Antibacterial Activity of a Bioactive Tooth-Coating Material Containing Surface Pre-Reacted Glass in a Complex Multispecies Subgingival Biofilm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bioactive Tooth-Coating Material
2.2. Biofilm Formation
2.3. Metabolic Activity of the Biofilm
2.4. Checkerboard DNA–DNA Hybridization
2.5. Detection of Species
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fischer, R.G.; Lira Junior, R.; Retamal-Valdes, B.; Figueiredo, L.C.; Malheiros, Z.; Stewart, B.; Feres, M. Periodontal disease and its impact on general health in Latin America. Section V: Treatment of periodontitis. Braz. Oral Res. 2020, 9, e026. [Google Scholar] [CrossRef] [PubMed]
- Feres, M.; Figueiredo, L.C.; Soares, G.M.; Faveri, M. Systemic antibiotics in the treatment of periodontitis. Periodontol. 2000 2015, 67, 131–186. [Google Scholar] [CrossRef] [PubMed]
- Haffajee, A.D.; Cugini, M.A.; Dibart, S.; Smith, C.; Kent, R.L., Jr.; Socransky, S.S. The effect of SRP on the clinical and microbiological parameters of periodontal diseases. J. Clin. Periodontol. 1997, 24, 324–334. [Google Scholar] [CrossRef]
- Smiley, C.J.; Tracy, S.L.; Abt, E.; Michalowicz, B.S.; John, M.T.; Gunsolley, J.; Cobb, C.M.; Rossmann, J.; Harrel, S.K.; Forrest, J.L.; et al. Systematic review and meta-analysis on the nonsurgical treatment of chronic periodontitis by means of scaling and root planing with or without adjuncts. J. Am. Dent. Assoc. 2015, 146, 508–524. [Google Scholar] [CrossRef] [PubMed]
- Feres, M.; Faveri, M.; Figueiredo, L.C.; Teles, R.; Flemmig, T.; Williams, R.; Lang, N.P. Group B Initiator paper. Non-surgical periodontal therapy: Mechanical debridement, antimicrobial agents and other modalities. J. Int. Acad. Periodontol. 2015, 17, 21–30. [Google Scholar]
- Feres, M.; Retamal-Valdes, B.; Gonçalves, C.; Cristina Figueiredo, L.; Teles, F. Did Omics change periodontal therapy? Periodontol. 2000 2021, 85, 182–209. [Google Scholar] [CrossRef]
- Goudouri, O.M.; Kontonasaki, E.; Lohbauer, U.; Boccaccini, A.R. Antibacterial properties of metal and metalloid ions in chronic periodontitis and peri-implantitis therapy. Acta Biomater. 2014, 10, 3795–3810. [Google Scholar] [CrossRef]
- André, C.B.; Rosalen, P.L.; Giannini, M.; Bueno-Silva, B.; Pfeifer, C.S.; Ferracane, J.L. Incorporation of Apigenin and tt-Farnesol into dental composites to modulate the Streptococcus mutans virulence. Dent. Mater. 2021, 37, e201–e212. [Google Scholar] [CrossRef]
- Cheng, L.; Zhang, K.; Zhang, N.; Melo, M.A.S.; Weir, M.D.; Zhou, X.D.; Bai, Y.X.; Reynolds, M.A.; Xu, H.H.K. Developing a New Generation of Antimicrobial and Bioactive Dental Resins. J. Dent. Res. 2017, 96, 855–863. [Google Scholar] [CrossRef]
- Cury, J.A.; de Oliveira, B.H.; dos Santos, A.P.; Tenuta, L.M. Are fluoride releasing dental materials clinically effective on caries control? Dent. Mater. 2016, 32, 323–333. [Google Scholar] [CrossRef]
- Esteves, C.M.; Ota-Tsuzuki, C.; Reis, A.F.; Rodrigues, J.A. Antibacterial activity of various self-etching adhesive systems against oral streptococci. Oper. Dent. 2010, 35, 448–453. [Google Scholar] [CrossRef]
- Farrugia, C.; Camilleri, J. Antimicrobial properties of conventional restorative filling materials and advances in antimicrobial properties of composite resins and glass ionomer cements-A literature review. Dent. Mater. 2015, 31, e89–e99. [Google Scholar] [CrossRef]
- Nedeljkovic, I.; De Munck, J.; Slomka, V.; Van Meerbeek, B.; Teughels, W.; Van Landuyt, K.L. Lack of Buffering by Composites Promotes Shift to More Cariogenic Bacteria. J. Dent. Res. 2016, 95, 875–881. [Google Scholar] [CrossRef]
