Differential Preincubation Effects of Nicardipine on OATP1B1- and OATP1B3-Mediated Transport in the Presence and Absence of Protein: Implications in Assessing OATP1B1- and OATP1B3-Mediated Drug–Drug Interactions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Cell Culture
2.3. Transport Studies and IC50 Determination
2.4. Prediction of OATP-Mediated DDIs Using the R-Value Model
2.5. Statistical Analysis
3. Results
3.1. Effects of Nicardipine-Preincubation on OATP1B1- and OATP1B3-Mediated Transport in HBSS Buffer, and FBS-Containing Medium
3.2. Effects of Nicardipine Preincubation on IC50 Values against OATP1B1 and OATP1B3 in HBSS and FBS-Containing Medium
3.3. Prediction of OATP-Mediated DDIs Using Static R-Value Model
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- König, J. Uptake transporters of the human OATP family: Molecular characteristics, substrates, their role in drug-drug interactions, and functional consequences of polymorphisms. Handb. Exp. Pharmacol. 2010, 1–28. [Google Scholar] [CrossRef]
- Link, E.; Parish, S.; Armitage, J.; Bowman, L.; Heath, S.; Matsuda, F.; Gut, I.; Lathrop, M.; Collins, R.; Search Collaborative Group. SLCO1B1 variants and statin-induced myopathy—A genomewide study. N. Engl. J. Med. 2008, 359, 789–799. [Google Scholar] [CrossRef]
- Alam, K.; Crowe, A.; Wang, X.; Zhang, P.; Ding, K.; Li, L.; Yue, W. Regulation of Organic Anion Transporting Polypeptides (OATP) 1B1- and OATP1B3-Mediated Transport: An Updated Review in the Context of OATP-Mediated Drug-Drug Interactions. Int. J. Mol. Sci. 2018, 19, 855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cowie, M.R. Simultaneous treatment of hypertension and dyslipidaemia may help to reduce overall cardiovascular risk: Focus on amlodipine/atorvastatin single-pill therapy. Int. J. Clin. Pract. 2005, 59, 839–846. [Google Scholar] [CrossRef]
- Basile, J. The role of existing and newer calcium channel blockers in the treatment of hypertension. J. Clin. Hypertens 2004, 6, 621–629, quiz 630–621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhattarai, A.K.; Acharya, A.; Karki, P.K. Use of Statins as Lipid Lowering Agent in Hypercholesterolemia in a Tertiary Care Hospital: A Descriptive Cross-sectional Study. JNMA J. Nepal. Med. Assoc. 2020, 58, 1031–1035. [Google Scholar] [CrossRef] [PubMed]
- Erdine, S.; Ro, Y.M.; Tse, H.F.; Howes, L.G.; Aguilar-Salinas, C.A.; Chaves, H.; Guindy, R.; Chopra, P.; Moller, R.A.; Schou, I.M.; et al. Single-pill amlodipine/atorvastatin helps patients of diverse ethnicity attain recommended goals for blood pressure and lipids (the Gemini-AALA study). J. Hum. Hypertens 2009, 23, 196–210. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, T.A. Comparative pharmacokinetic interaction profiles of pravastatin, simvastatin, and atorvastatin when coadministered with cytochrome P450 inhibitors. Am. J. Cardiol. 2004, 94, 1140–1146. [Google Scholar] [CrossRef]
