Data-Driven Prediction of the Formation of Co-Amorphous Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.1.1. Composition of Data
2.1.2. Training and Test Data
2.2. Descriptor Selection
2.3. Modelling Tool
2.4. Application
2.5. Distance from Training Data—Uncertainty Factor
2.6. Experimental Model Validation
2.6.1. Materials
2.6.2. Milling Expriments
2.6.3. X-ray Powder Diffraction (XRPD) Analysis
3. Results and Discussion
3.1. Model Performance—Accuracy
3.2. Relevance of Molecular Descriptors
3.3. Modelling Performance—Application
3.4. Experimental Model Validation
4. Conclusions and Outlook
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- van den Berge, M.; Hacken, N.H.T.; Kerstjens, H.A.M.; Postma, D.S. Management of Asthma with ICS and LABAs: Different Treatment Strategies. Clin. Med. Ther. 2009, 77–93. [Google Scholar] [CrossRef] [Green Version]
- Tashkin, D.P.; Ferguson, G.T. Combination Bronchodilator Therapy in the Management of Chronic Obstructive Pulmonary Disease. Respir. Res. 2013, 14, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tousif, S.; Ahmad, S. Challenges of Tuberculosis Treatment with DOTS: An Immune Impairment Perspective. J. Cell Sci. Ther. 2015, 6, 1. [Google Scholar] [CrossRef]
- Das, S.; Tucker, I.; Stewart, P. Inhaled Dry Powder Formulations for Treating Tuberculosis. Curr. Drug Deliv. 2015, 12, 26–39. [Google Scholar] [CrossRef]
- Gaspar, D.P.; Faria, V.; Gonçalves, L.M.D.; Taboada, P.; Remuñán-López, C.; Almeida, A.J. Rifabutin-Loaded Solid Lipid Nanoparticles for Inhaled Antitubercular Therapy: Physicochemical and in Vitro Studies. Int. J. Pharm. 2016, 497, 199–209. [Google Scholar] [CrossRef] [PubMed]
- Hoppentocht, M.; Hagedoorn, P.; Frijlink, H.W.; De Boer, A.H. Developments and Strategies for Inhaled Antibiotic Drugs in Tuberculosis Therapy: A Critical Evaluation. Eur. J. Pharm. Biopharm. 2014, 86, 23–30. [Google Scholar] [CrossRef]
- Chae, J.; Choi, Y.; Tanaka, M.; Choi, J. Inhalable Nanoparticles Delivery Targeting Alveolar Macrophages for the Treatment of Pulmonary Tuberculosis. J. Biosci. Bioeng. 2021, 132, 543–551. [Google Scholar] [CrossRef]
- Wang, X.; Du, S.; Zhang, R.; Jia, X.; Yang, T.; Zhang, X. Drug-Drug Cocrystals: Opportunities and Challenges. Asian J. Pharm. Sci. 2021, 16, 307–317. [Google Scholar] [CrossRef]
- Kissi, E.O.; Khorami, K.; Rades, T. Determination of Stable Co-Amorphous Drug–Drug Ratios from the Eutectic Behavior of Crystalline Physical Mixtures. Pharmaceutics 2019, 11, 628. [Google Scholar] [CrossRef] [Green Version]
- Shi, Q.; Moinuddin, S.M.; Cai, T. Advances in Coamorphous Drug Delivery Systems. Acta Pharm. Sin. B 2019, 9, 19–35. [Google Scholar] [CrossRef]
- Chambers, L.I.; Grohganz, H.; Palmelund, H.; Löbmann, K.; Rades, T.; Musa, O.M.; Steed, J.W. Predictive Identification of Co-Formers in Co-Amorphous Systems. Eur. J. Pharm. Sci. 2021, 157, 105636. [Google Scholar] [CrossRef]
