The In Vitro, Ex Vivo, and In Vivo Effect of Edible Oils: A Review on Cell Interactions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Study Selection/Inclusion Criteria
2.3. Data Extraction and Outcomes
3. Results and Discussion
3.1. Effect of Edible Oils: In Vitro, Ex Vivo and In Vivo Studies
Cell Category | Oil Types | Model | Study | Application and Key Findings | References | |
---|---|---|---|---|---|---|
Vegetable/Seed oils | Chicken embryo fibroblasts | Lavender oil | Chicken | In vitro | Effect on wound-healing: enhances the regeneration of new tissue and defense against bacteria | [43] |
Candida albicans | Melaleuca oil | Fungi | In vitro | Superior antifungal activity of melaleuca oil in comparison to fluconazole | [44] | |
Pigment epithelium cells and mice | Olive oil, corn oil, argan oil, and camelina oil | Human and mice | In vitro and in vivo | In vitro cytotoxicity: cytocompatibility of vegetable oils with epithelium cells | [45] | |
Conjunctival cells | Olive, camelina, Aleurites moluccana, maize oils, castor oil | Human | In vitro | In vitro cytotoxicity: lack of cytotoxicity for all the tested oils | [46] | |
Keratinocyte cells | Red raspberry seed oil | Human | In vitro cytotoxicity | Safety and efficacy assessment: biocompatible with antioxidant activity | [6] | |
Mesenchymal stem cells (MSCs) | Olive oil | Human | Proliferation, regeneration capacity | Olive oils affect MSC maintenance and differentiation | [47] | |
Immortalized human gingival fibroblasts (HGF) | Ozonized olive oil | Human | Cytotoxicity evaluation | Cytocompatibility of the ozonized olive oil as an alternative antibacterial agent | [48] | |
Human melanoma cells | Extra virgin olive oil | Human | Cell viability assay | The ability of extra virgin oil to counteract the proliferation of cutaneous melanoma cells | [49] | |
CCD-1064Sk fibroblast line | Olive oil | Human | Proliferation and antimicrobial properties | Inhibiting the growth of bacteria strains | [50] | |
Cultured malignant cells | Flaxseed oil | Human | Cell viability | Induction of apoptosis in malignant cancer cells | [51] | |
Caco-2 cells | Sunflower seed oil | Human | In vitro cytotoxicity | Cell damage of Caco-2 colon cancer cells | [52] | |
- | Coconut oil and sunflower oil | Human | Clinical trial | Triacylglycerol, LDL, and VLDL cholesterol levels were higher in the diabetic subjects compared to the controls. | [53] | |
- | Virgin coconut oil (VCO) | Human | Open label, randomized, controlled, crossover study | Daily VCO intake significantly increased high-density lipoprotein cholesterol | [54] | |
- | Coconut oil, olive oil | Human | Clinical trial | Coconut oil did not significantly differ from olive oil for TC/HDL-C and non-HDL-C | [55] | |
Essential oils | Vero cells | Myrtaceae essential oils (cajuput oil, clove oil, kanuka oil, and manuka oil) | Human | In vitro cytotoxicity | Anticancer properties | [36] |
Hepatocytes and erythrocytes | Eygenol, thymol, menthol | Rat | In vitro cytotoxicity | Essential oils may cause periapical tissue injury by causing membrane lysis and surface activity. | [4] | |
Whole blood cells | Essential oils of Thymus and Origanum plants | Human | In vitro cytotoxicity to investigate the genetic, oxidative, and cytotoxic effects of thymol in cultured human blood cells | Enhanced biocompatibility with human cell lines and an inhibitory effect on the production of biofilms. | [5,16] | |
Jurkat, J774A.1, and HeLa cells lines | Essential oils of Eucalyptus benthamii | Human | Inhibitory effect | Anticancer activity, decrease in cell DNA | [37] | |
Ovarian cancer cell and foreskin fibroblasts | Linum usitatissimum seed essential oil | Human | Cell viability | Apoptotic activity anti-angiogenic activity | [56] | |
Candida Albicans | Cumin seeds essential oil | Bacteria | Antibacterial activity | Effective against candidiasis | [57] | |
A. Salina | Eugenol and garlic essential oils | Aquatic crustaceans | Acute toxicity test with A. salina | Bactericidal activity against fish pathogenic bacteria | [58] | |
Pig tracheal epithelial cell line NPTr and porcine respiratory bacterial pathogens | Essential oils from Abies balsamea, Cinnamomum verum; Coriandrum sativum, Ledum groenlandicum, Mentha piperita, Salvia officinalis, Origanum majorana, Thymus vulgaris, and Satureja montana | Pig and bacteria | In vitro | In vitro cytotoxicity and antibacterial activity, synergistic growth inhibition of S.Suis from the tested oils | [15] | |
Skin and lung cells | Essential oils from Abies koreana, Platycladus orientalis | Human | In vitro | Cell viability assay, plant essential oils can be used safely | [59] | |
Oxyntopeptic cells and somatostatin and ghrelin immunoreactive cells | Essential oils from thyme, cinnamon, and rosemary | Fish | In vitro | Na+K+-ATPase expression was modified in gastric mucosa | [60] | |
K562 cells | Essential oils | Human | In vitro | Telomerase (hTERT) gene transcription was not increased by telomere-protective oils. | [61] | |
E. coli, K. pneumonia, St. aureus | Flower oil, bud oil | Bacteria | In vitro | Antibacterial properties: flower oils presented higher antimicrobial effects against K. pneumoniae | [62] | |
Bacteria in humans | Organic olive oil-based denture adhesive | Human | Clinical trial | Inhibition capacity for the growth of Candida albicans | [63] | |
Marine oil | Smooth muscle cells (SMC) | Fish oil | Human | In vitro cytotoxicity assay | SMC cells resist apoptosis with fish oil | [7] |
Bacillus cereus | Marine oil spills | Bacteria | In vitro cytotoxicity assay | Inhibition of bacterial growth | [64] | |
Epithelial cells Cancer cells | Bottarga extracts | Human | In vitro cytotoxicity activity | Inhibition of cancer cell growth | [65] |
3.1.1. Vegetable and Essential Oils
Human Consumption
In Vitro and Animal Studies
Antimicrobial Properties
3.1.2. Fish Oils
Human/Animal Consumption
Other Properties
3.2. Effect of Fatty Acids in Biochemical Pathways after Cells Interactions
Oil | Characteristic Fatty Acids | Cell Category | Effect | Study | References | |
---|---|---|---|---|---|---|
Marine oils | Fish oil | Omega-3 Fatty Acids | Macrophages | Reduce inflammation, regulate production of cytokines | In vitro | [90] |
Fish oil | Omega-3 Fatty Acids | Neutrophil | Omega-3-derived metabolites inhibited migration of neutrophils | In vitro | [91] | |
Fish oil | EPA (eicosapentaenoic fatty acid) | T-Cells | Suppressive effect of dietary omega-3 on T cell function | In vitro | [92,94] | |
Fish oil | Omega-6 fatty acids | E. Coli | No effect on phagocytic capacity | In vitro and in vivo | [95] | |
Carp oil | Oleic acid | Female 5-wk-old C57BL/6 strain mice | Tumor growth inhibition | In vitro | [12] | |
Fish oil and corn oil | Omega-3 and omega-6 fatty acids | Sprague Dawley rats | Reduction in PM2.5-induction in the lung and systemic inflammatory responses | In vivo | [96] | |
Fish oil | N-3 long chain polyunsaturated fatty acids (LCPUFAs) (EPA, DHA) | Ex vivo in man | Increased oxidation of LDL | Ex vivo pilot study | [40] | |
Fish oil | Omega-3 and omega-6 fatty acids | Adult male Sprague-Dawley rats | On testicular steroidogenesis, adipokine network, cytokines, and oxidative stress in adult male rats | In vivo | [97] | |
Fish oil | ω-3 PUFAs, EPA, and DHA | Wistar rats | Reduction in oxidative stress and inflammation markers | In vivo | [14] | |
