Dried Blood Spot Sampling to Assess Rifampicin Exposure and Treatment Outcomes among Native and Non-Native Tuberculosis Patients in Paraguay: An Exploratory Study
Abstract
:1. Introduction
1.1. Patients and Setting
1.2. TB Diagnosis, Drug Doses, Study Procedures, and Pharmacokinetic Analysis
1.3. Sputum-Smear Microscopy, Culture, and Statistical Evaluation
1.4. Treatment Outcomes
2. Results
2.1. Study Subjects
2.2. Pharmacokinetics
2.3. Sputum-Smear/Culture Conversion and Treatment Outcomes
3. Discussion
Future Perspectives, Next Steps
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Global Tuberculosis Report; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Centro Nacional de Tuberculosis. Implementación del Plan. Nacional del Control. de la Tuberculosis 2011–2015. 2011. Available online: https://www.mspbs.gov.py/portal/8212/incidencia-por-tuberculosis-en-paraguay-con-tendencia-decreciente.html (accessed on 8 February 2020).
- Zheng, X.; Bao, Z.; Forsman, L.D.; Hu, Y.; Ren, W.; Gao, Y.; Li, X.; Hoffner, S.; Bruchfeld, J.; Alffenaar, J.-W. Drug Exposure and Minimum Inhibitory Concentration Predict Pulmonary Tuberculosis Treatment Response. Clin. Infect. Dis. 2021, 73, E3520–E3528. [Google Scholar]
- Pasipanodya, J.G.; Nuermberger, E.; Romero, K.; Hanna, D.; Gumbo, T. Systematic Analysis of Hollow Fiber Model of Tuberculosis Experiments. Clin. Infect. Dis. 2015, 61, S10–S17. [Google Scholar]
- Gumbo, T.; Louie, A.; Deziel, M.R.; Liu, W.; Parsons, L.M.; Salfinger, M.; Drusano, G.L. Concentration-dependent Mycobacterium tuberculosis killing and prevention of resistance by rifampin. Antimicrob Agents Chemother. 2007, 51, 3781–3788. [Google Scholar]
- Dheda, K.; Gumbo, T.; Maartens, G.; Dooley, K.E.; McNerney, R.; Murray, M.; Warren, R.M. The epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant, extensively drug-resistant, and incurable tuberculosis. Lancet Respir. Med. 2017, 5, 291–360. [Google Scholar]
- Jayaram, R.; Gaonkar, S.; Kaur, P.; Suresh, B.L.; Mahesh, B.N.; Jayashree, R.; Nandi, V.; Bharat, S.; Shandil, R.K.; Kantharaj, E.; et al. Pharmacokinetics-pharmacodynamics of rifampin in an aerosol infection model of tuberculosis. Antimicrob. Agents Chemother. 2003, 47, 2118–2124. [Google Scholar]
- Stott, K.E.; Pertinez, H.; Sturkenboom, M.G.G.; Boeree, M.J.; Aarnoutse, R.; Ramachandran, G.; Mendez, A.R.; Peloquin, C.; Koegelenberg, C.F.N.; Alffenaar, J.W.C.; et al. Pharmacokinetics of rifampicin in adult TB patients and healthy volunteers: A systematic review and meta-analysis. J. Antimicrob. Chemother. 2018, 73, 2305–2313. [Google Scholar]
- Gumbo, T. New susceptibility breakpoints for first-line antituberculosis drugs based on antimicrobial pharmacokinetic/pharmacodynamic science and population pharmacokinetic variability. Antimicrob. Agents Chemother. 2010, 54, 1484–1491. [Google Scholar]