- Bajcetic, M.; Benndorf, R.A.; Appel, D.; Schwedhelm, E.; Schulze, F.; Riekhof, D.; Maas, R.; Boger, R.H. Pharmacokinetics of oral doses of telmisartan and nisoldipine, given alone and in combination, in patients with essential hypertension. J. Clin. Pharmacol. 2007, 47, 295–304. [Google Scholar] [CrossRef]
- Becquemont, L.; Funck-Brentano, C.; Jaillon, P. Mibefradil, a potent CYP3A inhibitor, does not alter pravastatin pharmacokinetics. Fundam. Clin. Pharmacol. 1999, 13, 232–236. [Google Scholar] [CrossRef]
- Amundsen, R.; Christensen, H.; Zabihyan, B.; Asberg, A. Cyclosporine A, but not tacrolimus, shows relevant inhibition of organic anion-transporting protein 1B1-mediated transport of atorvastatin. Drug Metab. Dispos. 2010, 38, 1499–1504. [Google Scholar] [CrossRef] [Green Version]
- Gertz, M.; Cartwright, C.M.; Hobbs, M.J.; Kenworthy, K.E.; Rowland, M.; Houston, J.B.; Galetin, A. Cyclosporine inhibition of hepatic and intestinal CYP3A4, uptake and efflux transporters: Application of PBPK modeling in the assessment of drug-drug interaction potential. Pharm. Res. 2013, 30, 761–780. [Google Scholar] [CrossRef] [PubMed]
- Izumi, S.; Nozaki, Y.; Maeda, K.; Komori, T.; Takenaka, O.; Kusuhara, H.; Sugiyama, Y. Investigation of the impact of substrate selection on in vitro organic anion transporting polypeptide 1B1 inhibition profiles for the prediction of drug-drug interactions. Drug Metab. Dispos. 2015, 43, 235–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pahwa, S.; Alam, K.; Crowe, A.; Farasyn, T.; Neuhoff, S.; Hatley, O.; Ding, K.; Yue, W. Pretreatment With Rifampicin and Tyrosine Kinase Inhibitor Dasatinib Potentiates the Inhibitory Effects Toward OATP1B1- and OATP1B3-Mediated Transport. J. Pharm. Sci. 2017, 106, 2123–2135. [Google Scholar] [CrossRef] [PubMed]
- US FDA. In Vitro Metabolism- and Transporter-Mediated Drug-Drug Interaction Studies-Guidance for Industry. Available online: https://www.fda.gov/media/134582/download (accessed on 21 March 2023).
- Minematsu, T.; Giacomini, K.M. Interactions of tyrosine kinase inhibitors with organic cation transporters and multidrug and toxic compound extrusion proteins. Mol. Cancer Ther. 2011, 10, 531–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farasyn, T.; Pahwa, S.; Xu, C.; Yue, W. Pre-incubation with OATP1B1 and OATP1B3 inhibitors potentiates inhibitory effects in physiologically relevant sandwich-cultured primary human hepatocytes. Eur. J. Pharm. Sci. 2021, 165, 105951. [Google Scholar] [CrossRef]
- Farasyn, T.; Crowe, A.; Hatley, O.; Neuhoff, S.; Alam, K.; Kanyo, J.; Lam, T.T.; Ding, K.; Yue, W. Preincubation With Everolimus and Sirolimus Reduces Organic Anion-Transporting Polypeptide (OATP)1B1- and 1B3-Mediated Transport Independently of mTOR Kinase Inhibition: Implication in Assessing OATP1B1- and OATP1B3-Mediated Drug-Drug Interactions. J. Pharm. Sci. 2019, 108, 3443–3456. [Google Scholar] [CrossRef]