Essential oil | Essential oils | Capric acid, lauric acid | Oxyntopeptic cells and somatostatin and ghrelin immunoreactive cells | The effect of feed supplemented with essential oils (EOs) on the histological features in sea bass’ gastric mucosa and the increase in the number of cells in the essential oil diet | In vitro | [60] |
Vegetable/seed oil | Olive oil | Swiss mice | N-9 MUFA, oleic acid, and phenolic compounds | Wound healing | In vivo | [13] |
Palm oil | C57BL/6J mice | Palmitic acid | Metastasis | In vivo | [98] | |
Sunflower oil or soybean oil | Rabbits | Omega-6 fatty acids | Folliculogenesis | In vivo | [99] | |
Virgin olive oil | Pancreatic cells of rats | Monounsaturated fatty acids | Anti-inflammatory properties | In vivo | [72] |
3.2.1. Fish Oil
Human/Animal Consumption
3.2.2. Vegetable, Essential Oils Supplements
Human/Animal Consumption
3.3. Impact of Edible Oil Supplements to Oxidative Stress Biomarkers
3.3.1. Fish Oil Supplements
Human/Animal Consumption
Animal Model/Cell Category | Edible Oil | Fatty Acids in Details | Oxidative Stress and Inflammation Biomarkers | Antioxidants | Application | Study | Reference | |
---|---|---|---|---|---|---|---|---|
Marine oils | Male Wistar rats following or not hypercholesterolemic diet | Fish oil commercially available in gel capsules | 33.57% of saturated FAs, 30.28% of monounsaturated FAs, 31.1% of n-3 PUFAs, and 3.61% of n-6 PUFAs | malondialdehyde (MDA) levels were not affected for both groups | Increase in Erythrocyte SOD concentration. | Therapeutic intervention for the reduction in plasma triglyceride concentration | In vivo | [27] |
Women enrolled during pregnancy (32.6 weeks) | Omega-3 FA supplements, listed as “fish oil supplements” | Not mentioned | 8-iso-PGF2α lower levels of 8-iso-PGF2α associated with n-3 FA intake in pregnancy | Antioxidants were not evaluated | Effect of omega-3 FA consumption during oxidative stress in pregnancy | In vivo | [102] | |
In vivo/in vitro cell model was used, culturing SMC isolated from chicks | 10% of menhaden oil | Not mentioned | Apoptotic cell death markers | Fish oil attenuated the increase in apoptotic markers through its influence on the expression of antioxidant genes. | Control of cholesterol levels | In vitro and in vivo | [7] | |
Healthy adults | Fish oil | 60% of omega-3 fatty acids (36% eicosapentaenoic acid [EPA] and 24% docosahexaenoic acid [DHA]) | Oxidized low-density lipoprotein (ox-LDL) and lipid peroxidation total antioxidant capacity, glutathione peroxidase, superoxide dismutase | Effect of fish oil against fine particulate air pollution in China | Control air pollution | Clinical trial | [103] | |
Healthy young adults | Fish oil | fish-oil capsule contains 60% omega-3 fatty acids (36% EPA and 24% DHA) | Fluorescein-5-thiosemicarbazide to detect carbonyl protein | Total antioxidant activity, glutathione | Biomarkers of skin inflammation and oxidative stress | Clinical trial | [104] | |
Healthy young males | Fish oil | Not mentioned | Plasma thiobarbituric acid reactive substances (TBARS) H2O2 stimulated DNA damage | - | Reduction in selected markers of oxidative stress after a single bout of eccentric exercise | Clinical trial | [105] | |
Adult male Wistar rats | Fish oil capsules | N-3 PUFA (both EPA and DHA) | Lipid hydroperoxide | SOD and GPx activities | Effect of fish oil on oxidative stress and inflammation in asthma | In vivo | [88] | |
Patients with multiple sclerosis | 4 g/day omega Rx capsules | n-3 PUFA (both EPA and DHA) | Lipid peroxidation in serum | - | Efficacy of fish oil in multiple sclerosis patients | Clinical trial | [106] | |
Monocyte cells U937 incubated in a high-glucose medium. | Fish oil emulsion | Not mentioned | Protein carbonyls | Antioxidant, superoxide dismutase activity, and isoprostane | Efficacy of fish oil in cells mimicking hyperglycemia | In vitro | [107] | |
Healthy adults | Fish oil | 1000 mg EPA and 400 mg DHA; | IL-6, IL-1β, IL-8, and TNF-α | - | Effect of fish oil on common markers of systemic inflammation | Clinical trial | [108] | |
Large yellow croaker | Fish oil | Not mentioned | Lipid peroxidation, | Antioxidant enzyme activity | Effects of oxidized dietary lipids on growth performance of large yellow croaker | In vivo | [109] | |
ALM12 cell line and male C57BL/6J mice | DHA | Not mentioned | Intracellular ROS Detection | - | Effect of DHA to protect hepatocytes from oxidative damage | In vitro and in vivo | [8] | |
Patients undergoing (CABG) surgery | N-3 polyunsaturated fatty acids | N-3 polyunsaturated fatty acids | Total peroxides, endogenous peroxidase activity | - | Effect of post-operative oxidative stress in the course of CABG surgery | Clinical trial | [100] | |
HIV-seropositive Patients | Omega-3 fatty acid ethyl esters | Omega-3 fatty acid ethyl esters | Lipid peroxidation products | Glutathione levels | Effect of omega-3 fatty acid in HIV-seropositive patients | Clinical trial | [110] | |
Patients with multiple sclerosis | High-dose ω-3 fatty acid | High-dose ω-3 fatty acid | Lipid peroxidation, | - | Effect of high-dose ω-3 fatty acids in patients with multiple sclerosis | Clinical trial | [111] | |
Children with attention deficit hyperactivity disorder | N-3 fatty acids 635 mg eicosapentaenoic acid (EPA), 195 mg docosahexaenoic acid (DHA) | - | - | Activity of glutathione reductase (GR), catalase (CAT) and superoxide dismutase (SOD) | Effect of n-3 fatty acids in children with attention deficit hyperactivity disorder | Clinical trial | [18] | |
Patients with Alzheimer’s disease | Omega-3 fatty acids | DHA (22:6) and 0.6 g EPA (20:5) | - | 2-isoprostane, 8-iso-PGF2α, | Effect of Omega-3 fatty acids in patients with Alzheimer’s | Clinical trial | [112] | |
Patients with Prostate cancer | Fish oil | - | Oxidative phosphorylation | - | Effect of fish oil in Patients with Prostate cancer | Clinical trial | [113] | |
Patients on hemodialysis | N-3 PUFA and soybean oil | 1.28 g/day of n-3 PUFA | Oxidation protein products | Isoprostanes, vitamins C and E, total antioxidant capacity | Effect of n-3 PUFA and soybean oil in patients on hemodialysis | Clinical trial | [114] | |
Vegetable oils | Peripheral blood mononuclear cells after exercise in young athletes | Almond and olive oil | Not mentioned | Lipid peroxidation, protein carbonyl derivatives and nitrotyrosine | Vitamin E | Effects of dietary almond- and olive oil on athletic performance | In vitro | [115] |
Hepatocytes | Olive oil | Phenolic compounds | Reactive oxygen species | Not mentioned | Influenced the outcome of cell responses in conditions of increased oxidative stress | In vitro | [116] | |
Intestinal cells | Olive oil polyphenols | Not mentioned | H2O2 production, IL-6 and IL-8 release | Glutathione (GSH) | H2O2 production, GSH decrease, IL-6 and IL-8 release | In vitro | [117] | |
Lens, skin, and serum of Sprague-Dawley male albino rats | Flax seed oil (FSO) | Not mentioned | MDA | (GSH) levels (GPx) superoxide dismutase (SOD) activities | Ultraviolet C exposure led to oxidative stress and FSO can protect | In vivo | [118] |
3.3.2. Vegetable, Essential Oils Supplements
Human/Animal Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mazzocchi, A.; De Cosmi, V.; Risé, P.; Milani, G.P.; Turolo, S.; Syrén, M.L.; Sala, A.; Agostoni, C. Bioactive Compounds in Edible Oils and Their Role in Oxidative Stress and Inflammation. Front. Physiol. 2021, 12. [Google Scholar] [CrossRef]
- Food & Drug Administration Diet Supplements. 2021. Available online: https://www.fda.gov/food/dietary-supplements (accessed on 11 December 2022).
