Novel Developments to Enable Treatment of CNS Diseases with Targeted Drug Delivery
Abstract
:1. Introduction
1.1. Use of Gene Therapy for the Treatment of CNS Indications
1.2. Use of Degradomers for the Treatment of Neurodegenerative Diseases
2. Systemic Delivery
2.1. Nanoparticles
2.2. Nanoparticles as Potential Brain Bioavailability Enhancers for Payload Carrying Nanoparticles
2.3. Exosomes
2.4. Exo-AAVs: Exosomes as Capsid Carriers
3. Device-Enabled Drug Delivery
3.1. Focused Ultrasound (FUS)
3.2. Intra CSF Delivery
Route of Intra-CSF Administration for Deep Brain Penetration
3.3. Convection Enhanced Delivery
4. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pardridge, W.M. CNS drug design based on principles of blood–brain barrier transport. J. Neurochem. 1998, 70, 1781–1792. [Google Scholar] [CrossRef]
- Abbott, N.J.; Patabendige, A.A.K.; Dolman, D.E.M.; Yusof, S.R.; Begley, D.J. Structure and function of the blood-brain barrier. Neurobiol. Dis. 2010, 37, 13–25. [Google Scholar] [CrossRef]
- St-Amour, I.; Paré, I.; Alata, W.; Coulombe, K.; Ringuette-Goulet, C.; Drouin-Ouelet, J.; Vandal, M.; Soulet, D.; Bazin, R.; Calon, F. Brain bioavailability of human intravenous immunoglobulin and its transport through the murine blood-brain barrier. J. Cereb. Blood Flow Metab. 2013, 33, 1983–1992. [Google Scholar] [CrossRef] [Green Version]
- Tan, J.-K.Y.; Sellers, D.L.; Pham, B.; Pun, S.H.; Horner, P.J. Non-viral nucleic acid delivery strategies to the central nervous system. Front. Mol. Neurosci. 2016, 9, 108. [Google Scholar] [CrossRef] [Green Version]
- Banks, W.A. From blood–brain barrier to blood–brain interface: New opportunities for CNS drug delivery. Nat. Rev. Drug Discov. 2016, 15, 275–292. [Google Scholar] [CrossRef]
- Terstappen, G.C.; Meyer, A.H.; Bell, R.D.; Zhang, W. Strategies for delivering therapeutics across the blood-brain barrier. Nat. Rev. Drug Discov. 2021, 20, 362–383. [Google Scholar] [CrossRef]
- Ginn, S.L.; Amaya, A.K.; Alexander, I.E.; Edelstein, M.; Abedie, M.R. Gene therapy clinical trials worldwide to 2017: An update. J. Gene Med. 2018, 20, e3015. [Google Scholar] [CrossRef]
- He, X.; Urip, B.A.; Zhang, Z.; Ngan, C.C.; Feng, B. Evolving AAV-delivered therapeutics towards ultimate cures. J. Mol. Med. 2021, 99, 593–617. [Google Scholar] [CrossRef]
- McFarthing, K.; Prakash, N.; Simuni, T. Clinical Trial Highlights: 1. Gene Therapy for Parkinson’s, 2. Phase 3 study in focus—Intec Pharma’s Accordion pill, 3. Clinical trial resources. J. Park. Dis. 2019, 9, 251–264. [Google Scholar] [CrossRef] [Green Version]
- Beyer, M.; Truehart, T. Axovant Announces Clinical Updates from AXO-AAV-GM2 and Axo-Lenti-PD Studies. Available online: https://investors.siogtx.com/news-releases/news-release-details/axovant-announces-clinical-updates-axo-aav-gm2-and-axo-lenti-pd (accessed on 24 March 2023).
- Palfi, S.; Gurruchaga, J.S.; Ralph, G.S.; Lepetit, H.; Lavisse, S.; Buttery, P.C.; Watts, C.; Miskin, J.; Kelleher, M.; Deeley, S.; et al. Long-term safety and tolerability of ProSavin, a lentiviral vector-based gene therapy for Parkinson’s disease: A dose escalation, open-label, phase ½ trial. Lancet 2014, 383, 1138–1146. [Google Scholar] [CrossRef]
- Christine, C.W.; Bankiewicz, K.S.; Van Laar, A.D.; Richardson, R.M.; Ravina, B.; Kells, A.P.; Boot, B.; Martin, A.J.; Nutt, J.; Thompson, M.E.; et al. Magnetic resonance imaging-guided phase 1 trial of putaminal AADC gene therapy for Parkinson’s disease. Ann. Neurol. 2019, 85, 704–714. [Google Scholar] [CrossRef] [Green Version]
- Delport, A.; Hewer, R. Inducing the degradation of Disease-related proteins using heterobifunctional molecules. Molecules 2019, 24, 3272. [Google Scholar] [CrossRef] [Green Version]
- Sakamoto, K.M.; Kim, K.B.; Kumagai, A.; Mercurio, F.; Crews, C.M.; Deshaies, R.J. Protacs: Chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc. Natl. Acad. Sci. USA 2001, 98, 8554–8559. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, D.; Moriyama, J.; Nakamura, T.; Miki, E.; Takahashi, E.; Sato, A.; Akaike, T.; Itto-Nakama, K.; Arimoto, H. AUTACs: Cargo-Specific Degraders Using Selective Autophagy. Mol. Cell 2019, 76, 797–810. [Google Scholar] [CrossRef]
- Banik, S.M.; Pedram, K.; Wisnovsky, S.; Ahn, G.; Riley, N.M.; Bertozzi, C.R.R. Lysosome-targeting chimaeras for degradation of extracellular proteins. Nature 2020, 584, 291–297. [Google Scholar] [CrossRef]