- Löbmann, K.; Strachan, C.; Grohganz, H.; Rades, T.; Korhonen, O.; Laitinen, R. Co-Amorphous Simvastatin and Glipizide Combinations Show Improved Physical Stability without Evidence of Intermolecular Interactions. Eur. J. Pharm. Biopharm. 2012, 81, 159–169. [Google Scholar] [CrossRef]
- Ruponen, M.; Kettunen, K.; Pires, M.S.; Laitinen, R. Co-Amorphous Formulations of Furosemide with Arginine and p-Glycoprotein Inhibitor Drugs. Pharmaceutics 2021, 13, 171. [Google Scholar] [CrossRef]
- Khanfar, M.; Al-Remawi, M.; Al-Akayleh, F.; Hmouze, S. Preparation and Evaluation of Co-Amorphous Formulations of Telmisartan—Amino Acids as a Potential Method for Solubility and Dissolution Enhancement. AAPS PharmSciTech 2021, 22, 112. [Google Scholar] [CrossRef]
- Sterren, V.B.; Aiassa, V.; Garnero, C.; Linck, Y.G.; Chattah, A.K.; Monti, G.A.; Longhi, M.R.; Zoppi, A. Preparation of Chloramphenicol/Amino Acid Combinations Exhibiting Enhanced Dissolution Rates and Reduced Drug-Induced Oxidative Stress. AAPS PharmSciTech 2017, 18, 2910–2918. [Google Scholar] [CrossRef]
- Moinuddin, S.M.; Ruan, S.; Huang, Y.; Gao, Q.; Shi, Q.; Cai, B.; Cai, T. Facile Formation of Co-Amorphous Atenolol and Hydrochlorothiazide Mixtures via Cryogenic-Milling: Enhanced Physical Stability, Dissolution and Pharmacokinetic Profile. Int. J. Pharm. 2017, 532, 393–400. [Google Scholar] [CrossRef]
- Liu, J.; Grohganz, H.; Löbmann, K.; Rades, T.; Hempel, N.J. Co-Amorphous Drug Formulations in Numbers: Recent Advances in Co-Amorphous Drug Formulations with Focus on Co-Formability, Molar Ratio, Preparation Methods, Physical Stability, in Vitro and in Vivo Performance, and New Formulation Strategies. Pharmaceutics 2021, 13, 389. [Google Scholar] [CrossRef]
- Ueda, H.; Muranushi, N.; Sakuma, S.; Ida, Y.; Endoh, T.; Kadota, K.; Tozuka, Y. A Strategy for Co-Former Selection to Design Stable Co-Amorphous Formations Based on Physicochemical Properties of Non-Steroidal Inflammatory Drugs. Pharm. Res. 2016, 33, 1018–1029. [Google Scholar] [CrossRef]
- Meng-Lund, H.; Kasten, G.; Jensen, K.T.; Poso, A.; Pantsar, T.; Rades, T.; Rantanen, J.; Grohganz, H. The Use of Molecular Descriptors in the Development of Co-Amorphous Formulations. Eur. J. Pharm. Sci. 2018, 119, 31–38. [Google Scholar] [CrossRef]
- Pajula, K.; Taskinen, M.; Lehto, V.P.; Ketolainen, J.; Korhonen, O. Predicting the Formation and Stability of Amorphous Small Molecule Binary Mixtures from Computationally Determined Flory-Huggins Interaction Parameter and Phase Diagram. Mol. Pharm. 2010, 7, 795–804. [Google Scholar] [CrossRef]
- Yarlagadda, D.L.; Sai Krishna Anand, V.; Nair, A.R.; Navya Sree, K.S.; Dengale, S.J.; Bhat, K. Considerations for the Selection of Co-Formers in the Preparation of Co-Amorphous Formulations. Int. J. Pharm. 2021, 602, 120649. [Google Scholar] [CrossRef] [PubMed]