- Knorr, D.; Augustin, M.A.; Tiwari, B. Advancing the Role of Food Processing for Improved Integration in Sustainable Food Chains. Front. Nutr. 2020, 7, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manabe, A.; Nakayama, S.; Sakamoto, K. Effects of essential oils on erythrocytes and hepatocytes from rats and dipalmitoyl phosphatidylcholine-liposomes. Jpn J. Pharmacol. 1987, 44, 77–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aydn, E.; Türkez, H. In vitro cytotoxicity, genotoxicity and antioxidant potentials of thymol on human blood cells. J. Essent. Oil Res. 2014, 26, 133–140. [Google Scholar] [CrossRef]
- Gledovic, A.; Lezaic, A.J.; Nikolic, I.; Tasic-Kostov, M.; Antic-Stankovic, J.; Krstonosic, V.; Randjelovic, D.; Bozic, D.; Ilic, D.; Tamburic, S.; et al. Polyglycerol ester-based low energy nanoemulsions with red raspberry seed oil and fruit extracts: Formulation development toward effective in vitro/in vivo bioperformance. Nanomaterials 2021, 11, 1–21. [Google Scholar] [CrossRef]
- Perales, S.; Alejandre, M.J.; Morales, R.P.; Torres, C.; Linares, A. Fish oil supplementation reverses the effect of cholesterol on apoptotic gene expression in smooth muscle cells. Lipids Health Dis. 2010, 9, 70. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Wang, D.; Zong, Y.; Yang, X. Dha protects hepatocytes from oxidative injury through gpr120/erk-mediated mitophagy. Int. J. Mol. Sci. 2021, 22, 5675. [Google Scholar] [CrossRef] [PubMed]
- Türkez, H.; Aydln, E. Investigation of cytotoxic, genotoxic and oxidative properties of carvacrol in human blood cells. Toxicol. Ind. Health 2016, 32, 625–633. [Google Scholar] [CrossRef]
- Hsu, M.C.; Huang, Y.S.; Ouyang, W.C. Beneficial effects of omega-3 fatty acid supplementation in schizophrenia: Possible mechanisms. Lipids Health Dis. 2020, 19, 162. [Google Scholar] [CrossRef] [PubMed]
- Falomir-Lockhart, L.J.; Cavazzutti, G.F.; Giménez, E.; Toscani, A.M. Fatty acid signaling mechanisms in neural cells: Fatty acid receptors. Front. Cell. Neurosci. 2019, 13, 2069–2075. [Google Scholar] [CrossRef] [Green Version]
- Kimura, Y. Carp oil or oleic acid, but not linoleic acid or linolenic acid, inhibits tumor growth and metastasis in Lewis lung carcinoma-bearing mice. J. Nutr. 2002, 132, 2069–2075. [Google Scholar] [CrossRef] [Green Version]
- Rosa, A.D.S.; Bandeira, L.G.; Monte-Alto-Costa, A.; Romana-Souza, B. Supplementation with olive oil, but not fish oil, improves cutaneous wound healing in stressed mice. Wound Repair Regen. 2014, 22, 537–547. [Google Scholar] [CrossRef]
- Dasilva, G.; Pazos, M.; García-Egido, E.; Gallardo, J.M.; Rodríguez, I.; Cela, R.; Medina, I. Healthy effect of different proportions of marine ω-3 PUFAs EPA and DHA supplementation in Wistar rats: Lipidomic biomarkers of oxidative stress and inflammation. J. Nutr. Biochem. 2015, 26, 1385–1392. [Google Scholar] [CrossRef] [Green Version]
- LeBel, G.; Vaillancourt, K.; Bercier, P.; Grenier, D. Antibacterial activity against porcine respiratory bacterial pathogens and in vitro biocompatibility of essential oils. Arch. Microbiol. 2019, 201, 833–840. [Google Scholar] [CrossRef]
- Manconi, M.; Petretto, G.; D’hallewin, G.; Escribano, E.; Milia, E.; Pinna, R.; Palmieri, A.; Firoznezhad, M.; Peris, J.E.; Usach, I.; et al. Thymus essential oil extraction, characterization and incorporation in phospholipid vesicles for the antioxidant/antibacterial treatment of oral cavity diseases. Colloids Surf. B Biointerfaces 2018, 171, 115–122. [Google Scholar] [CrossRef]
- Nagoor Meeran, M.F.; Javed, H.; Al Taee, H.; Azimullah, S.; Ojha, S.K. Pharmacological Properties and Molecular Mechanisms of Thymol: Prospects for Its Therapeutic Potential and Pharmaceutical Development. Front. Pharmacol. 2017, 8. [Google Scholar] [CrossRef] [Green Version]
- Hariri, M.; Djazayery, A.; Djalali, M.; Saedisomeolia, A.; Rahimi, A.; Abdolahian, E. Effect of n-3 supplementation on hyperactivity, oxidative stress and inflammatory mediators in children with attention-deficit-hyperactivity disorder. Malays. J. Nutr. 2012, 18, 329–335. [Google Scholar]
- Eilat-Adar, S.; Mete, M.; Nobmann, E.D.; Xu, J.; Fabsitz, R.R.; Ebbesson, S.O.E.; Howard, B.V. Dietary patterns are linked to cardiovascular risk factors but not to inflammatory markers in Alaska Eskimos. J. Nutr. 2009, 139, 2322–2328. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.; Wen, X.; Jia, M. Efficacy of omega-3 polyunsaturated fatty acids on hormones, oxidative stress, and inflammatory parameters among polycystic ovary syndrome: A systematic review and meta-analysis. Ann. Palliat. Med. 2021, 10, 8991–9001. [Google Scholar] [CrossRef]
- Reis, D.; Jones, T. Aromatherapy: Using essential oils as a supportive therapy. Clin. J. Oncol. Nurs. 2017, 21, 16–19. [Google Scholar] [CrossRef]
- Rey, F.; Alves, E.; Gaspar, L.; Conceição, M.; Domingues, M.R. Oils as a Source of Bioactive Lipids (Olive Oil, Palm Oil, Fish Oil). In Bioactive Lipids; Academic Press: Cambridge, MA, USA, 2023; pp. 231–268. [Google Scholar] [CrossRef]
- Salsinha, A.S.; Machado, M.; Rodríguez-Alcalá, L.M.; Gomes, A.M.; Pintado, M. Chapter 1—Bioactive lipids: Chemistry, biochemistry, and biological properties. In Bioactive Lipids; Academic Press: Cambridge, MA, USA, 2022. [Google Scholar] [CrossRef]
- Nde, D.B.; Anuanwen, C.F. Optimization methods for the extraction of vegetable oils: A review. Processes 2020, 8, 209. [Google Scholar] [CrossRef] [Green Version]