- Dong, G.; Ding, Y.; He, S.; Sheng, C. Molecular Glues for Targeted Protein Degradation: From Serendipity to Rational Discovery. J. Med. Chem. 2021, 64, 10606–10620. [Google Scholar] [CrossRef]
- Schreiber, S.L. The rise of molecular glues. Cell 2021, 184, 3–9. [Google Scholar] [CrossRef]
- Ishida, T.; Ciulli, A. E3 ligase ligands for PROTACs: How they were found and how to discover new ones. SLAS Discov. 2021, 26, 484–502. [Google Scholar] [CrossRef]
- Petrylak, D.P.; Gao, X.; Vogelzang, N.J.; Garfield, M.H.; Taylor, I.; Moore, M.D.; Peck, R.A.; Burris, H.A., III. First-in-Human Phase I Study of ARV-110, an Androgen Receptor (AR) PROTAC Degrader in Patients (pts) with Metastatic Castrate-Resistant Prostate Cancer. J. Clin. Oncol. 2020, 38, 3500. [Google Scholar] [CrossRef]
- Thibaudeau, T.A.; Anderson, R.T.; Smith, D.M. A common mechanism of proteasome impairment by neurodegenerative disease-associated oligomers. Nat. Commun. 2018, 9, 1097. [Google Scholar] [CrossRef] [Green Version]
- Farrell, K.; Jarome, T.J. Is PROTAC technology really a game changer for central nervous system drug discovery? Expert Opin. Drug Discov. 2021, 16, 833–840. [Google Scholar] [CrossRef]
- Chu, T.-T.; Gao, N.; Li, Q.-Q.; Chen, P.-G.; Yang, X.-F.; Chen, Y.-X.; Zhao, Y.-F.; Li, Y.-M. Specific Knockdown of Endogenous Tau Protein by Peptide-Directed Ubiquitin-Proteasome Degradation. Cell Chem. Biol. 2016, 23, 453–461. [Google Scholar] [CrossRef] [Green Version]
- Kamaly, N.; Yameen, B.; Wu, J.; Farokhzad, O.C. Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release. Chem. Rev. 2016, 116, 2602–2663. [Google Scholar] [CrossRef] [Green Version]
- DeMarino, C.; Schwab, A.; Pleet, M.; Mathiesen, A.; Friedman, J.; El-Hage, N.; Kashanchi, F. Biodegradable Nanoparticles for Delivery of Therapeutics in CNS Infection. J. Neuroimmune Pharmacol. 2017, 12, 31–50. [Google Scholar] [CrossRef] [Green Version]
- Fonseca-Santos, B.; Gremiao, M.P.; Chorilli, M. Nanotechnology-based drug delivery systems for the treatment of Alzheimer’s disease. Int. J. Nanomed. 2015, 10, 4981–5003. [Google Scholar] [CrossRef] [Green Version]
- Anselmo, A.C.; Mitragotri, S. Nanoparticles in the clinic: An update. Bioeng. Transl. Med. 2016, 1, 10–29. [Google Scholar] [CrossRef]
- Sukhanova, A.; Bozrova, S.; Sokolov, P.; Berestovoy, M.; Karaulov, A.; Nabiev, I. Dependence of Nanoparticle Toxicity on their Physical and Chemical Properties. Nanoscale Res. Lett. 2018, 13, 44. [Google Scholar] [CrossRef] [Green Version]
- Sakurai, H.; Kawabata, K.; Sakurai, F.; Nagakawa, S.; Mizuguchi, H. Innate Immune Response Induced by Gene Delivery Vectors. Int. J. Pharm. 2008, 354, 9–15. [Google Scholar] [CrossRef]
- Albanese, A.; Tang, P.S.; Chan, W.C.W. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Ann. Rev. Biomed. Eng. 2012, 14, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Huang, N.; Li, H.; Jin, Q.; Ji, J. Surface and size effects on cell interaction of gold nanoparticles with both phagocytic and nonphagocytic cells. Langmuir 2013, 29, 9138–9148. [Google Scholar] [CrossRef]
- Dreaden, E.C.; Austin, L.A.; Mackey, M.A.; El-Sayed, M.A. Size matters: Gold nanoparticles in targeted cancer drug delivery. Therapeut. Deliv. 2012, 3, 457–478. [Google Scholar] [CrossRef] [Green Version]
- Zuckerman, J.E.; Choi, C.H.J.; Han, H.; Davis, M.E. Polycation-siRNA nanoparticles can disassemble at the kidney glomerular basement membrane. Proc. Natl Acad. Sci. USA 2012, 109, 3137–3142. [Google Scholar] [CrossRef] [Green Version]
- Hühn, D.; Kantner, K.; Geidel, C.; Brandholt, S.; De Cock, I.; Soenen, S.J.H.; Rivera Gil, P.; Montenegro, J.-M.; Braeckmans, K.; Müllen, K.; et al. Polymer-coated nanoparticles interacting with proteins and cells: Focusing on the sign of the net charge. ACS Nano 2013, 7, 3253–3263. [Google Scholar] [CrossRef]
- Chen, L.; Mccrate, J.M.; Lee, J.C.-M.; Li, H. The role of surface charge on the uptake and biocompatibility of hydroxyapatite nanoparticles with osteoblast cells. Nanotechnology 2011, 22, 105708. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://www.imi.europa.eu/sites/default/files/uploads/documents/projects/COMPACT_summary_final_report.pdf (accessed on 25 October 2022).
