Structure Determination of Felodipine Photoproducts in UV-Irradiated Medicines Using ESI-LC/MS/MS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Irradiation Experiment
2.4. HPLC Analysis
2.5. HPLC Method Validation
2.6. Structure Identification of FL Photoproducts
2.7. Statistical Analysis
3. Results
3.1. Photostability of SPL Tablets and Its Altered Forms
3.2. Structural Determination of Two FL Photoproducts
3.3. Photodegradation Mechanism of FL
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yamashita, S.; Noguchi, Y.; Kubota, M.; Iguchi, K.; Aoki, S.; Tanei, S.; Nakamura, M.; Teramachi, H.; Sugiyama, T. Color change of various medicines under LED lighting and fluorescent lighting. Jpn. J. Pharm. Health Care Sci. 2015, 41, 198–204. [Google Scholar] [CrossRef] [Green Version]
- Kawabe, Y.; Nakamura, H.; Hino, E.; Suzuki, S. Photochemical stabilities of some dihydropyridine calcium-channel blockers in powdered pharmaceutical tablets. J. Pharm. Biomed. Anal. 2008, 47, 618–624. [Google Scholar] [CrossRef] [PubMed]
- Kawabata, K.; Iwata, M.; Kawaguchi, M.; Kaneko, M.; Gennai, M.; Akimoto, S.; Inagaki, M.; Segawa, K.; Nishi, H. Photostabilities of amlodipine OD tablets in different dosage forms. Chromatography 2022, 43, 79–85. [Google Scholar] [CrossRef]
- Ragno, G.; Garofalo, A.; Vetuschi, C. Photodegradation monitoring of amlodipine by derivative spectrophotometry. J. Pharm. Biomed. Anal. 2002, 27, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Jakimska, A.; Śliwka-Kaszyńska, M.; Nagórski, P.; Namieśnik, J.; Kot-Wasik, A. Phototransformation of amlodipine: Degradation kinetics and identification of its photoproducts. PLoS ONE 2014, 9, e109206. [Google Scholar] [CrossRef] [Green Version]
- Fasani, E.; Albini, A.; Gemme, S. Mechanism of the photochemical degradation of amlodipine. Int. J. Pharm. 2008, 352, 197–201. [Google Scholar] [CrossRef]
- Majeed, I.A.; Murray, W.J.; Newton, D.W.; Othman, S.; Al-Turk, W.A. Spectrophotometric study of the photodecomposition kinetics of nifedipine. J. Pharm. Pharmacol. 1987, 39, 1044–1046. [Google Scholar] [CrossRef]
- Nunez-Vergara, L.J.; Bollo, S.; Fuentealba, J.; Sturm, J.C.; Squella, J.A. Electrochemical and spectroelectrochemical behavior of the main photodegradation product of nifedipine: The nitrosopyridine derivative. Pharm. Res. 2002, 19, 522–529. [Google Scholar] [CrossRef]
- de Vries, H.; Beijersbergen van Henegouwen, G.M. Photoreactivity of nifedipine in vitro and in vivo. J. Photochem. Photobiol. B 1998, 43, 217–221. [Google Scholar] [CrossRef]
- Ohkubo, T.; Noro, H.; Sugawara, K. High-performance liquid chromatographic determination of nifedipine and a trace photodegradation product in hospital prescriptions. J. Pharm. Biomed. Anal. 1992, 10, 67–70. [Google Scholar] [CrossRef]
- Sanguinetti, M.C.; Kass, R.S. Photoalteration of calcium channel blockade in the cardiac Purkinje fiber. Biophys. J. 1984, 45, 873–880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurney, A.M.; Nerbonne, J.M.; Lester, H.A. Photoinduced removal of nifedipine reveals mechanisms of calcium antagonist action on single heart cells. J. Gen. Physiol. 1985, 86, 353–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayase, N.; Inagaki, S.; Abiko, Y. Effects of photodegradation products of nifedipine: The nitroso-derivative relaxes contractions of the rat aortic strip induced by norepinephrine and other agonists. J. Pharmacol. Exp. Ther. 1995, 275, 813–821. [Google Scholar] [PubMed]
- Horinouchi, Y.; Tsuchiya, K.; Taoka, C.; Tajima, S.; Kihira, Y.; Matsuda, Y.; Shishido, K.; Yoshida, M.; Hamano, S.; Kawazoe, K.; et al. Antioxidant effects of photodegradation product of nifedipine. Chem. Pharm. Bull. 2011, 59, 208–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asahi, M.; Matsubara, R.; Kawahara, M.; Ishida, T.; Emoto, C.; Suzuki, N.; Kataoka, O.; Mukai, C.; Hanaoka, M.; Ishizaki, J.; et al. Causative agent of vascular pain among photodegradation products of dacarbazine. J. Pharm. Pharmacol. 2002, 54, 1117–1122. [Google Scholar] [CrossRef]
- Kawabata, K.; Sugihara, K.; Sanoh, S.; Kitamura, S.; Ohta, S. Photodegradation of pharmaceuticals in the aquatic environment by sunlight and UV-A, -B and -C irradiation. J. Toxicol. Sci. 2013, 38, 215–223. [Google Scholar] [CrossRef] [Green Version]
- Kawabata, K.; Sugihara, K.; Sanoh, S.; Kitamura, S.; Ohta, S. Ultraviolet-photoproduct of acetaminophen: Structure determination and evaluation of ecotoxicological effect. J. Photochem. Photobiol. A Chem. 2012, 249, 29–35. [Google Scholar] [CrossRef]