- Çelikezen, F.Ç.; Hayta, Ş.; Özdemir, Ö.; Türkez, H. Cytotoxic and antioxidant properties of essential oil of Centaurea behen L. in vitro. Cytotechnology 2019, 71, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Aziz, Z.A.A.; Ahmad, A.; Setapar, S.H.M.; Karakucuk, A.; Azim, M.M.; Lokhat, D.; Rafatullah, M.; Ganash, M.; Kamal, M.A.; Ashraf, G.M. Essential Oils: Extraction Techniques, Pharmaceutical And Therapeutic Potential—A Review. Curr. Drug Metab. 2018, 19, 1100–1110. [Google Scholar] [CrossRef] [PubMed]
- Lima Rocha, J.É.; Mendes Furtado, M.; Mello Neto, R.S.; da Silva Mendes, A.V.; da Silva Brito, A.K.; Sena de Almeida, J.O.C.; Rodrigues Queiroz, E.I.; de Sousa França, J.V.; Silva Primo, M.G.; Cunha Sales, A.L.; et al. Effects of Fish Oil Supplementation on Oxidative Stress Biomarkers and Liver Damage in Hypercholesterolemic Rats. Nutrients 2022, 14, 426. [Google Scholar] [CrossRef]
- Finley, J.W.; Shahidi, F. The chemistry, processing, and health benefits of highly unsaturated fatty acids: An overview. ACS Symp. Ser. 2001, 788, 2–11. [Google Scholar] [CrossRef] [Green Version]
- Lopez, L.B.; Kritz-Silverstein, D.; Barrett-Connor, E. HIgh dietary and plasma levels of the omega-3 fatty acid docosahexaenoic acid are associated with decreased dementia risk: The rancho bernardo study. J. Nutr. Health Aging 2011, 15, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.; Xiong, Q.; Yin, Y.; Ling, Z.; Chen, S. The Effects of Fish Oil on Cardiovascular Diseases: Systematical Evaluation and Recent Advance. Front. Cardiovasc. Med. 2022, 8. [Google Scholar] [CrossRef] [PubMed]
- Jović, M.; Lončarević-Vasiljković, N.; Ivković, S.; Dinić, J.; Milanović, D.; Zlokovic, B.; Kanazir, S. Short-term fish oil supplementation applied in presymptomatic stage of Alzheimer’s disease enhances microglial/macrophage barrier and prevents neuritic dystrophy in parietal cortex of 5xFAD mouse model. PLoS One 2019, 14, e0216726. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Jayachandran, M.; Bai, W.; Xu, B. A critical review on the health benefits of fish consumption and its bioactive constituents. Food Chem. 2022, 369, 130874. [Google Scholar] [CrossRef]
- Pal, A.; Metherel, A.H.; Fiabane, L.; Buddenbaum, N.; Bazinet, R.P.; Shaikh, S.R. Do eicosapentaenoic acid and docosahexaenoic acid have the potential to compete against each other? Nutrients 2020, 12, 1–12. [Google Scholar] [CrossRef]
- Ravić, B.; Debeljak-Martacić, J.; Pokimica, B.; Vidović, N.; Ranković, S.; Glibetić, M.; Stepanović, P.; Popović, T. The Effect of Fish Oil-Based Foods on Lipid and Oxidative Status Parameters in Police Dogs. Biomolecules 2022, 12, 1092. [Google Scholar] [CrossRef]
- Yang, J.; Fernández-Galilea, M.; Martínez-Fernández, L.; González-Muniesa, P.; Pérez-Chávez, A.; Martínez, J.A.; Moreno-Aliaga, M.J. Oxidative stress and non-alcoholic fatty liver disease: Effects of omega-3 fatty acid supplementation. Nutrients 2019, 11, 872. [Google Scholar] [CrossRef] [Green Version]
- Schnitzler, P.; Wiesenhofer, K.; Reichling, J. Comparative study on the cytotoxicity of different Myrtaceae essential oils on cultured Vero and RC-37 cells. Pharmazie 2008, 63, 830–835. [Google Scholar] [CrossRef]
- Döll-Boscardin, P.M.; Sartoratto, A.; De Noronha Sales Maia, B.H.L.; Padilha De Paula, J.; Nakashima, T.; Farago, P.V.; Kanunfre, C.C. In vitro cytotoxic potential of essential oils of Eucalyptus benthamii and its related terpenes on tumor cell lines. Evidence-Based Complement. Altern. Med. 2012, 2012, 342652. [Google Scholar] [CrossRef] [Green Version]
- Sharma, M.; Grewal, K.; Jandrotia, R.; Batish, D.R.; Singh, H.P.; Kohli, R.K. Essential oils as anticancer agents: Potential role in malignancies, drug delivery mechanisms, and immune system enhancement. Biomed. Pharmacother. 2022, 146, 112514. [Google Scholar] [CrossRef]
- D’Eliseo, D.; Velotti, F. Omega-3 fatty acids and cancer cell cytotoxicity: Implications for multi-targeted cancer therapy. J. Clin. Med. 2016, 5, 15. [Google Scholar] [CrossRef] [Green Version]
- Turini, M.E.; Crozier, G.L.; Donnet-Hughes, A.; Richelle, M.A. Short-term fish oil supplementation improved innate immunity, but increased ex vivo oxidation of LDL in man—A pilot study. Eur. J. Nutr. 2001, 40, 56–65. [Google Scholar] [CrossRef]
- Infante, V.H.P.; Maia Campos, P.M.B.G.; Gaspar, L.R.; Darvin, M.E.; Schleusener, J.; Rangel, K.C.; Meinke, M.C.; Lademann, J. Safety and efficacy of combined essential oils for the skin barrier properties: In vitro, ex vivo and clinical studies. Int. J. Cosmet. Sci. 2022, 44, 118–130. [Google Scholar] [CrossRef]
- Ribeiro, A.R.; Silva, S.S.; Reis, R.L. Challenges and opportunities on vegetable oils derived systems for biomedical applications. Biomater. Adv. 2022, 134, 112720. [Google Scholar] [CrossRef]
- Sofi, H.S.; Akram, T.; Tamboli, A.H.; Majeed, A.; Shabir, N.; Sheikh, F.A. Novel lavender oil and silver nanoparticles simultaneously loaded onto polyurethane nanofibers for wound-healing applications. Int. J. Pharm. 2019, 569, 118590. [Google Scholar] [CrossRef]
- Hegde, V. Comparative evaluation of antifungal activity of Melaleuca oil and fluconazole when incorporated in tissue conditioner—An in vitro study. Oral Health Dent. Manag. 2015, 14. [Google Scholar] [CrossRef]
- Said, T.; Tremblay-Mercier, J.; Berrougui, H.; Rat, P.; Khalil, A. Effects of vegetable oils on biochemical and biophysical properties of membrane retinal pigment epithelium cells. Can. J. Physiol. Pharmacol. 2013, 91, 812–817. [Google Scholar] [CrossRef]