- Kaleta, L.; Meyer, A.; Ried, C.; Rohe, M.; Schäker-Theobald, C.; Talmon, S.; Untucht, C.; Zimmermann, T. Albumin-Modified Nanoparticles Carrying a Targeting Ligand. International Patent WO2019048531A1, 14 March 2019. [Google Scholar]
- Bhattacharjee, S. Understanding the burst release phenomenon: Towards designing effective nanoparticulate drug-delivery systems. Ther. Deliv. 2021, 12, 21–36. [Google Scholar] [CrossRef]
- Liu, Z.; Gao, X.; Kang, T.; Jiang, M.; Miao, D.; Gu, G.; Hu, Q.; Song, Q.; Yao, L.; Tu, Y.; et al. B6 peptide-modified PEG-PLA nanoparticles for enhanced brain delivery of neuroprotective peptide. Bioconjugate Chem. 2013, 24, 997–1007. [Google Scholar] [CrossRef]
- Liu, Y.; An, S.; Li, J.; Kuang, Y.; He, X.; Guo, Y.; Ma, H.; Zhang, Y.; Ji, B.; Jiang, C. Brain-targeted co-delivery of therapeutic gene and peptide by multifunctional nanoparticles in Alzheimer’s disease mice. Biomaterials 2016, 80, 33–45. [Google Scholar] [CrossRef]
- Vilella, A.; Belletti, D.; Sauer, A.K.; Hagmeyer, S.; Sarowar, T.; Masoni, M.; Stasiak, N.; Mulvihill, J.J.E.; Rouzi, B.; Forni, F.; et al. Reduced plaque size and inflammation in the APP23 mous emodel for Alzheimer’s disease after chronic application of polymeric nanoparticles for CNS targeted zinc delivery. J. Trace Elem. Med. Biol. 2018, 49, 210–221. [Google Scholar] [CrossRef]
- Saunders, N.R.M.; Paolini, M.S.; Fenton, O.S.; Poul, L.; Devalliere, J.; Mpabani, F.; Damon, A.; Bergère, M.; Jibault, O.; Germani, M.; et al. A Nanoprimer to improve the systemic delivery of siRNA and mRNA. Nano Lett. 2020, 20, 4264–4269. [Google Scholar] [CrossRef]
- Germain, M.; Meyre, M.-E.; Poul, L.; Paolini, M.; Berjaud, C.; Mpabani, F.; Bergère, M.; Levy, L.; Pottier, A. Priming the body to receive the therapeutic agent to redefine treatment benefit/risk profile. Sci. Rep. 2018, 8, 4797. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Choi, H.; Zhou, R.; Chen, I.-W. RES blockade: A strategy for boosting efficiency of nanoparticle drug. Nano Today 2015, 10, 11–21. [Google Scholar] [CrossRef]
- Jacobs, F.; Wisse, E.; De Geest, B. The role of Liver Sinusoidal Cells in Hepatocyte-Directed Gene Transfer. Am. J. Pathol. 2010, 176, 14–21. [Google Scholar] [CrossRef] [Green Version]
- Van Dijk, R.; Montenegro-Miranda, P.S.; Riviere, C.; Schilderink, R.; ten Bloemendaal, L.; van Gorp, J.; Duijst, S.; de Waarrt, D.R.; Beuers, U.; Haiisma, H.J.; et al. Polyinosinic Acid Blocks Adeno-Associated Virus Macrophage Endocytosis In Vitro and Enhances Adeno-Associated Virus Liver-Directed Gene Therapy In Vivo. Hum. Gene Ther. 2013, 24, 807–813. [Google Scholar] [CrossRef]
- Germain, M.; Meyer, M.-E.; Pottier, A.; Laurent, L. Pharmaceutical Composition, Preparation and Uses Thereof. International Patent WO 2016/083333 A1, 2 June 2016. [Google Scholar]
- Zhang, Y.N.; Poon, W.; Tavares, A.J.; McGilvray, I.; Chan, W.C.W. Nanoparticle-liver interactions: Cellular uptake and Hepatobiliary elimination. J. Control. Release 2016, 240, 332–348. [Google Scholar] [CrossRef]
- Berns, K.I.; Giraud, C. Biology of Adeno-Associated Virus. In Adeno-Associated Virus (AAV) Vectors in Gene Therapy. Current Topics in Microbiology and Immunology; Berns, K.I., Giraud, C., Eds.; Springer: Berlin/Heidelberg, Germany, 1996; Volume 218. [Google Scholar] [CrossRef]
- Goertsen, D.; Flytzanis, N.C.; Goeden, N.; Chuapoco, M.R.; Cummins, A.; Chen, Y.; Fan, Y.; Zhang, Q.; Sharma, J.; Duan, Y.; et al. AAV capsid variants with brain-wide transgene expression and decreased liver targeting after intravenous delivery in mouse and marmoset. Nat. Neurosci. 2021, 25, 106–115. [Google Scholar] [CrossRef]
- Simons, M.; Raposo, G. Exosomes-vesicular carriers for intercellular communication. Curr. Opin. Cell Biol. 2009, 21, 575–581. [Google Scholar] [CrossRef]
- ElAndaloussi, S.; Mäger, I.; Breakefield, X.O.; Wood, M.J.A. Extracellular vesicles: Biology and emerging therapeutic opportunities. Nat. Rev. Drug Discov. 2013, 12, 3347–3357. [Google Scholar]
- Yang, J.; Zhang, X.; Chen, X.; Wang, L.; Yang, Y. Exosome mediated delivery of miR-124 promotes neurogenesis after ischemia. Mol. Ther. Nucleic Acids 2017, 7, 278–287. [Google Scholar] [CrossRef] [Green Version]
- Xin, H.; Wang, F.; Li, Y.; Lu, Q.-E.; Cheung, W.L.; Zhang, Y.; Zhang, Z.G.; Chopp, M. Secondary release of exosomes from astrocytes contributes to the increase in neural plasticity and improvement of functional recovery after stroke in rats treated with exosomes harvested from microRNA133b- overexpressed multipotent mesenchymal stromal cells. Cell Transplant. 2017, 26, 243–257. [Google Scholar]
- Alvarez-Erviti, L.; Seow, Y.; Yin, H.; Betts, C.; Lakhal, S.; Wood, M.J.A. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. 2011, 29, 341–345. [Google Scholar] [CrossRef]
- Cooper, J.M.; Wiklander, P.B.O.; Nordin, J.Z.; Al-Shawi, R.; Wood, M.J.A.; Vithlani, M.; Schapira, A.H.V.; Simons, J.P.; El-Andaloussi, S.; Alvarez-Erviti, L. Systemic exosomal siRNA delivery reduced alpha-synuclein aggregates in brains of transgenic mice. Mov. Disord. 2014, 29, 1476–1485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, S.; Wei, D.; Wu, Z.; Zhou, X.; Wei, X.; Huang, H.; Li, G. Phase 1 clinical trial of autologous ascites-derived exosomes combined with GM-CSF for colorectal cancer. Mol. Ther. 2008, 16, 782–790. [Google Scholar] [CrossRef] [PubMed]
- Morse, M.A.; Garst, J.; Osada, T.; Khan, S.; Hobeika, A.; Clay, T.M.; Valente, N.; Shreeniwas, R.; Sutton, M.A.; Delcayre, A.; et al. A phase 1 study of dexosome immunotherapy in patients with advanced non-small cell lung cancer. J. Transl. Med. 2005, 3, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zipkin, M. Big Pharma buys into exosomes for drug delivery. Nat. Biotechnol. 2020, 38, 1226–1228. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.vesigentx.com/about/news/vesigen-therapeutics-launches-with-usd-28-5-million-series-a-investment-led-by-leaps-by-bayer-and-morningside-ventures/ (accessed on 6 October 2022).
- Available online: https://www.carminetherapeutics.com/post/carmine-therapeutics-takeda-collaborate-to-develop-novel-non-viral-gene-therapies (accessed on 6 October 2022).
- Available online: https://www.curexsys.com/evotec-und-sartorius-finance-cirexsys/ (accessed on 6 October 2022).
- Available online: https://ir.codiakbio.com/news-releases/news-release-details/jazz-pharmaceuticals-and-codiak-biosciences-announce-strategic (accessed on 6 October 2022).