- Rodrigues, J.A.; Marchi, G.M.; Serra, M.C.; Hara, A.T. Visual evaluation of in vitro cariostatic effect of restorative materials associated with dentifrices. Braz. Dent. J. 2005, 16, 112–118. [Google Scholar] [CrossRef]
- Abdel-karim, U.M.; El-Eraky, M.; Etman, W.M. Three-year clinical evaluation of two nano-hybrid giomer restorative composites. Tanta Dent. J. 2014, 11, 213–222. [Google Scholar] [CrossRef] [Green Version]
- Itota, T.; Al-Naimi, O.T.; Carrick, T.E.; Yoshiyama, M.; McCabe, J.F. Fluoride release and neutralizing effect by resin-based materials. Oper. Dent. 2005, 30, 522–527. [Google Scholar]
- Itota, T.; Carrick, T.E.; Yoshiyama, M.; McCabe, J.F. Fluoride release and recharge in giomer, compomer and resin composite. Dent. Mater. 2004, 20, 789–795. [Google Scholar] [CrossRef]
- Miki, S.; Kitagawa, H.; Kitagawa, R.; Kiba, W.; Hayashi, M.; Imazato, S. Antibacterial activity of resin composites containing surface pre-reacted glass-ionomer (S-PRG) filler. Dent. Mater. 2016, 32, 1095–1102. [Google Scholar] [CrossRef]
- Alsayed, E.Z.; Hariri, I.; Sadr, A.; Nakashima, S.; Bakhsh, T.A.; Shimada, Y.; Sumi, Y.; Tagami, J. Optical coherence tomography for evaluation of enamel and protective coatings. Dent. Mater. J. 2015, 34, 98–107. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, M.; Yamada, A.; Saito, K.; Hino, R.; Sugawara, Y.; Ono, M.; Naruse, M.; Arakaki, M.; Fukumoto, S. Application of a tooth-surface coating material containing pre-reacted glass-ionomer fillers for caries prevention. Pediatr. Dent. J. 2015, 25, 72–78. [Google Scholar] [CrossRef]
- Fujimoto, Y.; Iwasa, M.; Murayama, R.; Miyazaki, M.; Nagafuji, A.; Nakatsuka, T. Detection of ions released from S-PRG fillers and their modulation effect. Dent. Mater. J. 2010, 29, 392–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, L.; Okiji, T. Evaluation of the ions release / incorporation of the prototype S-PRG filler-containing endodontic sealer. Dent. Mater. J. 2011, 30, 898–903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saku, S.; Kotake, H.; Scougall-Vilchis, R.J.; Ohashi, S.; Hotta, M.; Horiuchi, S.; Hamada, K.; Asaoka, K.; Tanaka, E.; Yamamoto, K. Antibacterial activity of composite resin with glass-ionomer filler particles. Dent. Mater. J. 2010, 29, 193–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murayama, R.; Furuichi, T.; Yokokawa, M.; Takahashi, F.; Kawamoto, R.; Takamizawa, T.; Kurokawa, H.; Miyazaki, M. Ultrasonic investigation of the effect of S-PRG filler-containing coating material on bovine tooth demineralization. Dent. Mater. J. 2012, 31, 954–959. [Google Scholar] [CrossRef] [Green Version]
- Yoneda, M.; Suzuki, N.; Masuo, Y.; Fujimoto, A.; Iha, K.; Yamada, K.; Iwamoto, T.; Hirofuji, T. Effect of S-PRG Eluate on Biofilm Formation and Enzyme Activity of Oral Bacteria. Int. J. Dent. 2012, 2012, 814913. [Google Scholar] [CrossRef] [Green Version]
- Shimazu, K.; Oguchi, R.; Takahashi, Y.; Konishi, K.; Karibe, H. Effects of surface reaction-type pre-reacted glass ionomer on oral biofilm formation of Streptococcus gordonii. Odontology 2016, 104, 310–317. [Google Scholar] [CrossRef]
- Kitagawa, H.; Miki-Oka, S.; Mayanagi, G.; Abiko, Y.; Takahashi, N.; Imazato, S. Inhibitory effect of resin composite containing S-PRG filler on Streptococcus mutans glucose metabolism. J. Dent. 2018, 70, 92–96. [Google Scholar] [CrossRef]
- Nomura, R.; Morita, Y.; Matayoshi, S.; Nakano, K. Inhibitory effect of surface pre-reacted glass-ionomer (S-PRG) eluate against adhesion and colonization by Streptococcus mutans. Sci. Rep. 2018, 22, 5056. [Google Scholar] [CrossRef]