- Said, T.; Dutot, M.; Christon, R.; Beaudeux, J.L.; Martin, C.; Warnet, J.M.; Rat, P. Benefits and side effects of different vegetable oil vectors on apoptosis, oxidative stress, and P2X7 cell death receptor activation. Investig. Ophthalmol. Vis. Sci. 2007, 48, 5000–5006. [Google Scholar] [CrossRef] [Green Version]
- Casado-Díaz, A.; Dorado, G.; Quesada-Gómez, J.M. Influence of olive oil and its components on mesenchymal stem cell biology. World J. Stem Cells 2019, 11, 1045–1064. [Google Scholar] [CrossRef]
- Colombo, M.; Ceci, M.; Felisa, E.; Poggio, C.; Pietrocola, G. Cytotoxicity evaluation of a new ozonized olive oil. Eur. J. Dent. 2018, 12, 585–589. [Google Scholar] [CrossRef] [Green Version]
- Carpi, S.; Polini, B.; Manera, C.; Digiacomo, M.; Salsano, J.E.; Macchia, M.; Scoditti, E.; Nieri, P. miRNA modulation and antitumor activity by the extra-virgin olive oil polyphenol oleacein in human melanoma cells. Front. Pharmacol. 2020, 11. [Google Scholar] [CrossRef]
- Melguizo-Rodríguez, L.; Illescas-Montes, R.; Costela-Ruiz, V.J.; Ramos-Torrecillas, J.; de Luna-Bertos, E.; García-Martínez, O.; Ruiz, C. Antimicrobial properties of olive oil phenolic compounds and their regenerative capacity towards fibroblast cells. J. Tissue Viability 2021, 30, 372–378. [Google Scholar] [CrossRef]
- Buckner, A.L.; Buckner, C.A.; Montaut, S.; Lafrenie, R.M. Treatment with flaxseed oil induces apoptosis in cultured malignant cells. Heliyon 2019, 5, e02251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, L.F.; Patterson, J.; Walker, L.T.; Verghese, M. Chemopreventive potential of sunflower seeds in a human colon cancer cell line. Int. J. Cancer Res. 2016, 12, 40–50. [Google Scholar] [CrossRef] [Green Version]
- Sabitha, P.; Vaidyanathan, K.; Vasudevan, D.M.; Kamath, P. Comparison of lipid profile and antioxidant enzymes among south Indian men consuming coconut oil and sunflower oil. Indian J. Clin. Biochem. 2009, 24, 76–81. [Google Scholar] [CrossRef] [Green Version]
- Chinwong, S.; Chinwong, D.; Mangklabruks, A. Daily Consumption of Virgin Coconut Oil Increases High-Density Lipoprotein Cholesterol Levels in Healthy Volunteers: A Randomized Crossover Trial. Evid. Based Complement. Altern. Med. 2017, 2017, 7251562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khaw, K.T.; Sharp, S.J.; Finikarides, L.; Afzal, I.; Lentjes, M.; Luben, R.; Forouhi, N.G. Randomised trial of coconut oil, olive oil or butter on blood lipids and other cardiovascular risk factors in healthy men and women. BMJ Open 2018, 8, e020167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keykhasalar, R.; Tabrizi, M.H.; Ardalan, P.; Khatamian, N. The Apoptotic, Cytotoxic, and Antiangiogenic Impact of Linum usitatissimum Seed Essential Oil Nanoemulsions on the Human Ovarian Cancer Cell Line A2780. Nutr. Cancer 2021, 73, 2388–2396. [Google Scholar] [CrossRef]
- Abd Ellah, N.H.; Shaltout, A.S.; Abd El Aziz, S.M.M.; Abbas, A.M.; Abd El Moneem, H.G.; Youness, E.M.; Arief, A.F.; Ali, M.F.; Abd El-hamid, B.N. Vaginal suppositories of cumin seeds essential oil for treatment of vaginal candidiasis: Formulation, in vitro, in vivo, and clinical evaluation. Eur. J. Pharm. Sci. 2021, 157, 105602. [Google Scholar] [CrossRef]
- Luis, A.I.S.; Campos, E.V.R.; De Oliveira, J.L.; Guilger-Casagrande, M.; De Lima, R.; Castanha, R.F.; De Castro, V.L.S.S.; Fraceto, L.F. Zein Nanoparticles Impregnated with Eugenol and Garlic Essential Oils for Treating Fish Pathogens. ACS Omega 2020, 5, 15557–15566. [Google Scholar] [CrossRef]
- Ahn, C.; Lee, J.; Park, M.; Kim, J.; Yang, J.; Yoo, Y.; Jeung, E. Cytostatic effects of plant essential oils on human skin and lung cells. Exp. Ther. Med. 2020, 19, 2008–2018. [Google Scholar] [CrossRef] [Green Version]
- Mazzoni, M.; Lattanzio, G.; Bonaldo, A.; Tagliavia, C.; Parma, L.; Busti, S.; Gatta, P.P.; Bernardi, N.; Clavenzani, P. Effect of essential oils on the oxyntopeptic cells and somatostatin and ghrelin immunoreactive cells in the european sea bass (Dicentrarchus labrax) gastric mucosa. Animals 2021, 11, 3401. [Google Scholar] [CrossRef]
- Plant, J. Effects of Essential Oils on Telomere Length in Human Cells. Med. Aromat. Plants 2016, 5. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, D.; Chaudhary, N.; Uma Kumari, K.; Singh, J.; Tripathi, P.; Meena, A.; Luqman, S.; Yadav, A.; Chanotiya, C.S.; Pandey, G.; et al. Diversity of Essential Oil-Secretory Cells and Oil Composition in Flowers and Buds of Magnolia sirindhorniae and Its Biological Activities. Chem. Biodivers. 2021, 18, e2000750. [Google Scholar] [CrossRef]
- Azevedo, L.; Correia, A.; Almeida, C.F.; Molinero-Mourelle, P.; Correia, M.; Del Rio Highsmith, J. Biocompatibility and effectiveness of a novel, organic olive oil-based denture adhesive: A multicenter randomized and placebo-controlled clinical trial. Int. J. Environ. Res. Public Health 2021, 18, 3398. [Google Scholar] [CrossRef]
- Durval, I.J.B.; Mendonça, A.H.R.; Rocha, I.V.; Luna, J.M.; Rufino, R.D.; Converti, A.; Sarubbo, L.A. Production, characterization, evaluation and toxicity assessment of a Bacillus cereus UCP 1615 biosurfactant for marine oil spills bioremediation. Mar. Pollut. Bull. 2020, 157, 111357. [Google Scholar] [CrossRef]
- Rosa, A.; Atzeri, A.; Deiana, M.; Melis, M.P.; Loru, D.; Incani, A.; Cabboi, B.; Dessì, M.A. Effect of aqueous and lipophilic mullet (Mugil cephalus) bottarga extracts on the growth and lipid profile of intestinal Caco-2 cells. J. Agric. Food Chem. 2011, 59, 1658–1666. [Google Scholar] [CrossRef]
- Wilson, B.A.; Pollard, R.D.; Ferguson, D.S. Nutriential Hazards: Macronutrients: Essential Fatty Acids. Encycl. Food Saf. 2014, 3, 95–102. [Google Scholar] [CrossRef]