- Available online: https://ir.codiakbio.com/news-releases/news-release-details/sarepta-therapeutics-and-codiak-biosciences-collaborate-research (accessed on 6 October 2022).
- Available online: https://www.evoxtherapeutics.com/News/Jun-2020/Evox-Therapeutics-Enters-Into-Lilly-Collaboration (accessed on 6 October 2022).
- Available online: https://www.fiercebiotech.com/biotech/boehringer-forges-alliance-uk-exosome-specialist-evox (accessed on 6 October 2022).
- Available online: https://www.evoxtherapeutics.com/News/March-2020/Evox-Therapeutics-and-Takeda-collaboration (accessed on 6 October 2022).
- Available online: http://tools.euroland.com/tools/PressReleases/GetPressRelease/?ID=3554419&lang=en-GB&companycode=services (accessed on 6 October 2022).
- Escudier, B.; Dorval, T.; Chaput, N.; André, F.; Caby, M.P.; Novault, S.; Flament, C.; Leboulaire, C.; Borg, C.; Amigorena, S.; et al. Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived exosomes: Results of the first phase I clinical trial. J. Transl. Med. 2005, 3, 10. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Sun, T.; Jiang, C. Recent advances in nanomedicine for the treatment of ischemic stroke. Acta Pharm. Sin. B 2021, 11, 1767–1788. [Google Scholar] [CrossRef]
- Ruan, C.; Liu, L.; Zhang, Y.; He, X.; Chen, X.; Zhang, Y.; Chen, Q.; Guo, Q.; Sun, T.; Jiang, C. Substance P-modified human serum albumin nanoparticles loaded with paclitaxel for targeted therapy of glioma. Acta Pharm. Sin. B 2018, 8, 85–96. [Google Scholar] [CrossRef]
- Fu, S.; Wang, Y.; Xia, X.; Zheng, J.C. Exosome engineering: Current progress in cargo loading and targeted delivery. NanoImpact 2020, 20, 100261. [Google Scholar] [CrossRef]
- Chen, C.C.; Liu, L.; Ma, F.; Wong, C.W.; Guo, X.E.; Chacko, J.V.; Farhoodi, H.P.; Zhang, S.X.; Zimak, J.; Ségaliny, A.; et al. Elucidation of exosome migration across the Blood-Brain Barrier model in vitro. Cell. Mol. Bioeng. 2016, 9, 509–529. [Google Scholar] [CrossRef] [Green Version]
- Maguire, C.A.; Balaj, L.; Sivaraman, S.; Crommentuijn, M.H.W.; Ericsson, M.; Mincheva-Nilsson, L.; Baranov, V.; Gianni, D.; Tannous, B.A.; Sena-Esteves, M.; et al. Microvesicle-associated AAV Vector as a novel gene delivery system. Mol. Ther. 2012, 20, 960–971. [Google Scholar] [CrossRef] [Green Version]
- Gyorgy, B.; Fitzpatrick, Z.; Crommentuijn, M.H.W.; Mu, D.; Maguire, C.A. Naturally enveloped AAV vectors for shielding neutralizing antibodies and robust gene delivery in vivo. Biomaterials 2014, 35, 7598–7606. [Google Scholar] [CrossRef] [Green Version]
- Hudry, E.; Martin, C.; Gandhi, S.; Gyorgy, B.; Maguire, C.A. Exosome-associated AAV vector as a robust and convenient neuroscience tool. Gene Ther. 2016, 23, 380–392. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Li, Z.; Huang, S.; He, S.; Chen, F.; Liang, Y. AAV-containing exosomes as a novel vector for improved gene delivery to lung cancer cells. Front. Cell Dev. Biol. 2021, 13, 707607. [Google Scholar] [CrossRef]
- Chen, K.-T.; Wei, K.-C.; Liu, H.-L. Theranostic Strategy of Focused Ultrasound Induced Blood Brain Barrier Opening for CNS Disease Treatment. Front. Pharmacol. 2019, 10, 86. [Google Scholar] [CrossRef] [Green Version]
- Lipsman, N.; Meng, Y.; Bethune, A.J.; Huang, Y.; Lam, B.; Masellis, M.; Herrmann, N.; Heyn, C.; Aubert, I.; Boutet, A.; et al. Blood Brain Barrier Opening in Alzheimer’s Disease using MR-guided Focused Ultrasound. Nat. Commun. 2018, 9, 2336. [Google Scholar] [CrossRef] [Green Version]
- National Academies of Sciences, Engineering, and Medicine; Health and Medicine Division; Board on Health Sciences Policy; Forum on Neuroscience and Nervous System Disorders. Enabling Novel Treatments for Nervous System Disorders by Improving Methods for Traversing the Blood-Brain Barrier: Proceedings from a Workshop; National Academies Press: Washington, DC, USA, 2018. [Google Scholar]
- Kovacs, Z.I.; Kim, S.; Jikaria, N.; Frank, J.A. Disrupting the Blood Brain Barrier by Focused Ultrasound Induces Sterile Inflammation. Proc. Nat. Acad. Sci. USA 2016, 114, E75–E84. [Google Scholar] [CrossRef] [Green Version]
- Schregel, K.; Baufeld, C.; Palotai, M.; Meroni, R.; Fiorina, P.; Wuerfel, J.; Sinkus, R.; Zhang, Y.-Z.; McDannold, N.; White, J.P.; et al. Targeted Blood Brain Barrier Opening with Focused Ultrasound Induces Focal Macrophage/Microglial Activation in Experimental Autoimmune Encephalomyelitis. Front. Neurosci. 2021, 15, 665722. [Google Scholar] [CrossRef]
- Jeon, M.T.; Kim, K.-S.; Kim, E.S.; Lee, S.; Kim, J.; Hoe, H.-S.; Kim, D.-G. Emerging Pathogenic Role of Peripheral Blood Factors following BBB Disruption in Neurodegenerative Disease. Ageing Res. Rev. 2021, 68, 101333. [Google Scholar] [CrossRef]
- Adams, R.A.; Schachtrup, C.; Davalos, D.; Tsigelny, I.; Akassoglou, K. Fibrinogen Signal Transduction as a Mediator and Therapeutic Target in Inflammation: Lessons from Multiple Sclerosis. Curr. Med. Chem. 2007, 14, 2925–2936. [Google Scholar] [CrossRef]
- Montagne, A.; Nikolakopoulou, A.M.; Zhao, Z.; Sagare, A.P.; Si, G.; Lazic, D.; Barnes, S.R.; Daianu, M.; Ramanathan, A.; Go, A.; et al. Pericyte Degeneration Causes White Matter Dysfunction in the Mouse Central Nervous System. Nat. Med. 2018, 24, 326–337. [Google Scholar] [CrossRef]
- Bohlson, S.S.; O’Conner, S.D.; Hulsebus, H.J.; Ho, M.-M.; Fraser, D.A. Complement C1q and C1q-Related Molecules Regulate Macrophage Polarization. Front. Immunol. 2014, 5, 402. [Google Scholar] [CrossRef] [Green Version]
- Fraser, D.A.; Pisalyaput, K.; Tenner, A.J. C1q Enhances Microglial Clearance of Apoptotic Neurons and Neuronal Blebs and Modulates Subsequent Inflammatory Cytokine Production. J. Neurochem. 2010, 112, 733–743. [Google Scholar] [CrossRef] [Green Version]
- Park, S.H.; Baik, K.; Jeon, S.; Chang, W.S.; Ye, B.S.; Chang, J.W. Extensive Frontal Focused Ultrasound Mediated Blood-Brain Barrier Opening for the Treatment of Alzheimer’s Disease: A Proof of Concept Study. Transl. Neurodegener. 2021, 10, 44. [Google Scholar] [CrossRef] [PubMed]
- Definity® (Perflutren Lipid Microsphere) Injectable Suspension Prescribing Information, RefID: 4649217 Revised 07/2020. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/021064s023lbl.pdf (accessed on 24 March 2023).