- Alffenaar, J.-W.C.; Gumbo, T.; Dooley, K.E.; Peloquin, C.A.; McIlleron, H.; Zagorski, A.; Cirillo, D.M.; Heysell, S.K.; Silva, D.R.; Migliori, G.B. Integrating pharmacokinetics and pharmacodynamics in operational research to end tuberculosis. Clin. Infect. Dis. 2020, 70, 1774–1780. [Google Scholar]
- Nahid, P.; Dorman, S.E.; Alipanah, N.; Barry, P.M.; Brozek, J.L.; Cattamanchi, A.; Vernon, A. Official American thoracic society/centers for disease control and prevention/infectious diseases society of America clinical practice guidelines: Treatment of drug-susceptible tuberculosis. Clin. Infect. Dis. 2016, 63, e147–e195. [Google Scholar]
- Ghimire, S.; Bolhuis, M.S.; Sturkenboom, M.G.G.; Akkerman, O.W.; De Lange, W.C.M.; Van Der Werf, T.S.; Alffenaar, J.W.C. Incorporating therapeutic drug monitoring into the World Health Organization hierarchy of tuberculosis diagnostics. Eur. Respir. J. 2016, 47. [Google Scholar]
- van der Burgt, E.P.M.; Sturkenboom, M.G.G.; Bolhuis, M.S.; Akkerman, O.W.; Kosterink, J.G.W.; de Lange, W.C.M.; Alffenaar, J.W.C. END TB by precision treatment! Accept. Eur. Respir. J. 2016, 47, 680–682. [Google Scholar]
- Sturkenboom, M.G.G.; Märtson, A.-G.; Svensson, E.M.; Sloan, D.J.; Dooley, K.E.; van den Elsen, S.H.J.; Denti, P.; Peloquin, C.A.; Aarnoutse, R.E.; Alffenaar, J.-W.C. Population pharmacokinetics and Bayesian dose adjustment to advance TDM of anti-TB drugs. Clin. Pharmacokinet. 2021, 60, 685–710. [Google Scholar]
- Vu, D.H.; Alffenaar, J.W.C.; Edelbroek, P.M.; Brouwers, J.R.B.J.; Uges, D.R.A. Dried blood spots: A new tool for tuberculosis treatment optimization. Curr. Pharm. Des. 2011, 17, 2931–2939. [Google Scholar]
- Sturkenboom, M.G.G.; Mulder, L.W.; de Jager, A.; van Altena, R.; Aarnoutse, R.E.; de Lange, W.C.M.; Alffenaar, J.W.C. Pharmacokinetic Modeling and Optimal Sampling Strategies for Therapeutic Drug Monitoring of Rifampin in Patients with Tuberculosis. Antimicrob. Agents Chemother. 2015, 59, 4907–4913. [Google Scholar]
- Saktiawati, A.M.I.; Harkema, M.; Setyawan, A.; Subronto, Y.W.; Stienstra, Y.; Aarnoutse, R.E.; Sturkenboom, M.G.G. Optimal sampling strategies for therapeutic drug monitoring of first-line tuberculosis drugs in patients with tuberculosis. Clin. Pharmacokinet. 2019, 58, 1445–1454. [Google Scholar]
- Martial, L.C.; Kerkhoff, J.; Martinez, N.; Rodríguez, M.; Coronel, R.; Molinas, G.; Magis-Escurra, C. Evaluation of dried blood spot sampling for pharmacokinetic research and therapeutic drug monitoring of anti-tuberculosis drugs in children. Int. J. Antimicrob. Agents 2018, 52, 109–113. [Google Scholar]
- World Health Organization. Global Tuberculosis Control: A Short Update to the 2009 Report; World Health Organization: Geneva, Switzerland, 2009. Available online: https://apps.who.int/iris/handle/10665/44241 (accessed on 8 February 2020).