- Davis, C.; Fanzo, J. An Overview of Ethical Issues in Food, Water, and Nutrition in Public Health. In Oxford Handbook of Public Health Ethics; Oxford University Press: Oxford, UK, 2019; pp. 547–555. [Google Scholar] [CrossRef]
- Majumder, D.; Debnath, M.; Sharma, K.N.; Shekhawat, S.S.; Prasad, G.B.K.; Maiti, D.; Ramakrishna, S. Olive Oil Consumption can Prevent Non-communicable Diseases and COVID-19: A Review. Curr. Pharm. Biotechnol. 2021, 23, 261–275. [Google Scholar] [CrossRef]
- Jiménez-Sánchez, A.; Martínez-Ortega, A.J.; Remón-Ruiz, P.J.; Piñar-Gutiérrez, A.; Pereira-Cunill, J.L.; García-Luna, P.P. Therapeutic Properties and Use of Extra Virgin Olive Oil in Clinical Nutrition: A Narrative Review and Literature Update. Nutrients 2022, 14, 1140. [Google Scholar] [CrossRef]
- Markellos, C.; Ourailidou, M.E.; Gavriatopoulou, M.; Halvatsiotis, P.; Sergentanis, T.N.; Psaltopoulou, T. Olive oil intake and cancer risk: A systematic review and meta-analysis. PLoS One 2022, 17, e0261649. [Google Scholar] [CrossRef]
- Riolo, R.; De Rosa, R.; Simonetta, I.; Tuttolomondo, A. Olive Oil in the Mediterranean Diet and Its Biochemical and Molecular Effects on Cardiovascular Health through an Analysis of Genetics and Epigenetics. Int. J. Mol. Sci. 2022, 23, 6002. [Google Scholar] [CrossRef]
- Martinez-Burgos, M.A.; Yago, M.D.; Lopez-Millan, B.; Pariente, J.A.; Martinez-Victoria, E.; Mañas, M. Effects of Virgin Olive Oil on Fatty Acid Composition of Pancreatic Cell Membranes: Modulation of Acinar Cell Function and Signaling, and Cell Injury. In Olives Olive Oil Health and Disease Prevention; Academic Press: Cambridge, MA, USA, 2020; pp. 569–580. [Google Scholar] [CrossRef]
- Jimenez-Lopez, C.; Carpena, M.; Lourenço-Lopes, C.; Gallardo-Gomez, M.; Lorenzo, J.M.; Barba, F.J.; Prieto, M.A.; Simal-Gandara, J. Bioactive compounds and quality of extra virgin olive oil. Foods 2020, 9, 1014. [Google Scholar] [CrossRef] [PubMed]
- Owen, R.W.; Mier, W.; Giacosa, A.; Hull, W.E.; Spiegelhalder, B.; Bartsch, H. Phenolic compounds and squalene in olive oils: The concentration and antioxidant potential of total phenols, simple phenols, secoiridoids, lignansand squalene. Food Chem. Toxicol. 2000, 38, 647–659. [Google Scholar] [CrossRef] [PubMed]
- Beltrán, G.; Bucheli, M.E.; Aguilera, M.P.; Belaj, A.; Jimenez, A. Squalene in virgin olive oil: Screening of variability in olive cultivars. Eur. J. Lipid Sci. Technol. 2016, 118, 1250–1253. [Google Scholar] [CrossRef]
- Jayaraj, P.; Narasimhulu, C.A.; Rajagopalan, S.; Parthasarathy, S.; Desikan, R. Sesamol: A powerful functional food ingredient from sesame oil for cardioprotection. Food Funct. 2020, 11, 1198–1210. [Google Scholar] [CrossRef] [PubMed]
- Mirmiran, P.; Fazeli, M.R.; Asghari, G.; Shafiee, A.; Azizi, F. Effect of pomegranate seed oil on hyperlipidaemic subjects: A double-blind placebo-controlled clinical trial. Br. J. Nutr. 2010, 104, 402–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolahdooz, M.; Nasri, S.; Modarres, S.Z.; Kianbakht, S.; Huseini, H.F. Effects of Nigella sativa L. seed oil on abnormal semen quality in infertile men: A randomized, double-blind, placebo-controlled clinical trial. Phytomedicine 2014, 21, 901–905. [Google Scholar] [CrossRef]
- Vijayakumar, M.; Vasudevan, D.M.; Sundaram, K.R.; Krishnan, S.; Vaidyanathan, K.; Nandakumar, S.; Chandrasekhar, R.; Mathew, N. A randomized study of coconut oil versus sunflower oil on cardiovascular risk factors in patients with stable coronary heart disease. Indian Heart J. 2016, 68, 498–506. [Google Scholar] [CrossRef] [Green Version]
- Cox, C.; Mann, J.; Sutherland, W.; Chisholm, A.; Skeaff, M. Effects of coconut oil, butter, and safflower oil on lipids and lipoproteins in persons with moderately elevated cholesterol levels. J. Lipid Res. 1995, 36, 1787–1795. [Google Scholar] [CrossRef]
- Jayawardena, R.; Swarnamali, H.; Lanerolle, P.; Ranasinghe, P. Effect of coconut oil on cardio-metabolic risk: A systematic review and meta-analysis of interventional studies. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 2007–2020. [Google Scholar] [CrossRef]
- Pessoa, H.R.; Zago, L.; Chaves Curioni, C.; Ferraz da Costa, D.C. Modulation of biomarkers associated with risk of cancer in humans by olive oil intake: A systematic review. J. Funct. Foods 2022, 98, 105275. [Google Scholar] [CrossRef]
- Moral, R.; Escrich, E. Influence of Olive Oil and Its Components on Breast Cancer: Molecular Mechanisms. Molecules 2022, 27, 477. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, M.; Li, D.; Li, J.; Guo, Z.; Liu, Y.; Wan, S.; Liu, Y. Olive oil ameliorates allergic response in murine ovalbumin-induced food allergy by promoting intestinal mucosal immunity. Food Sci. Hum. Wellness 2023, 12, 801–808. [Google Scholar] [CrossRef]
- Nagayoshi, M.; Kitamura, C.; Fukuizumi, T.; Nishihara, T.; Terashita, M. Antimicrobial effect of ozonated water on bacteria invading dentinal tubules. J. Endod. 2004, 30, 778–781. [Google Scholar] [CrossRef]