- Zhao, B.; Chen, Y.; Liu, J.; Zhang, L.; Wang, J.; Yang, Y.; Lv, Q.; Xie, M. Blood Brain Barrier Disruption Induced by Diagnostic Ultrasound Combined with Microbubbles in Mice. Oncotarget 2018, 9, 4897–4914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Truong, K. InSightec Wants to Usher in a New Era of Incisionless Surgery. MedCity News. 2019. Available online: https://medcitynews.com/2019/07/insightec-wants-to-usher-in-a-new-era-of-incisionless-surgery/ (accessed on 25 October 2022).
- Health Quality Ontario. Magnetic Resonance-Guided Focused Ultrasound Neurosurgery for Essential Tremor: A Health Technology Assessment. Ont. Health Technol. Assess. Ser. 2018, 18, 1–141. [Google Scholar]
- Kouzehgarani, G.N.; Feldsien, T.; Engelhard, H.H.; Mirakhur, K.K.; Phipps, C.; Nimmrich, V.; Clausznitzer, D.; Lefebvre, D.R. Harnessing Cerebrospinal Fluid Circulation for Drug Delivery to Brain Tissues. Adv. Drug Deliv. Rev. 2021, 173, 20–59. [Google Scholar] [CrossRef] [PubMed]
- Jessen, N.A.; Finmann Munk, A.S.; Lundgaard, I.; Nedergaard, M. The glymphatic system—A beginner’s guide. Neurochem. Res. 2015, 40, 2583–2599. [Google Scholar] [CrossRef] [Green Version]
- Yadav, D.B.; Maloney, J.A.; Wildsmith, K.R.; Fuji, R.N.; Meilandt, W.J.; Solanoy, H.; Lu, Y.; Peng, K.; Wilson, B.; Chan, P.; et al. Widespread brain distribution and activity following i.c.v. infusion of anti-beta-secretase (BACE1) in nonhuman primates. Br. J. Pharmacol. 2017, 174, 4173–4185. [Google Scholar] [CrossRef] [Green Version]
- Paul, G.; Zaghrisson, O.; Varrone, A.; Almqvist, P.; Jerling, M.; Rehncrona, S.; Linderoth, B.; Bjarmarz, H.; Shafer, L.L.; Coffey, R.; et al. Safety and tolerability of intracerebroventricular PDGF-BB in Parkinson’s diesease patients. J. Clin. Investig. 2015, 125, 1339–1346. [Google Scholar] [CrossRef] [Green Version]
- Van Damme, P.; Tilkin, P.; Mercer, K.J.; Terryn, J.; D’Hondt, A.; Herne, N.; Tousseyn, T.; Claeys, K.G.; Thal, D.R.; Zachrisson, O.; et al. Intracerebroventricular delivery of vascular endothelial growth factor in patients with amyotrophic lateral sclerosis, a phase I study. Brain Commun. 2020, 2, fcaa160. [Google Scholar] [CrossRef]
- Kouzehgarani, G.N.; Kumar, P.; Bolin, S.; Reilly, E.; Lefebvre, D.R. Biodistribution Analysis of an Anti-EGFR Antibody in the Rat Brain: Validation of CSF Microcirculation as a Viable Pathway to Circumvent the Blood-Brain Barrier for Drug Delivery. Pharmaceutics 2022, 14, 1441. [Google Scholar] [CrossRef]
- Thakker, D.; Weatherspoon, M.R.; Harrison, J.; Keene, T.E.; Lane, D.S.; Kaemmerer, W.F.; Stewart, G.R.; Shafer, L.L. Intracerebroventricular amyloid-beta antibodies reduce cerebral amyloid angiopathy and associated micro-hemorrhages in aged Tg2576 mice. Proc. Natl. Acad. Sci. USA 2009, 106, 4501–4506. [Google Scholar] [CrossRef] [Green Version]
- Ishii, T.; Muranaka, R.; Tashiro, O.; Nishimura, M. Chronic intracerebroventricular administration of anti-neuropeptide Y antibody stimulates starvation-induced feeding via compensatory responses in the hypothalamus. Brain Res. 2007, 1144, 91–100. [Google Scholar] [CrossRef]
- Tangen, K.; Nestorov, I.; Verma, A.; Sullivan, J.; Holt, R.W.; Linninger, A.A. In Vivo Intrathecal Tracer Dispersion in Cynomolgus Monkey Validates Wide Biodistribution Along Neuraxis. IEEE Trans. Biomed. Eng. 2020, 67, 1122–1132. [Google Scholar] [CrossRef]
- Thakker, D.R.; Adams, E.; Stewart, G.R.; Shafer, L. Distribution of Molecules through the Cerebral Spinal Fluid (CSF) of Non-Human Primates: Influence of Delivery Site, Flow Rate, and MOLECULAR mass of the Test Agent; Society for Neuroscience: Washington, DC, USA, 2011. [Google Scholar]
- Fleischhack, G.; Reif, S.; Hasan, C.; Jaehde, U.; Hettmer, S.; Bode, U. Feasibility of intraventricular administration of etoposide in patients with metastatic brain tumours. Br. J. Cancer 2001, 84, 1453–1459. [Google Scholar] [CrossRef] [Green Version]
- Cook, M.; Murphy, M.; Bulluss, K.; D’Souza, W.; Plummer, C.; Priest, E.; Williams, C.; Sharan, A.; Fisher, R.; Pincus, S.; et al. Anti-seizure therapy with a long-term, implanted intra-cerebroventricular delivery system for drug-resistant epilepsy: A first-in-man study. eClinicalMedicine 2020, 22, 100326. [Google Scholar] [CrossRef]
- Vuillemenot, B.R.; Kennedy, D.; Reed, R.P.; Boyd, R.B.; Butt, M.T.; Musson, D.G.; Keve, S.; Cahayag, R.; Tsuruda, L.S.; O’Neill, C.A. Recombinant human tripeptidyl peptidase-1 infusion to the monkey CNS: Safety, pharmacokinetics, and distribution. Toxicol. Appl. Pharmacol. 2014, 277, 49–57. [Google Scholar] [CrossRef]
- Wang, J.K.; Nauss, L.A.; Thomas, J.E. Pain relief by intrathecally applied morphine in man. Anesthesiology 1979, 50, 149–151. [Google Scholar] [CrossRef]
- De Andres, J.; Hayek, S.; Perruchoud, C.; Lawrence, M.M.; Reina, M.A.; De Andres-Serrano, C.; Rubio-Haro, R.; Hunt, M.; Yaksh, T.L. Intrathecal drug delivery: Advances and applications in the management of chronic pain patient. Front. Pain Res. 2022, 3, 900566. [Google Scholar] [CrossRef]