- Prasad, P. Influence of Machine Learning on Pharma Industries. Pharmacol. Pharm. Rep. 2020, 2, 1–4. [Google Scholar]
- Bishop, C.M. Pattern Recognition and Machine Learning Chris Bishop; Springer: Berlin/Heidelberg, Germany, 2004; Volume 27. [Google Scholar]
- Lou, H.; Lian, B.; Hageman, M.J. Applications of Machine Learning in Solid Oral Dosage Form Development. J. Pharm. Sci. 2021, 110, 3150–3165. [Google Scholar] [CrossRef]
- Nagy, B.; Galata, D.L.; Farkas, A.; Nagy, Z.K. Application of Artificial Neural Networks in the Process Analytical Technology of Pharmaceutical Manufacturing—A Review. AAPS J. 2022, 24, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Munir, N.; Nugent, M.; Whitaker, D.; McAfee, M. Machine Learning for Process Monitoring and Control of Hot-Melt Extrusion: Current State of the Art and Future Directions. Pharmaceutics 2021, 13, 1432. [Google Scholar] [CrossRef] [PubMed]
- Djuris, J.; Cirin-Varadjan, S.; Aleksic, I.; Djuris, M.; Cvijic, S.; Ibric, S. Application of Machine-Learning Algorithms for Better Understanding of Tableting Properties of Lactose Co-Processed with Lipid Excipients. Pharmaceutics 2021, 13, 663. [Google Scholar] [CrossRef]
- Wang, D.; Yang, Z.; Zhu, B.; Mei, X.; Luo, X. Machine-Learning-Guided Cocrystal Prediction Based on Large Data Base. Cryst. Growth Des. 2020, 20, 6610–6621. [Google Scholar] [CrossRef]
- Forgber, T.; Khinast, J.G.; Fink, E. A Hybrid Workflow for Investigating Wide DEM Parameter Spaces. Powder Technol. 2022, 404, 117440. [Google Scholar] [CrossRef]
- Pillai, N.; Dasgupta, A.; Sudsakorn, S.; Fretland, J.; Mavroudis, P.D. Machine Learning Guided Early Drug Discovery of Small Molecules. Drug Discov. Today 2022, 27, 2209–2215. [Google Scholar] [CrossRef]
- Goel, M.; Sharma, A.; Chilwal, A.S.; Kumari, S.; Kumar, A.; Bagler, G. Machine Learning Models to Predict Sweetness of Molecules. Comput. Biol. Med. 2023, 152, 106441. [Google Scholar] [CrossRef]
- De León, G.; Fröhlich, E.; Fink, E.; Di Pizio, A.; Salar-Behzadi, S. Premexotac: Machine Learning Bitterants Predictor for Advancing Pharmaceutical Development. Int. J. Pharm. 2022, 628, 122263. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Wang, L.; Yuan, P.; An, Q.; Su, B.; Yu, M.; Chen, T.; Hu, K.; Zhang, L.; Lu, Y.; et al. Cocrystal Virtual Screening Based on the XGBoost Machine Learning Model. Chin. Chem. Lett. 2022, 107964. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016. [Google Scholar]
- Dengale, S.J.; Grohganz, H.; Rades, T.; Löbmann, K. Recent Advances in Co-Amorphous Drug Formulations. Adv. Drug Deliv. Rev. 2016, 100, 116–125. [Google Scholar] [CrossRef] [PubMed]
- National Library of Medicine. PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/ (accessed on 19 December 2022).