- Kawabata, K.; Akimoto, S.; Nishi, H. Photo-conversion of phenytoin to ecotoxicological substance benzophenone by ultraviolet light irradiation in aqueous media. Chromatography 2020, 41, 51–58. [Google Scholar] [CrossRef] [Green Version]
- Nataraj, B.; Maharajan, K.; Hemalatha, D.; Rangasamy, B.; Arul, N.; Ramesh, M. Comparative toxicity of UV-filter Octyl methoxycinnamate and its photoproducts on zebrafish development. Sci. Total Environ. 2020, 718, 134546. [Google Scholar] [CrossRef]
- Klementová, Š.; Poncarová, M.; Langhansová, H.; Lieskovská, J.; Kahoun, D.; Fojtíková, P. Photodegradation of fluoroquinolones in aqueous solution under light conditions relevant to surface waters, toxicity assessment of photoproduct mixtures. Environ. Sci. Pollut. Res. Int. 2022, 29, 13941–13962. [Google Scholar] [CrossRef]
- Jiang, F.; Wu, W.; Zhu, Z.; Zhu, S.; Wang, H.; Zhang, L.; Fan, Z.; Chen, Y. Structure identification and toxicity evaluation of one newly-discovered dechlorinated photoproducts of chlorpyrifos. Chemosphere 2022, 301, 134822. [Google Scholar] [CrossRef] [PubMed]
- ICH guideline Q1A (R2). Stability testing of new drug substances and products. Fed. Regist. 2003, 68, 65717–65718. [Google Scholar]
- ICH guideline Q1B. Stability testing: Photostability testing of new drug substances and products. Fed. Regist. 1996, 62, 27115–27122. [Google Scholar]
- Jalava, K.-M.; Olkkola, K.T.; Neuvonen, P.J. Itraconazole greatly increases plasma concentrations and effects of felodipine. Clin. Pharmacol. Ther. 1997, 61, 410–415. [Google Scholar] [CrossRef] [PubMed]
- Mielcarek, J.; Czernielewska, A.; Czarczyńska, B. Inclusion complexes of felodipine and amlodipine with methyl-β-cyclodextrin. J. Incl. Phenom. 2006, 54, 17–21. [Google Scholar] [CrossRef]
- Dunselman, P.H.J.M.; Edgar, B. Felodipine clinical pharmacokinetics. Clin. Pharmacokinet. 1991, 21, 418–430. [Google Scholar] [CrossRef]
- Tres, F.; Hall, S.D.; Mohutsky, M.A.; Taylor, L.S. Monitoring the phase behavior of supersaturated solutions of poorly water-soluble drugs using fluorescence techniques. J. Pharm. Sci. 2018, 107, 94–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ICH guideline Q2 (R2). Validation of Analytical Procedures. Fed. Regist. 2022. Available online: https://www.ema.europa.eu/en/ich-q2r2-validation-analytical-procedures-scientific-guideline (accessed on 12 January 2023).
- Kawabata, K.; Ishida, M.; Akimoto, S.; Inagaki, M.; Nishi, H. Evaluation of the photodegradation of crushed- and suspended pranoprofen tablets. Chromatography 2021, 42, 127–132. [Google Scholar] [CrossRef]
- Nakata, K.; Fujishima, A. TiO2 photocatalysis: Design and applications. J. Photochem. Photobiol. C Photochem. Rev. 2012, 13, 169–189. [Google Scholar] [CrossRef]
- Rostami, M.; Badiei, A.; Ganjali, M.R.; Rahimi-Nasrabadi, M.; Naddafi, M.; Karimi-Maleh, H. Nano-architectural design of TiO2 for high performance photocatalytic degradation of organic pollutant: A review. Environ. Res. 2022, 212, 113347. [Google Scholar] [CrossRef] [PubMed]
- Mishra, M.; Chun, D.M. α-Fe2O3 as a photocatalytic material: A review. Appl. Catal. A Gen. 2015, 498, 126–141. [Google Scholar] [CrossRef]
- DellaGreca, M.; Iesce, M.R.; Previtera, L.; Rubino, M.; Temussi, F. A new photoproduct of the drug furosemide in aqueous media. Environ. Chem. Lett. 2004, 2, 155–158. [Google Scholar] [CrossRef]
Characteristic. | Results |
---|---|
Specificity | Specific (no interference) |
Linearity | Correlation coefficient: r = 0.999, Regression equation: y = 6764x − 4059 y-intercept: within 1% of assay value |
LOQ | 1.39% |
Accuracy | Average recovery (n = 5): 98.4% (RSD 0.57%) |
Precision | Average assay values (n = 5): 100.6% (RSD 0.53%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kawabata, K.; Kohashi, M.; Akimoto, S.; Nishi, H. Structure Determination of Felodipine Photoproducts in UV-Irradiated Medicines Using ESI-LC/MS/MS. Pharmaceutics 2023, 15, 697. https://doi.org/10.3390/pharmaceutics15020697
Kawabata K, Kohashi M, Akimoto S, Nishi H. Structure Determination of Felodipine Photoproducts in UV-Irradiated Medicines Using ESI-LC/MS/MS. Pharmaceutics. 2023; 15(2):697. https://doi.org/10.3390/pharmaceutics15020697
Chicago/Turabian StyleKawabata, Kohei, Miya Kohashi, Shiori Akimoto, and Hiroyuki Nishi. 2023. "Structure Determination of Felodipine Photoproducts in UV-Irradiated Medicines Using ESI-LC/MS/MS" Pharmaceutics 15, no. 2: 697. https://doi.org/10.3390/pharmaceutics15020697
APA StyleKawabata, K., Kohashi, M., Akimoto, S., & Nishi, H. (2023). Structure Determination of Felodipine Photoproducts in UV-Irradiated Medicines Using ESI-LC/MS/MS. Pharmaceutics, 15(2), 697. https://doi.org/10.3390/pharmaceutics15020697