- Penn, R.D. Intrathecal baclofen for severe spasticity. Ann. N. Y. Acad. Sci. 1988, 531, 157–166. [Google Scholar] [CrossRef]
- SCI Clinical Trial Website. Available online: https://scitrials.org/triallist (accessed on 19 October 2022).
- Available online: https://clinicaltrials.gov/ct2/show/NCT04295538 (accessed on 19 October 2022).
- Available online: https://clinicaltrials.gov/ct2/show/NCT04096950 (accessed on 19 October 2022).
- Available online: https://ichgcp.net/clinical-trials-registry/NCT04096950 (accessed on 19 October 2022).
- Available online: https://clinicaltrials.gov/ct2/show/record/NCT03989440 (accessed on 19 October 2022).
- Available online: https://clinicaltrials.gov/ct2/show/NCT03935321 (accessed on 19 October 2022).
- Marin, B.M.; Porath, K.A.; Jain, S.; Kim, M.; Conage-Pough, J.E.; Oh, J.-H.; Miller, C.L.; Talele, S.; Kitange, G.J.; Tian, S.; et al. Heterogeneous delivery across the blood-brain barrier Limits the efficacy of an EGFR-targeting antibody drug conjugate in GBM. Neuro-Oncol. 2021, 23, 20423–22053. [Google Scholar] [CrossRef] [PubMed]
- Porath, K.; Regan, M.; Griffith, J.; Jain, S.; Stopka, S.; Burgenske, D.; Bakken, K.; Carlson, B.; Decker, P.; Vaubel, R.; et al. Convection enhanced delivery of EGFR targeting antibody-drug conjugates Serclutamab talirine and Depatux-M in glioblastoma patient derived xenografts. Neurooncol. Adv. 2022, 4, vdac130. [Google Scholar] [CrossRef] [PubMed]
- Hadaczek, P.; Kohutnicka, M.; Krauze, M.T.; Bringas, J.; Pivirotto, P.; Cunningham, J.; Bankiewicz, K. CED of Adeno-Associated Virus Type 2 (AAV2) into the striatum and transport of AAV2 within monkey brain. Hum. Gene Ther. 2006, 17, 291–302. [Google Scholar] [CrossRef] [PubMed]
- Johnston, L.C.; Eberling, J.; Pivirotto, P.; Hadaczek, P.; Federoff, H.J.; Forsayeth, J.; Bankiewicz, K.S. Clinically Relevant Effects of CED od AAV2-GDNF on the dopamine Nigrostriatal Pathway in aged Rhesus monkeys. Hum. Gene Ther. 2009, 20, 497–510. [Google Scholar] [CrossRef]
Approved | Drug | Indication | Delivery System & Route of Administration | Therapeutic |
---|---|---|---|---|
2016 | Spinraza | Spinal Muscular Atrophy | (intrathecal) | Antisense oligonucleotide against SMN2 |
Luxturna | Inherited Blind Diseases | Adeno-associated virus Type 2 (subretinal injection) | Retinal pigment epithelium-specific 65 kDa protein | |
Brineura | Batten’s Disease | (intra-cerebroventricular) | Recombinant TPP1 | |
2019 | Zolgensma | Spinal Muscular Atrophy | Adeno-associated Virus Type 9 (intravenous) | SMN1 |
2021 | Delytact | Malignant Glioma | Herpes Simplex Virus Type 1 (intra-tumor) | (oncolytic) |
Route of Administration (No. of Studies) | AD | PD | FTD | HD | Gaucher | ALS |
---|---|---|---|---|---|---|
Systemic (0) | 0 | 0 | 0 | 0 | 0 | 0 |
Intra-Cisterna Magna (5) | NCT03634007 Ph.1/2 2018–2023 (est) NRP | NCT04127578 Ph.1/2 2020–2028 (est) NRP | NCT04747431 Ph.1/2 2021–2027 (est) NRP | 0 | NCT04411654 Ph.1/2 2021–2028 (est) NRP | 0 |
NCT04408625 Ph.1/2 2020–2027 (est) NRP | ||||||
Intrathecal (4) | NCT03186989 Ph.1/2 2017–2022 NRP | NCT03976349 Ph.1 2019–2023 (est) NRP | 0 | 0 | 0 | NCT04494256 Ph.1/2 2020–2026 (est) NRP |
NCT04856982 Ph.3 2021–2027 (est) NRP | ||||||
Intra-Parenchymal (7) | 0 | NCT01621581 Ph. 1 Convection-enhanced delivery 2013–2022 RP [9] | 0 | NCT04120493 Ph.1/2 MRI-guided infusion 2019–2029 (est) NRP | 0 | 0 |
NCT04167540 Ph.1 Bilateral image-guided infusion 2020–2027 (est) NRP | ||||||
NCT3720418 Ph.1/2 Neurosurgical delivery 2018–2022 RP [10] | ||||||
NCT01856439 Ph.1/2 Bilateral injection 2011–2022 RP [11] | ||||||
NCT03065192 Ph.1 Neurosurgical infusion 2017–2021 RP [12] | ||||||
NCT03562494 Ph.2 Brain infusion 2018–2023 (est) RP [9] |
Company | Website (Accessed on 22 March 2023) | Technology | Status |
---|---|---|---|
Aegle Therapeutics (Woburn, MA, USA) | www.aegletherapeutics.com | Production of therapeutic-grade extracellular vesicles from bone marrow derived mesenchymal stem cells (MSCs) | Ph1/2a (Imm) |
Anjarium Biosciences (Schlieren, Switzerland) | www.anjarium.com | proprietary Hybridosome® delivery technology for non-viral gene therapy | Not disclosed |
Aruna Biomedical (Athens, GA, USA) | www.arunabio.com/ | Proprietary neural exosomes AB126 (derived from proprietary non-transformed neural stem cells) able to cross the BBB | Preclinical |
Capricor Therapeutics (San Diego, CA, USA) | www.capricor.com | Exosomes from proprietary cardiosphere-derived cells and engineered exosomes | Preclinical |
Carmine Therapeutics (Cambridge, MA, USA) | www.carminetherapeutics.com | Red blood cell Extracellular Vesicle (RBCEV) Gene Therapy (REGENT®) for the development of next-generation non-viral gene therapies | Not disclosed |
Codiak BioScience (Cambridge, MA, USA) | www.codiakbio.com | Proprietary engExTM platform for designing, engineering, and manufacturing novel exosome therapeutics | Ph1, preclinical for NS |