- Moriwaki, H.; Tian, Y.S.; Kawashita, N.; Takagi, T. Mordred: A Molecular Descriptor Calculator. J. Cheminform. 2018, 10, 4. [Google Scholar] [CrossRef] [Green Version]
- Kumar, G.; Banerjee, R.; Kr Singh, D.; Choubey, N. Arnaw. Mathematics for machine learning. J. Math. Sci. Comput. Math. 2020, 1, 229–238. [Google Scholar] [CrossRef]
- Ho, T.K. Random Decision Forests Tin Kam Ho Perceptron Training. In Proceedings of the 3rd International Conference on Document Analysis and Recognition, Montreal, QC, Canada, 14–16 August 1995. [Google Scholar]
- Fan, J.; Wang, X.; Wu, L.; Zhou, H.; Zhang, F.; Yu, X.; Lu, X.; Xiang, Y. Comparison of Support Vector Machine and Extreme Gradient Boosting for Predicting Daily Global Solar Radiation Using Temperature and Precipitation in Humid Subtropical Climates: A Case Study in China. Energy Convers. Manag. 2018, 164, 102–111. [Google Scholar] [CrossRef]
- Altman, N.S. An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression. Am. Stat. 1992, 46, 175–185. [Google Scholar] [CrossRef] [Green Version]
- Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- McCulloch, W.S.; Pitts, W. A Logical Calculus of the Ideas Immanent in Nervous Activity. Bull. Math. Biophys. 1943, 5, 115–133. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Wiley Online Library: Hoboken, NJ, USA, 2017. [Google Scholar]
- Burman, P. A Comparative Study of Ordinary Cross-Validation, v-Fold Cross-Validation and the Repeated Learning-Testing Methods. Biometrika 1989, 76, 503–514. [Google Scholar] [CrossRef] [Green Version]
- By, O.; Goldberg, M.; Doughty, D.; Lawrence, K. Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention; Global Initiative for Asthma, 2016. Available online: www.ginasthma.org (accessed on 16 January 2023).
- Pham, D.-D.; Fattal, E.; Tsapis, N. Pulmonary Drug Delivery Systems for Tuberculosis Treatment. Int. J. Pharm. 2015, 478, 517–529. [Google Scholar] [CrossRef]
- Korhonen, O.; Pajula, K.; Laitinen, R. Rational Excipient Selection for Co-Amorphous Formulations. Expert Opin. Drug Deliv. 2017, 14, 551–569. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Bemis, G.W.; Murcko, M.A. The Properties of Known Drugs. 1. Molecular Frameworks. J. Med. Chem. 1996, 39, 2887–2893. [Google Scholar] [CrossRef] [PubMed]
- Veber, D.F.; Johnson, S.R.; Cheng, H.-Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. J. Med. Chem. 2002, 45, 2615–2623. [Google Scholar] [CrossRef] [PubMed]
- Mishra, J.; Löbmann, K.; Grohganz, H.; Rades, T. Influence of Preparation Technique on Co-Amorphization of Carvedilol with Acidic Amino Acids. Int. J. Pharm. 2018, 552, 407–413. [Google Scholar] [CrossRef]
- Leng, D.; Kissi, E.O.; Löbmann, K.; Thanki, K.; Fattal, E.; Rades, T.; Foged, C.; Yang, M. Design of Inhalable Solid Dosage Forms of Budesonide and Theophylline for Pulmonary Combination Therapy. AAPS PharmSciTech 2019, 20, 137. [Google Scholar] [CrossRef]
- Mendes, Z.; Fonseca, T. Crystalline Pharmaceutical Co-Crystals of Glycopyrronium Bromide with Lactose. U.S. Patent No. 10,662,152, 26 May 2020. [Google Scholar]
- Reddy, O.S.; Subha, M.C.S.; Madhavi, C.; Rao, K.C.; Mallikarjuna, B. Fabrication Of Montmorillonite Intercalated Sodium Alginate/Poly (Vinylpyrrolidone-Co-Vinyl Acetate) Beads for Extended Release of Glycopyrrolate. Indian J. Adv. Chem. Sci. 2020, 8, 35–39. [Google Scholar] [CrossRef]
- Soltani, F.; Kamali, H.; Akhgari, A.; Garekani, H.A.; Nokhodchi, A.; Sadeghi, F. Different Trends for Preparation of Budesonide Pellets with Enhanced Dissolution Rate. Adv. Powder Technol. 2022, 33, 103684. [Google Scholar] [CrossRef]