- Sabbatini, M.; Strocchi, P.; Amenta, F. Nicardipine and treatment of cerebrovascular diseases with particular reference to hypertension-related disorders. Clin. Exp. Hypertens 1995, 17, 719–750. [Google Scholar] [CrossRef]
- Frampton, J.E.; Faulds, D. Nicardipine. A review of its pharmacology and therapeutic efficacy in older patients. Drugs Aging 1993, 3, 165–187. [Google Scholar] [CrossRef]
- Jouan, E.; Le Vee, M.; Mayati, A.; Denizot, C.; Parmentier, Y.; Fardel, O. Evaluation of P-Glycoprotein Inhibitory Potential Using a Rhodamine 123 Accumulation Assay. Pharmaceutics 2016, 8, 12. [Google Scholar] [CrossRef] [Green Version]
- Sato, T.; Mishima, E.; Mano, N.; Abe, T.; Yamaguchi, H. Potential Drug Interactions Mediated by Renal Organic Anion Transporter OATP4C1. J. Pharmacol. Exp. Ther. 2017, 362, 271–277. [Google Scholar] [CrossRef] [Green Version]
- Karlgren, M.; Vildhede, A.; Norinder, U.; Wisniewski, J.R.; Kimoto, E.; Lai, Y.; Haglund, U.; Artursson, P. Classification of inhibitors of hepatic organic anion transporting polypeptides (OATPs): Influence of protein expression on drug-drug interactions. J. Med. Chem. 2012, 55, 4740–4763. [Google Scholar] [CrossRef] [PubMed]
- Alam, K.; Pahwa, S.; Wang, X.; Zhang, P.; Ding, K.; Abuznait, A.H.; Li, L.; Yue, W. Downregulation of Organic Anion Transporting Polypeptide (OATP) 1B1 Transport Function by Lysosomotropic Drug Chloroquine: Implication in OATP-Mediated Drug-Drug Interactions. Mol. Pharm. 2016, 13, 839–851. [Google Scholar] [CrossRef] [Green Version]
- Alam, K.; Farasyn, T.; Crowe, A.; Ding, K.; Yue, W. Treatment with proteasome inhibitor bortezomib decreases organic anion transporting polypeptide (OATP) 1B3-mediated transport in a substrate-dependent manner. PLoS ONE 2017, 12, e0186924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Izumi, S.; Nozaki, Y.; Komori, T.; Maeda, K.; Takenaka, O.; Kusano, K.; Yoshimura, T.; Kusuhara, H.; Sugiyama, Y. Substrate-dependent inhibition of organic anion transporting polypeptide 1B1: Comparative analysis with prototypical probe substrates estradiol-17beta-glucuronide, estrone-3-sulfate, and sulfobromophthalein. Drug Metab. Dispos. 2013, 41, 1859–1866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kayesh, R.; Farasyn, T.; Crowe, A.; Liu, Q.; Pahwa, S.; Alam, K.; Neuhoff, S.; Hatley, O.; Ding, K.; Yue, W. Assessing OATP1B1- and OATP1B3-Mediated Drug-Drug Interaction Potential of Vemurafenib Using R-Value and Physiologically-Based Pharmacokinetic Models. J. Pharm. Sci. 2020, 110, 314–324. [Google Scholar] [CrossRef]
- Hirano, M.; Maeda, K.; Shitara, Y.; Sugiyama, Y. Contribution of OATP2 (OATP1B1) and OATP8 (OATP1B3) to the hepatic uptake of pitavastatin in humans. J. Pharmacol. Exp. Ther. 2004, 311, 139–146. [Google Scholar] [CrossRef] [PubMed]
- US FDA. Nicardipine Cardene Package Insert. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/019488s010lbl.pdf (accessed on 21 March 2023).