- Peoples, G.E.; McLennan, P.L. Dietary fish oil reduces skeletal muscle oxygen consumption, provides fatigue resistance and improves contractile recovery in the rat in vivo hindlimb. Br. J. Nutr. 2010, 104, 1771–1779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peltier, S.; Malaisse, W.J.; Portois, L.; Demaison, L.; Novel-Chate, V.; Chardigny, J.M.; Sebedio, J.L.; Carpentier, Y.A.; Leverve, X.M. Acute in vivo administration of a fish oil-containing emulsion improves post-ischemic cardiac function in n-3-depleted rats. Int. J. Mol. Med. 2006, 18, 741–749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zanatta, A.L.; Miranda, D.T.S.Z.; Dias, B.C.L.; Campos, R.M.; Massaro, M.C.; Michelotto, P.V.; West, A.L.; Miles, E.A.; Calder, P.C.; Nishiyama, A. Fish oil supplementation decreases oxidative stress but does not affect platelet-activating factor bioactivity in lungs of asthmatic rats. Lipids 2014, 49, 665–675. [Google Scholar] [CrossRef]
- Lakshmi, D.; Gopinath, K.; Jayanthy, G.; Anjum, S.; Prakash, D.; Sudhandiran, G. Ameliorating effect of fish oil on acrylamide induced oxidative stress and neuronal apoptosis in cerebral cortex. Neurochem. Res. 2012, 37, 1859–1867. [Google Scholar] [CrossRef] [PubMed]
- Endres, S.; Meydani, S.N.; Ghorbani, R.; Schindler, R.; Dinarello, C.A. Dietary supplementation with n-3 fatty acids suppresses interleukin-2 production and mononuclear cell proliferation. J. Leukoc. Biol. 1993, 54, 599–603. [Google Scholar] [CrossRef]
- Prescott, S.M.; Zimmerman, G.A.; Morrison, A.R. The effects of a diet rich in fish oil on human neutrophils: Identification of leukotriene B5 as a metabolite. Prostaglandins 1985, 30, 209–227. [Google Scholar] [CrossRef]
- Gutiérrez, S.; Svahn, S.L.; Johansson, M.E. Effects of omega-3 fatty acids on immune cells. Int. J. Mol. Sci. 2019, 20, 28. [Google Scholar] [CrossRef] [Green Version]
- Begtrup, K.M.; Krag, A.E.; Hvas, A.-M. No impact of fish oil supplements on bleeding risk: A systematic review. Dan. Med. J. 2017, 64, A5366. [Google Scholar]
- Farjadian, S.; Moghtaderi, M.; Kalani, M.; Gholami, T.; Hosseini Teshnizi, S. Effects of omega-3 fatty acids on serum levels of T-helper cytokines in children with asthma. Cytokine 2016, 85, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Rees, D.; Miles, E.A.; Banerjee, T.; Wells, S.J.; Roynette, C.E.; Wahle, K.W.J.; Calder, P.C. Dose-related effects of eicosapentaenoic acid on innate immune function in healthy humans: A comparison of young and older men. Am. J. Clin. Nutr. 2006, 83, 331–342. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Li, H.; Li, H.; Guo, W.; An, Z.; Zeng, X.; Li, W.; Li, H.; Song, J.; Wu, W. Amelioration of PM2.5-induced lung toxicity in rats by nutritional supplementation with fish oil and Vitamin E. Respir. Res. 2019, 20, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moustafa, A. Effect of Omega-3 or Omega-6 Dietary Supplementation on Testicular Steroidogenesis, Adipokine Network, Cytokines, and Oxidative Stress in Adult Male Rats. Oxid. Med. Cell. Longev. 2021, 2021, 1–22. [Google Scholar] [CrossRef]
- Zhang, X.; Li, X.; Xiong, G.; Yun, F.; Feng, Y.; Ni, Q.; Wu, N.; Yang, L.; Yi, Z.; Zhang, Q.; et al. Palmitic Acid Promotes Lung Metastasis of Melanomas via the TLR4/TRIF-Peli1-pNF-κB Pathway. Metabolites 2022, 12, 1132. [Google Scholar] [CrossRef]
- Grzesiak, M.; Maj, D.; Hrabia, A. Effects of dietary supplementation with algae, sunflower oil or soybean oil on folliculogenesis in the rabbit ovary during sexual maturation. Acta Histochem. 2020, 122, 151581. [Google Scholar] [CrossRef] [PubMed]
- Stanger, O.; Aigner, I.; Schimetta, W.; Wonisch, W. Antioxidant supplementation attenuates oxidative stress in patients undergoing coronary artery bypass graft surgery. Tohoku J. Exp. Med. 2014, 232, 145–154. [Google Scholar] [CrossRef] [Green Version]
- Eder, E.; Wacker, M.; Wanek, P. Lipid peroxidation-related 1,N2-propanodeoxyguanosine-DNA adducts induced by endogenously formed 4-hydroxy-2-nonenal in organs of female rats fed diets supplemented with sunflower, rapeseed, olive or coconut oil. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2008, 654, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Sley, E.G.; Rosen, E.M.; van ‘t Erve, T.J.; Sathyanarayana, S.; Barrett, E.S.; Nguyen, R.H.N.; Bush, N.R.; Milne, G.L.; Swan, S.H.; Ferguson, K.K. Omega-3 fatty acid supplement use and oxidative stress levels in pregnancy. PLoS ONE 2020, 15, e0240244. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Chen, R.; Jiang, Y.; Xia, Y.; Niu, Y.; Wang, C.; Liu, C.; Chen, C.; Ge, Y.; Wang, W.; et al. Cardiovascular Benefits of Fish-Oil Supplementation Against Fine Particulate Air Pollution in China. J. Am. Coll. Cardiol. 2019, 73, 2076–2085. [Google Scholar] [CrossRef]
- Lin, Z.; Niu, Y.; Jiang, Y.; Chen, B.; Peng, L.; Mi, T.; Huang, N.; Li, W.; Xu, D.; Chen, R.; et al. Protective effects of dietary fish-oil supplementation on skin inflammatory and oxidative stress biomarkers induced by fine particulate air pollution: A pilot randomized, double-blind, placebo-controlled trial*. Br. J. Dermatol. 2021, 184, 261–269. [Google Scholar] [CrossRef]
- Gray, P.; Chappell, A.; Jenkinson, A.M.; Thies, F.; Gray, S.R. Fish oil supplementation reduces markers of oxidative stress but not muscle soreness after eccentric exercise. Int. J. Sport Nutr. Exerc. Metab. 2014, 24, 206–214. [Google Scholar] [CrossRef] [Green Version]
- Ramirez-Ramirez, V.; Macias-Islas, M.A.; Ortiz, G.G.; Pacheco-Moises, F.; Torres-Sanchez, E.D.; Sorto-Gomez, T.E.; Cruz-Ramos, J.A.; Orozco-Aviña, G.; Celis De La Rosa, A.J. Efficacy of fish oil on serum of TNF α, IL-1 β, and IL-6 oxidative stress markers in multiple sclerosis treated with interferon beta-1b. Oxid. Med. Cell. Longev. 2013, 2013, 709493. [Google Scholar] [CrossRef] [Green Version]
- Laubertová, L.; Koňariková, K.; Gbelcová, H.; Ďuračková, Z.; Muchová, J.; Garaiova, I.; Žitňanová, I. Fish oil emulsion supplementation might improve quality of life of diabetic patients due to its antioxidant and anti-inflammatory properties. Nutr. Res. 2017, 46, 49–58. [Google Scholar] [CrossRef]
