int. J. Nanomed. 2016, 11, 4339–4355. [Google Scholar] [CrossRef] [Green Version]
- Alves, P.J.; Barreto, R.T.; Barrois, B.M.; Gryson, L.G.; Meaume, S.; Monstrey, S.J. Update on the Role of Antiseptics in the Management of Chronic Wounds with Critical Colonisation and/or Biofilm. Int. Wound J. 2021, 18, 342–358. [Google Scholar] [CrossRef]
- ISO 10993-5:2009; Biological Evaluation of Medical Devices—Part 5: Tests for in Vitro Cytotoxicity. International Organization for Standardization: Geneva, Switzerland, 2009. Available online: https://www.iso.org/obp/ui#iso:std:iso:10993:-5:ed-3:v1:en (accessed on 6 September 2022).
- Greener, M. Octenidine: Antimicrobial Activity and Clinical Efficacy. Wounds UK 2011, 7, 74–78. [Google Scholar]
- Hübner, N.-O.; Kramer, A. Review on the Efficacy, Safety and Clinical Applications of Polihexanide, a Modern Wound Antiseptic. Ski. Pharmacol. Physiol. 2010, 23, 17–27. [Google Scholar] [CrossRef]
- Babalska, Z.L.; Korbecka-Packowska, M.; Karpinski, T.M. Wound Antiseptics and European Guidelines for Antiseptic Application in Wound Treatment. Pharmaceuticals 2021, 14, 1253. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia, L.V.; Silva, D.; Costa, M.M.; Armés, H.; Salema-Oom, M.; Saramago, B.; Serro, A.P. Antiseptic-Loaded Casein Hydrogels for Wound Dressings. Pharmaceutics 2023, 15, 334. https://doi.org/10.3390/pharmaceutics15020334
Garcia LV, Silva D, Costa MM, Armés H, Salema-Oom M, Saramago B, Serro AP. Antiseptic-Loaded Casein Hydrogels for Wound Dressings. Pharmaceutics. 2023; 15(2):334. https://doi.org/10.3390/pharmaceutics15020334
Chicago/Turabian StyleGarcia, Leonor Vasconcelos, Diana Silva, Maria Madalena Costa, Henrique Armés, Madalena Salema-Oom, Benilde Saramago, and Ana Paula Serro. 2023. "Antiseptic-Loaded Casein Hydrogels for Wound Dressings" Pharmaceutics 15, no. 2: 334. https://doi.org/10.3390/pharmaceutics15020334
APA StyleGarcia, L. V., Silva, D., Costa, M. M., Armés, H., Salema-Oom, M., Saramago, B., & Serro, A. P. (2023). Antiseptic-Loaded Casein Hydrogels for Wound Dressings. Pharmaceutics, 15(2), 334. https://doi.org/10.3390/pharmaceutics15020334