- Urien, S.; Albengres, E.; Comte, A.; Kiechel, J.R.; Tillement, J.P. Plasma protein binding and erythrocyte partitioning of nicardipine in vitro. J. Cardiovasc. Pharmacol. 1985, 7, 891–898. [Google Scholar] [CrossRef]
- Graham, D.J.; Dow, R.J.; Hall, D.J.; Alexander, O.F.; Mroszczak, E.J.; Freedman, D. The metabolism and pharmacokinetics of nicardipine hydrochloride in man. Br. J. Clin. Pharmacol. 1985, 20 (Suppl. S1), 23S–28S. [Google Scholar] [CrossRef] [Green Version]
- Bradley, S.E.; Ingelfinger, F.J.; Bradley, G.P.; Curry, J.J. The estimation of hepatic blood flow in man. J. Clin. Investig. 1945, 24, 890–897. [Google Scholar] [CrossRef] [Green Version]
- Francis, G.L. Albumin and mammalian cell culture: Implications for biotechnology applications. Cytotechnology 2010, 62, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Wagner, C.; Zhao, P.; Pan, Y.; Hsu, V.; Grillo, J.; Huang, S.M.; Sinha, V. Application of Physiologically Based Pharmacokinetic (PBPK) Modeling to Support Dose Selection: Report of an FDA Public Workshop on PBPK. CPT Pharmacomet. Syst. Pharmacol. 2015, 4, 226–230. [Google Scholar] [CrossRef] [PubMed]
- Vaidyanathan, J.; Yoshida, K.; Arya, V.; Zhang, L. Comparing Various In Vitro Prediction Criteria to Assess the Potential of a New Molecular Entity to Inhibit Organic Anion Transporting Polypeptide 1B1. J. Clin. Pharmacol. 2016, 56 (Suppl. S7), S59–S72. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, K.; Maeda, K.; Sugiyama, Y. Transporter-mediated drug—Drug interactions involving OATP substrates: Predictions based on in vitro inhibition studies. Clin. Pharmacol. Ther. 2012, 91, 1053–1064. [Google Scholar] [CrossRef]
- Izumi, S.; Nozaki, Y.; Komori, T.; Takenaka, O.; Maeda, K.; Kusuhara, H.; Sugiyama, Y. Investigation of fluorescein derivatives as substrates of organic anion transporting polypeptide (OATP) 1B1 to develop sensitive fluorescence-based OATP1B1 inhibition assays. Mol. Pharm. 2015, 13, 438–448. [Google Scholar] [CrossRef] [PubMed]
- Ishiguro, N.; Maeda, K.; Kishimoto, W.; Saito, A.; Harada, A.; Ebner, T.; Roth, W.; Igarashi, T.; Sugiyama, Y. Predominant contribution of OATP1B3 to the hepatic uptake of telmisartan, an angiotensin II receptor antagonist, in humans. Drug Metab. Dispos. 2006, 34, 1109–1115. [Google Scholar] [CrossRef] [Green Version]
- Jacobsen, W.; Kirchner, G.; Hallensleben, K.; Mancinelli, L.; Deters, M.; Hackbarth, I.; Benet, L.Z.; Sewing, K.F.; Christians, U. Comparison of cytochrome P-450-dependent metabolism and drug interactions of the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors lovastatin and pravastatin in the liver. Drug Metab. Dispos. 1999, 27, 173–179. [Google Scholar]
- Lennernas, H. Clinical pharmacokinetics of atorvastatin. Clin. Pharmacokinet. 2003, 42, 1141–1160. [Google Scholar] [CrossRef]
- Maeda, K.; Ikeda, Y.; Fujita, T.; Yoshida, K.; Azuma, Y.; Haruyama, Y.; Yamane, N.; Kumagai, Y.; Sugiyama, Y. Identification of the rate-determining process in the hepatic clearance of atorvastatin in a clinical cassette microdosing study. Clin. Pharmacol. Ther. 2011, 90, 575–581. [Google Scholar] [CrossRef]
- Niemi, M.; Pasanen, M.K.; Neuvonen, P.J. Organic anion transporting polypeptide 1B1: A genetically polymorphic transporter of major importance for hepatic drug uptake. Pharmacol. Rev. 2011, 63, 157–181. [Google Scholar] [CrossRef] [Green Version]