- Saifullah, B.; Maitra, A.; Chrzastek, A.; Naeemullah, B.; Fakurazi, S.; Bhakta, S.; Hussein, M.Z. Nano-Formulation of Ethambutol Withmultifunctional Graphene Oxide and Magnetic Nanoparticles Retains Its Anti-Tubercular Activity with Prospects of Improving Chemotherapeutic Efficacy. Molecules 2017, 22, 1697. [Google Scholar] [CrossRef]
ABC | Atom bond connectivity index | Diameter | Topological diameter | RNCS | Relative negative charge surface area |
nAcid | Acidic group count | Topo-ShapeIndex | Topological shape index | RPCS | Relative positive charge surface area |
nBase | Basic group count | nRot | Rotatable bonds count | TASA | Total hydrophobic surface area |
nAromAtom | Aromatic atoms count | SLogP | Wildman-Crippen log P | TPSA | Total polar surface area |
nAromBond | Aromatic bond count | TopoPSA | Topological polar surface area | RASA | Relative hydrophobic surface area |
nAtom | Number of all atoms | naRing | Aromatic ring count | RPSA | Relative polar surface area |
nHeavyAtom | Number of heavy atoms | apol | Atomic polarisability | fMF | Molecular framework ratio |
nHetero | Number of hetero atoms | bpol | Bond polarisability | Vabc | ABC van der Waals volume |
nH | Number of H atoms | nHBAcc | Number of hydrogen bond acceptor | VAdjMat | Vertex adjacency information |
MW | Molecular weight | nHBDon | Number of hydrogen bond donors |
ML Method | Hyper-Parameter | Description | Values |
---|---|---|---|
Random forest | N_estimators | Number of trees | [3,5,8,10,15] |
XGBoost_classifier | N_estimators | Number of trees | [3,5,8,10,15] |
Max_depth | Depth of the individual trees | [2,3,5,7,10,12,15] | |
SVM | |||
KNN | k | Number of neighbours used for a prediction | [3,5,8,10,15] |
API 1 | API 2 | Model Prediction | Distance from Training Data | ||
---|---|---|---|---|---|
budesonide (BUD) | 574.84 mg | glycopyrronium bromide (GB) | 425.16 mg | 0.98 (COAMS) | 74.2 |
glycopyrronium bromide (GB) | 179.34 mg | streptomycin sulphate (STR) | 821.02 mg | 1 (COAMS) | 411.0 |
ethambutol (ETH) | 390.66 mg | glycopyrronium bromide (GB) | 608.88 mg | 0 (non-COAMS) | 89.3 |
Data | KNN | SVM | XGBoost Classifier | Random Forest |
---|---|---|---|---|
Training data | 97% | 89% | 97% | 97% |
Validation data | 84% | 83% | 85% | 85% |
API 1 | API 2 | Prediction | Distance | XRPD Results |
---|---|---|---|---|
GB | STR | 1 | 411.0 | COAMS |
BUD | GB | 0.98 | 74.2 | COAMS |
ETH | GB | 0 | 89.3 | non-COAMS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fink, E.; Brunsteiner, M.; Mitsche, S.; Schröttner, H.; Paudel, A.; Zellnitz-Neugebauer, S. Data-Driven Prediction of the Formation of Co-Amorphous Systems. Pharmaceutics 2023, 15, 347. https://doi.org/10.3390/pharmaceutics15020347
Fink E, Brunsteiner M, Mitsche S, Schröttner H, Paudel A, Zellnitz-Neugebauer S. Data-Driven Prediction of the Formation of Co-Amorphous Systems. Pharmaceutics. 2023; 15(2):347. https://doi.org/10.3390/pharmaceutics15020347
Chicago/Turabian StyleFink, Elisabeth, Michael Brunsteiner, Stefan Mitsche, Hartmuth Schröttner, Amrit Paudel, and Sarah Zellnitz-Neugebauer. 2023. "Data-Driven Prediction of the Formation of Co-Amorphous Systems" Pharmaceutics 15, no. 2: 347. https://doi.org/10.3390/pharmaceutics15020347
APA StyleFink, E., Brunsteiner, M., Mitsche, S., Schröttner, H., Paudel, A., & Zellnitz-Neugebauer, S. (2023). Data-Driven Prediction of the Formation of Co-Amorphous Systems. Pharmaceutics, 15(2), 347. https://doi.org/10.3390/pharmaceutics15020347