Curexsys (Göttingen, Germany) | www.curexsys.com | Induced mesenchymal stem cells (iMSC) derived exosomes isolated via traceless purification of exosomes (TACS) | Ph2 |
Evox Therapeutics (Oxford, UK) | www.evoxtherapeutics.com/ | Modified exosomes targeting the BBB with the RVG peptide | Preclinical |
Exopharm (Melbourne, Australia) | www.exopharm.com | Exosomes as delivery systems for RNA, enzymes, or small molecules, with the possibility of surface modification for specific tissue targeting | Preclinical |
ILIAS Biologics (Daejeon, Republic of Korea) | www.iliasbio.com | Proprietary EXPLOR® platform for intracellular delivery of large-sized protein therapeutics. BBB-targeted exosomes for CNS diseases | Ph1 (inflamm.), preclinical for NS |
Kimera Labs (Miramar, FL, USA) | www.kimeralabs.com | Production of MSC-derived exosomes for cosmetic use and scientific and clinical research | Not disclosed |
Reneuron (Bridgend, UK) | www.reneuron.com | modified exosomes for brain targeting, according to their website even to specific brain regions | Ph 2b (stroke) |
Vesigen Therapeutics (Cambridge, MA, USA) | www.vesigentx.com | Engineered ARrestin-domain 1 Mediated Microvesicles (ARMMs) as a flexible platform for therapeutic delivery | Not disclosed |
Mantra Bio (South San Francisco, CA, USA) | www.mantrabio.com | REVEALTM, an exosome engineering platform that to generate targeted exosome vehicles (TEVs) for various therapeutic areas | Not disclosed |
Xollent Biotech (Raleigh, NC, USA) | www.xollentbio.com | A variety of applications for exosomes of different origin in oncology, cardiology and cosmetics | Preclinical |
Companies | Details |
---|---|
Vesigen Therapeutics | Series A round for developing ARRDC1-mediated microvesicles delivering cargos for gene editing, mRNA replacement and RNAi therapeutics ($28.5 million) [60] |
Carmine Therapeutics; Takeda | Research agreement using Carmine’s proprietary extracellular vesicles (EVs) for the delivery of Takeda’s gene therapies against two undisclosed targets (Camine eligible for milestone payments up to $900 million) [61] |
Curexsys GmbH; Evotec | Partnership combining Evotec’s proprietary induced pluripotent stem cell (iPSC) platform with Curesys’ proprietary exosome isolation technology [62] |
Codiak Biosciences; Jazz Pharmaceuticals | Strategic collaboration on the research and development of exosome-based therapies for the treatment of cancer. (Codiak eligible for up to $200 million in milestone payment [63] |
Sarepta Therapeutics | Research agreement using Codiak’s engineered exosomes for the delivery of Sarepta’s gene editing, gene therapy and RNA technologies against neuromuscular diseases (Codiak eligible for up-front and license payments of up to $72.5 million) [64] |
Evox Therapeutics; Eli Lilly | Research agreement using Evox’s exosomes for the delivery of Lilly’s RNAi and antisense oligonucleotide (ASO) therapies against 5 undisclosed targets in neurological disorders (Evox eligible for milestone payments up to $1.2 billion) [65] |
Boehringer Ingelheim | Research collaboration on exosome-mediated RNA delivery in Boehringer’s therapeutic areas of interest [66] |
Takeda | Partnership agreement to develop up to five exosome-based therapeutics for the treatment of rare diseases [67] |
ReNeuron; undisclosed partner | Research agreement using ReNeuron’s human neural stem cell-derived exosomes to deliver gene-silencing technology of an undisclosed partner [68] |
Safety Assessment Period | Date Posted | Microbubble Type | Sponsor | Indication | NCT ID |
---|---|---|---|---|---|
1 day | August 2019–January 2027 | Definity® microbubbles | Neurological Assoc., BrainSonix Corp, Sherman Oaks, CA, USA | Low Grade Glioma | NCT04063514 |
3 days | October 2019–July 2021 | Definity® microbubbles | Elisa Konofagou®, Columbia University, NY, USA | Alzheimer’s Disease | NCT04118764 |
90 days | December 2016–June 2018 | Definity® microbubbles | InSightec®, Haifa, Israel | Alzheimer’s Disease | NCT02986932 |
6 months | November 2018–December 2020 | Unknown | InSightec®, Haifa, Israel | Alzheimer’s Disease | NCT03739905 |
5 years | September 2018–December 2024 | Unknown | InSightec®, Haifa, Israel | Alzheimer’s Disease | NCT03671889 |
6 months | April 2020–December 2020 | Definity® microbubbles | InSightec®, Haifa, Israel | Alzheimer’s Disease | NCT04526262 |
1 day | December 2020–December 2021 | Definity® microbubbles | InSightec®, Haifa, Israel | Amyotrophic Lateral Sclerosis | NCT03321487 |
2 weeks | November 2018–December 2021 | Luminity® microbubbles | InSightec®, Haifa, Israel | Parkinson’s Disease | NCT03608553 |
1 day 1 | January 2015–July 2021 | Definity® microbubbles | InSightec®, Haifa, Israel | Brain tumors | NCT02343991 |
~26 weeks | October 2018–December 2021 | Definity® microbubbles | InSightec®, Haifa, Israel | Glioblastoma | NCT03712293 |