- Shen, H.; Dai, J.; Liu, T.; Cheng, Y.; Chen, W.; Freeden, C.; Zhang, Y.; Humphreys, W.G.; Marathe, P.; Lai, Y. Coproporphyrins I and III as Functional Markers of OATP1B Activity: In Vitro and In Vivo Evaluation in Preclinical Species. J. Pharmacol. Exp. Ther. 2016, 357, 382–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalluri, H.V.; Kikuchi, R.; Coppola, S.; Schmidt, J.; Mohamed, M.-E.F.; Bow, D.A.J.; Salem, A.H. Coproporphyrin I Can Serve as an Endogenous Biomarker for OATP1B1 Inhibition: Assessment Using a Glecaprevir/Pibrentasvir Clinical Study. Clin. Transl. Sci. 2021, 14, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Tamraz, B.; Fukushima, H.; Wolfe, A.R.; Kaspera, R.; Totah, R.A.; Floyd, J.S.; Ma, B.; Chu, C.; Marciante, K.D.; Heckbert, S.R.; et al. OATP1B1-related drug-drug and drug-gene interactions as potential risk factors for cerivastatin-induced rhabdomyolysis. Pharm. Genom. 2013, 23, 355–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameters | Values |
---|---|
Molecular Weight (g/mol) | 515.99 [29] |
Dose (mg) | 20, 30, 40 [29] |
Cmax, plasma (μM) | 0.07, 0.17, 0.26 [29] |
Blood to plasma concentration ratio (Cb/p) | 0.63 [30] |
ka (Absorption rate constant: min−1) | 0.1 |
fu (Fraction unbound in the plasma) | 0.05 [29] |
fa × Fg | 1 [31] |
Iin, max (Estimated based on Equation (3): μM) | 8.46 |
Transporter and Preincubation Buffer | Co-Incubation | Pre + Co-Incubation | ||||||
---|---|---|---|---|---|---|---|---|
IC50 (µM) | R (20 mg) | R (30 mg) | R (40 mg) | IC50 (µM) | R (20 mg) | R (30 mg) | R (40 mg) | |
OATP1B1 | ||||||||
HBSS | 3.55 ± 2.46 | 1.1 | 1.1 | 1.1 | 0.98 ± 0.26 | 1.2 | 1.3 | 1.4 |
FBS-DMEM | 2.80 ± 2.44 | 1.1 | 1.1 | 1.2 | 1.57 ± 1.40 | 1.1 | 1.2 | 1.3 |
OATP1B3 | ||||||||
HBSS | 11.1 ± 60.0 | 1.0 | 1.0 | 1.0 | 1.63 ± 1.05 | 1.1 | 1.2 | 1.3 |
FBS-DMEM | 9.17 ± 23.1 | 1.0 | 1.1 | 1.1 | 6.13 ± 8.10 | 1.1 | 1.1 | 1.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kayesh, R.; Tambe, V.; Xu, C.; Yue, W. Differential Preincubation Effects of Nicardipine on OATP1B1- and OATP1B3-Mediated Transport in the Presence and Absence of Protein: Implications in Assessing OATP1B1- and OATP1B3-Mediated Drug–Drug Interactions. Pharmaceutics 2023, 15, 1020. https://doi.org/10.3390/pharmaceutics15031020
Kayesh R, Tambe V, Xu C, Yue W. Differential Preincubation Effects of Nicardipine on OATP1B1- and OATP1B3-Mediated Transport in the Presence and Absence of Protein: Implications in Assessing OATP1B1- and OATP1B3-Mediated Drug–Drug Interactions. Pharmaceutics. 2023; 15(3):1020. https://doi.org/10.3390/pharmaceutics15031020
Chicago/Turabian StyleKayesh, Ruhul, Vishakha Tambe, Chao Xu, and Wei Yue. 2023. "Differential Preincubation Effects of Nicardipine on OATP1B1- and OATP1B3-Mediated Transport in the Presence and Absence of Protein: Implications in Assessing OATP1B1- and OATP1B3-Mediated Drug–Drug Interactions" Pharmaceutics 15, no. 3: 1020. https://doi.org/10.3390/pharmaceutics15031020
APA StyleKayesh, R., Tambe, V., Xu, C., & Yue, W. (2023). Differential Preincubation Effects of Nicardipine on OATP1B1- and OATP1B3-Mediated Transport in the Presence and Absence of Protein: Implications in Assessing OATP1B1- and OATP1B3-Mediated Drug–Drug Interactions. Pharmaceutics, 15(3), 1020. https://doi.org/10.3390/pharmaceutics15031020