- Magis-Escurra, C.; Later-Nijland, H.M.; Alffenaar, J.W.; Broeders, J.; Burger, D.M.; van Crevel, R.; Aarnoutse, R.E. Population pharmacokinetics and limited sampling strategy for first-line tuberculosis drugs and moxifloxacin. Int. J. Antimicrob. Agents 2014, 44, 229–234. [Google Scholar]
- Vu, D.H.; Koster, R.A.; Bolhuis, M.S.; Greijdanus, B.; Altena, R.V.; Nguyen, D.H.; Alffenaar, J.W.C. Simultaneous determination of rifampicin, clarithromycin and their metabolites in dried blood spots using LC–MS/MS. Talanta 2014, 121, 9–17. [Google Scholar]
- Conte, J.E.; Golden, J.A.; Kipps, J.E.; Lin, E.T.; Zurlinden, E. Effect of sex and AIDS status on the plasma and intrapulmonary pharmacokinetics of rifampicin. Clin. Pharmacokinet. 2004, 43, 395–404. [Google Scholar]
- Magis-Escurra, C.; Anthony, R.M.; van der Zanden, A.G.M.; van Soolingen, D.; Alffenaar, J.-W.C. Pound foolish and penny wise—When will dosing of rifampicin be optimised? Lancet Respir. Med. 2018, 6, e11–e12. [Google Scholar]
- Boeree, M.J.; Diacon, A.H.; Dawson, R.; Narunsky, K.; du Bois, J.; Venter, A.; Phillips, P.P.J.; Gillespie, S.H.; McHugh, T.D.; Hoelscher, M.; et al. A dose-ranging trial to optimize the dose of rifampin in the treatment of tuberculosis. Am. J. Respir. Crit. Care Med. 2015, 191, 1058–1065. [Google Scholar]
- Ruslami, R.; Ganiem, A.R.; Dian, S. Intensified regimen containing rifampicin and moxifloxacin for tuberculous meningitis: An open-label, randomised controlled phase 2 trial. Lancet Infect. Dis. 2013, 13, 12. [Google Scholar]
- Seijger, C.; Hoefsloot, W.; Bergsma-de Guchteneire, I.; Te Brake, L.; van Ingen, J.; Kuipers, S.; Van Crevel, R.; Aarnoutse, R.; Boeree, M.; Magis-Escurra, C. High-dose rifampicin in tuberculosis: Experiences from a Dutch tuberculosis centre. PLoS ONE 2019, 14, e0213718. [Google Scholar]
- Niemi, M.; Backman, J.T.; Fromm, M.F.; Neuvonen, P.J.; Kivistö, K.T. Pharmacokinetic interactions with rifampicin: Clinical relevance. Clin. Pharmacokinet. 2003, 42, 819–850. [Google Scholar]
- Espinosa-Pereiro, J.; Ghimire, S.; Sturkenboom, M.G.G.; Alffenaar, J.-W.C.; Tavares, M.; Aguirre, S.; Battaglia, A.; Molinas, G.; Tórtola, T.; Akkerman, O.W.; et al. Safety of Rifampicin at High Dose for Difficult-to-Treat Tuberculosis: Protocol for RIAlta Phase 2b/c Trial. Pharmaceutics 2023, 15, 9. [Google Scholar] [CrossRef]
Patient Characteristics | Total (n = 50) | Native (n = 30) | Non-Native (n = 20) |
---|---|---|---|
Demographic data | |||
Male | 33 (66) | 16 (53) | 17 (85) |
Age (years) | 35 (26–49) | 35 (26–52) | 40 (28–43) |
Body weight (kg) | 52 (47–62) | 53 (44–62) | 52 (49–63) |
Length (cm) | 167 (160–173) | 164 (151–172) | 169 (162–175) |
Body Mass Index (kg/m2) (n = 49) | 19.5 (17.9–21.6) | 20.2 (18.0–21.8) | 18.9 (16.8–21.3) |
Underweight (<18.5 kg/m2) | 19 (38) | 10 (33) | 9 (45) |
Normal (18.5–25.0 kg/m2) | 31 (62) | 20 (67) | 11 (55) |
Type of TB | |||
Pulmonary | 46 (92) | 28 (93) | 18 (90) |
Extrapulmonary | 4 (8) | 2 (7) | 2 (10) |
Comorbidities | |||
Diabetes | 6 (12) | 2 (10) | 4 (20) |
HIV | 1 (2) | 1 (3.3) | 0 (0) |
Radiological characteristics (n = 47) | (n = 27) | (n = 20) | |
Consolidation | 36 (77) | 23 (85) | 13 (65) |