~52 weeks | August 2018–December 2024 | Definity® microbubbles | InSightec®, Haifa, Israel | Glioblastoma | NCT03616860 |
~52 weeks | June 2018–December 2024 | Definity® microbubbles | InSightec®, Haifa, Israel | Glioblastoma | NCT03551249 |
~42 weeks | October 2018–Mar 2022 | Definity® microbubbles | InSightec®, Haifa, Israel | Breast cancer/Brain metastases | NCT03714243 |
45 days 2 (2 weeks) | August 2018–June 2019 | Sonovue® | NaviFUS®, Tapei City, Taiwan | Recurrent Glioblastoma | NCT03626896 |
38 weeks | June 2020–December 2022 | Sonovue® | NaviFUS®, Tapei City, Taiwan | Recurrent Glioblastoma | NCT04446416 |
52 weeks | October 2014–July 2018 | Sonovue® | Carthera®, Paris, France | Recurrent Glioblastoma | NCT02253212 |
~39 weeks | April 2017–October 2020 | Sonovue® | Carthera®, Paris, France | Alzheimer’s Disease | NCT03119961 |
Drug | Company/Partner | Indication | Clinical Phase | Modality | Target | Route of Administration |
---|---|---|---|---|---|---|
ABT-555 (ELEZANUMAB) | AbbVie | Acute cervical SCI | Phase 2 | Antibody to inhibit the Neogenin and BMP pathways | RGMa (N-terminal) | Intravenous infusion |
AXER-204 | ReNetX Bio | Chronic cervical SCI | Phase 1/2 | Fusion protein to Inhibit the NgR pathway | Nogo-A, MAG, and OMgp | Intrathecal Infusion |
MT-3921 | Mitsubishi Tanabe | Acute cervical SCI | Phase 2 | Antibody to inhibit the BMP pathway | RGMa (C-terminal) | Intravenous infusion |
NG-101/ATI-355 | Novartis | Acute cervical SCI | Phase 2 | Fc antibody fragment to inhibit the NgR pathway | Nogo-A | Intrathecal Injection |
Category | Sub-Category | Exo-Somes | Exo-AAVs | Nano-Primers | FUS (Focused Ultrasound) | CED (Convection Enhanced Delivery) | ICV (Intra-Cerebro-Ventricular) | IT (Intra-Thecal) |
---|---|---|---|---|---|---|---|---|
Potential medical impact (Null Hypothesis) | Preclinically enabling | y | y | y | y | y | y | y |
Medically enabling | y | y | TBD | y | y | y | y | |
Medically transformative | TBD | n | n | n | TBD | y | n | |
Extent of brain tissue exposure | All brain tissues | All brain tissues | n/a | Inherently limited | Limited to targeted area | All brain tissues | Spinal tissues | |
Technology maturity | Readiness for Phase 1/2 | y | n | n | Phase I only | y | y | y |
Safety (Chronic) | TBD | TBD | Potential secondary tox | TBD | Y as implant | Y as implant | Y as implant | |
Safety (Short term) | y | TBD | Potential secondary tox | y | y | y | y | |
Regulatory pathway | y | TBD | Nanoparticle predicate | n | y | y | y | |
Invasiveness/medical benefit ratio (Chronic treatment) | n/a | n/a | Non-invasive | Non-invasive FUS, micro-bubbles are invasive (n) | y | y | y | |
Invasiveness/medical benefit ratiox (Short-term treatment) | n/a | n/a | Non-invasive | Non-invasive FUS, micro-bubbles are invasive (n) | y | y | y | |
Adoption prospect by patient & care givers & payers | No foreseeable issue | No foreseeable issue | No foreseeable issue | n | y with design modification | y | y | |
Business impact (Null hypothesis) | Large markets/Primary indications | Stroke, potentially others | Too early to tell | Too early to tell | n | n | n | y |
Niche markets/Secondary indications | Others | Too early to tell | Too early to tell | y | y | y | y | |
R&D productivity/Preclinical studies | y | y | y | y | y | y | y | |
Potential threat in Neuro-science | Rate of evolution | Rapidly advancing clinical stage | Very early, slow progress | Rapidly advancing POC stage | Low | Steady advancement | Significant recent advances | Low |
Competitive risk | High | Low | Low | Low | Medium | High in niche areas | High | |
Neuroscience assets that may benefit | Biologics, degraders | AAV-delivered therapeutics | Payload- carrying nanoparticles | All therapeutics | All therapeutics | All therapeutics | Treatment of SCI |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meyer, A.H.; Feldsien, T.M.; Mezler, M.; Untucht, C.; Venugopalan, R.; Lefebvre, D.R. Novel Developments to Enable Treatment of CNS Diseases with Targeted Drug Delivery. Pharmaceutics 2023, 15, 1100. https://doi.org/10.3390/pharmaceutics15041100
Meyer AH, Feldsien TM, Mezler M, Untucht C, Venugopalan R, Lefebvre DR. Novel Developments to Enable Treatment of CNS Diseases with Targeted Drug Delivery. Pharmaceutics. 2023; 15(4):1100. https://doi.org/10.3390/pharmaceutics15041100
Chicago/Turabian StyleMeyer, Axel H., Thomas M. Feldsien, Mario Mezler, Christopher Untucht, Ramakrishna Venugopalan, and Didier R. Lefebvre. 2023. "Novel Developments to Enable Treatment of CNS Diseases with Targeted Drug Delivery" Pharmaceutics 15, no. 4: 1100. https://doi.org/10.3390/pharmaceutics15041100
APA StyleMeyer, A. H., Feldsien, T. M., Mezler, M., Untucht, C., Venugopalan, R., & Lefebvre, D. R. (2023). Novel Developments to Enable Treatment of CNS Diseases with Targeted Drug Delivery. Pharmaceutics, 15(4), 1100. https://doi.org/10.3390/pharmaceutics15041100