- Muldoon, M.F.; Laderian, B.; Kuan, D.C.H.; Sereika, S.M.; Marsland, A.L.; Manuck, S.B. Fish oil supplementation does not lower C-reactive protein or interleukin-6 levels in healthy adults. J. Intern. Med. 2016, 279, 98–109. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Xu, H.; Zuo, R.; Mai, K.; Xu, W.; Ai, Q. Effects of oxidised dietary fish oil and high-dose Vitamin E supplementation on growth performance, feed utilisation and antioxidant defence enzyme activities of juvenile large yellow croaker (Larmichthys crocea). Br. J. Nutr. 2016, 115, 1531–1538. [Google Scholar] [CrossRef] [Green Version]
- Amador-Licona, N.; Díaz-Murillo, T.A.; Gabriel-Ortiz, G.; Pacheco-Moises, F.P.; Pereyra-Nobara, T.A.; Guízar-Mendoza, J.M.; Barbosa-Sabanero, G.; Orozco-Aviña, G.; Moreno-Martínez, S.C.; Luna-Montalbán, R.; et al. Omega 3 fatty acids supplementation and oxidative stress in HIV-seropositive patients. A clinical trial. PLoS ONE 2016, 11, e0151637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kouchaki, E.; Afarini, M.; Abolhassani, J.; Mirhosseini, N.; Bahmani, F.; Masoud, S.A.; Asemi, Z. High-dose ω-3 fatty acid plus Vitamin D3 supplementation affects clinical symptoms and metabolic status of patients with multiple sclerosis: A randomized controlled clinical trial. J. Nutr. 2018, 148, 1380–1386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freund-Levi, Y.; Vedin, I.; Hjorth, E.; Basun, H.; Faxén Irving, G.; Schultzberg, M.; Eriksdotter, M.; Palmblad, J.; Vessby, B.; Wahlund, L.O.; et al. Effects of supplementation with omega-3 fatty acids on oxidative stress and inflammation in patients with Alzheimer’s disease: The OmegAD study. J. Alzheimer’s Dis. 2014, 42, 823–831. [Google Scholar] [CrossRef]
- Magbanua, M.J.M.; Roy, R.; Sosa, E.V.; Weinberg, V.; Federman, S.; Mattie, M.D.; Hughes-Fulford, M.; Simko, J.; Shinohara, K.; Haqq, C.M.; et al. Gene expression and biological pathways in tissue of men with prostate cancer in a randomized clinical trial of lycopene and fish oil supplementation. PLoS ONE 2011, 6, e24004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Mattos, A.M.; da Costa, J.A.C.; Jordão Júnior, A.A.; Chiarello, P.G. Omega-3 Fatty Acid Supplementation is Associated With Oxidative Stress and Dyslipidemia, but Does not Contribute to Better Lipid and Oxidative Status on Hemodialysis Patients. J. Ren. Nutr. 2017, 27, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Capó, X.; Martorell, M.; Busquets-Cortés, C.; Sureda, A.; Riera, J.; Drobnic, F.; Tur, J.A.; Pons, A. Effects of dietary almond- and olive oil-based docosahexaenoic acid- and Vitamin E-enriched beverage supplementation on athletic performance and oxidative stress markers. Food Funct. 2016, 7, 4920–4934. [Google Scholar] [CrossRef]
- Barbouti, A.; Kanavaros, P.; Kitsoulis, P.; Goulas, V.; Galaris, D. Olive Oil-Contained Phenolic Compounds Protect Cells against H2O2-Induced Damage and Modulate Redox Signaling by Chelating Intracellular Labile Iron. In Olives Olive Oil Health and Disease Prevention; Academic Press: Cambridge, MA, USA, 2020; pp. 231–237. [Google Scholar] [CrossRef]
- Serra, G.; Incani, A.; Serreli, G.; Porru, L.; Melis, M.P.; Tuberoso, C.I.G.; Rossin, D.; Biasi, F.; Deiana, M. Olive oil polyphenols reduce oxysterols -induced redox imbalance and pro-inflammatory response in intestinal cells. Redox Biol. 2018, 17, 348–354. [Google Scholar] [CrossRef]
- Tülüce, Y.; Özkol, H.; Koyuncu, I. Photoprotective effect of flax seed oil (Linum usitatissimum L.) against ultraviolet C-induced apoptosis and oxidative stress in rats. Toxicol. Ind. Health 2012, 28, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Chikara, S.; Nagaprashantha, L.D.; Singhal, J.; Horne, D.; Awasthi, S.; Singhal, S.S. Oxidative stress and dietary phytochemicals: Role in cancer chemoprevention and treatment. Cancer Lett. 2018, 413, 122–134. [Google Scholar] [CrossRef] [PubMed]
- Walczewska, A.; Dziedzic, B.; Stepien, T.; Swiatek, E.; Nowak, D. Effect of dietary fats on oxidative-antioxidative status of blood in rats. J. Clin. Biochem. Nutr. 2010, 47, 18–26. [Google Scholar] [CrossRef]
- Palazhy, S.; Kamath, P.; Vasudevan, D.M. Dietary Fats and Oxidative Stress: A Cross-Sectional Study Among Coronary Artery Disease Subjects Consuming Coconut Oil/Sunflower Oil. Indian J. Clin. Biochem. 2018, 33, 69–74. [Google Scholar] [CrossRef]
- Aldulaimi, O.; Li, W. Antibacterial effects of the essential oil from flower buds of Magnolia biondii Pamp. Planta Med. 2016, 81, S1–S381. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsamesidis, I.; Kalogianni, E.P. The In Vitro, Ex Vivo, and In Vivo Effect of Edible Oils: A Review on Cell Interactions. Pharmaceutics 2023, 15, 869. https://doi.org/10.3390/pharmaceutics15030869
Tsamesidis I, Kalogianni EP. The In Vitro, Ex Vivo, and In Vivo Effect of Edible Oils: A Review on Cell Interactions. Pharmaceutics. 2023; 15(3):869. https://doi.org/10.3390/pharmaceutics15030869
Chicago/Turabian StyleTsamesidis, Ioannis, and Eleni P. Kalogianni. 2023. "The In Vitro, Ex Vivo, and In Vivo Effect of Edible Oils: A Review on Cell Interactions" Pharmaceutics 15, no. 3: 869. https://doi.org/10.3390/pharmaceutics15030869
APA StyleTsamesidis, I., & Kalogianni, E. P. (2023). The In Vitro, Ex Vivo, and In Vivo Effect of Edible Oils: A Review on Cell Interactions. Pharmaceutics, 15(3), 869. https://doi.org/10.3390/pharmaceutics15030869