Pleural fluid | 8 (17) | 7 (26) | 1 (5) |
Cavities | 29 (62) | 14 (52) | 15 (75) |
Atelectasis | 8 (17) | 5 (19) | 3 (15) |
Baseline Biochemical parameter | |||
Creatinine (umol/L), normal value 53 to 97.2 umol/L | 61.9 (53.09–70.7) | 61.9 (53.0–70.7) | 61.9 (52.4–70.7) |
ALT (U/L), normal value 10–49 U/L | 27.5 (16–50.3) | 35.0 (20.8–59.3) | 20.5 (15.3–36.3) |
AST (U/L), lower than 34 U/L | 28.5 (19–46.2) | 33.5 (23.8–57.5) | 28.0 (19.5–34.0) |
ALP (U/L), 90–360 U/L | 209.0 (58.0–316.75) | 233 (161.3–362.3) | 232.0 (141.0–309.0) |
Haemoglobin (g/dL) | 10.65 (9.4–12.3) | 10.1 (9.2–11.3) | 11.5 (9.6–12.7) |
Hematocrit (%) | 33.6 (31.0–38.0) | 33.1 (31.0–35.7) | 36.0 (30.4–39.1) |
Baseline Sputum smear (n = 49) | n = 30 | n = 19 | |
Positive | 41 (83) | 24 (80) | 17 (89.4) |
Negative | 8 (16) | 6 (20) | 2 (10.5) |
Baseline culture (n = 48) | n = 28 | n = 20 | |
Positive | 33 (69) | 19 (68) | 14 (70) |
Negative | 15 (31) | 9 (32) | 6 (30) |
GeneXpert MTB/RIF (n = 33) | n = 21 | n = 12 | |
Positive | 32 (97) | 20 (95) | 12 (100) |
Negative | 1 (3) | 1 (5) | 0 (0) |
Native (n = 30) | Non-Native (n = 20) | |
---|---|---|
Rifampicin dose (mg/kg) | 10.74 (9.43–11.51) | 10.66 (9.47–11.69) |
AUC (mg*h/L) | 24.7 (17.1–29.5) | 21.6 (15.0–35.4) |
Primary Treatment Outcomes | ||
| 16 (94), n = 17 | 10 (91), n = 11 |
| 15 (94), n = 16 | 9 (90), n = 10 |
Final treatment outcomes (end of the treatment) | ||
| 9 (30) | 11 (55) |
| 10 (34) | 4 (20) |
| 6 (20) | 4 (20) |
| 1 (3) | 1 (5) |
| 4 (13) | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghimire, S.; Molinas, G.; Battaglia, A.; Martinez, N.; Gómez Paciello, L.; Aguirre, S.; Alffenaar, J.-W.C.; Sturkenboom, M.G.G.; Magis-Escurra, C. Dried Blood Spot Sampling to Assess Rifampicin Exposure and Treatment Outcomes among Native and Non-Native Tuberculosis Patients in Paraguay: An Exploratory Study. Pharmaceutics 2023, 15, 1089. https://doi.org/10.3390/pharmaceutics15041089
Ghimire S, Molinas G, Battaglia A, Martinez N, Gómez Paciello L, Aguirre S, Alffenaar J-WC, Sturkenboom MGG, Magis-Escurra C. Dried Blood Spot Sampling to Assess Rifampicin Exposure and Treatment Outcomes among Native and Non-Native Tuberculosis Patients in Paraguay: An Exploratory Study. Pharmaceutics. 2023; 15(4):1089. https://doi.org/10.3390/pharmaceutics15041089
Chicago/Turabian StyleGhimire, Samiksha, Gladys Molinas, Arturo Battaglia, Nilza Martinez, Luis Gómez Paciello, Sarita Aguirre, Jan-Willem C. Alffenaar, Marieke G. G. Sturkenboom, and Cecile Magis-Escurra. 2023. "Dried Blood Spot Sampling to Assess Rifampicin Exposure and Treatment Outcomes among Native and Non-Native Tuberculosis Patients in Paraguay: An Exploratory Study" Pharmaceutics 15, no. 4: 1089. https://doi.org/10.3390/pharmaceutics15041089
APA StyleGhimire, S., Molinas, G., Battaglia, A., Martinez, N., Gómez Paciello, L., Aguirre, S., Alffenaar, J.-W. C., Sturkenboom, M. G. G., & Magis-Escurra, C. (2023). Dried Blood Spot Sampling to Assess Rifampicin Exposure and Treatment Outcomes among Native and Non-Native Tuberculosis Patients in Paraguay: An Exploratory Study. Pharmaceutics, 15(4), 1089. https://doi.org/10.3390/pharmaceutics15041089