- Tamura, M.; Cueno, M.E.; Abe, K.; Kamio, N.; Ochiai, K.; Imai, K. Ions released from a S-PRG filler induces oxidative stress in Candida albicans inhibiting its growth and pathogenicity. Cell Stress Chaperones 2018, 23, 1337–1343. [Google Scholar] [CrossRef]
- Nomura, R.; Kitamura, T.; Matayoshi, S.; Ohata, J.; Suehiro, Y.; Iwashita, N.; Okawa, R.; Nakano, K. Inhibitory effect of a gel paste containing surface pre-reacted glass-ionomer (S-PRG) filler on the cariogenicity of Streptococcus mutans. Sci. Rep. 2021, 6, 23495. [Google Scholar] [CrossRef]
- Kono, Y.; Tamura, M.; Cueno, M.E.; Tonogi, M.; Imai, K. S-PRG Filler Eluate Induces Oxidative Stress in Oral Microorganism: Suppression of Growth and Pathogenicity, and Possible Clinical Application. Antibiotics 2021, 10, 816. [Google Scholar] [CrossRef]
- Faveri, M.; Lamunier, L.; de Figueiredo, L.C.; Meza-Mauricio, J.; Scombatti de Souza, S.L.; Bueno-Silva, B. In vitro antimicrobial effect of titanium anodization on complex multispecies subgingival biofilm. Biofouling 2022, 38, 656–662. [Google Scholar] [CrossRef]
- Socransky, S.S.; Haffajee, A.D.; Cugini, M.A.; Smith, C.; Kent, R.L., Jr. Microbial complexes in subgingival plaque. J. Clin. Periodontol. 1998, 25, 134–144. [Google Scholar] [CrossRef]
- Alsayed, E.Z.; Hariri, I.; Nakashima, S.; Shimada, Y.; Bakhsh, T.; Tagami, J.; Sadr, A. Effects of coating materials on nanoindentation hardness of enamel and adjacent areas. Dent. Mater. 2016, 32, 807–816. [Google Scholar] [CrossRef]
- Ma, S.; Imazato, S.; Chen, J.H.; Mayanagi, G.; Takahashi, N.; Ishimoto, T.; Nakano, T. Effects of a coating resin containing S-PRG filler to prevent demineralization of root surfaces. Dent. Mater. J. 2012, 31, 909–915. [Google Scholar] [CrossRef] [Green Version]
- Thuy, T.T.; Nakagaki, H.; Kato, K.; Hung, P.A.; Inukai, J.; Tsuboi, S.; Nakagaki, H.; Hirose, M.N.; Igarashi, S.; Robinson, C. Effect of strontium in combination with fluoride on enamel remineralization in vitro. Arch. Oral Biol. 2008, 53, 1017–1022. [Google Scholar] [CrossRef]
- Kim, H.J.; Cho, M.Y.; Lee, E.S.; Jung, H.I.; Kim, B.I. Effects of short-time exposure of surface pre-reacted glass-ionomer eluate on dental microcosm biofilm. Sci. Rep. 2020, 10, 14425. [Google Scholar] [CrossRef]
- Sağlam, M.; Hatipoğlu, M.; Köseoğlu, S.; Esen, H.H.; Kelebek, S. Boric acid inhibits alveolar bone loss in rats by affecting RANKL and osteoprotegerin expression. J. Periodontal. Res. 2014, 49, 472–479. [Google Scholar] [CrossRef]
- Hakki, S.S.; Bozkurt, B.S.; Hakki, E.E. Boron regulates mineralized tissue-associated proteins in osteoblasts (MC3T3-E1). J. Trace Elem. Med. Biol. 2010, 24, 243–250. [Google Scholar] [CrossRef]
- Iwamatsu-Kobayashi, Y.; Abe, S.; Fujieda, Y.; Orimoto, A.; Kanehira, M.; Handa, K.; Venkataiah, V.S.; Zou, W.; Ishikawa, M.; Saito, M. Metal ions from S-PRG filler have the potential to prevent periodontal disease. Clin. Exp. Dent. Res. 2017, 10, 126–133. [Google Scholar] [CrossRef]
- Hahnel, S.; Wastl, D.S.; Schneider-Feyrer, S.; Giessibl, F.J.; Brambilla, E.; Cazzaniga, G.; Ionescu, A. Streptococcus mutans biofilm formation and release of fluoride from experimental resin-based composites depending on surface treatment and S-PRG filler particle fraction. J. Adhes. Dent. 2014, 16, 313–321. [Google Scholar] [CrossRef]
- Soares, G.M.; Teles, F.; Starr, J.R.; Feres, M.; Patel, M.; Martin, L.; Teles, R. Effects of azithromycin, metronidazole, amoxicillin, and metronidazole plus amoxicillin on an in vitro polymicrobial subgingival biofilm model. Antimicrob. Agents Chemother. 2015, 59, 2791–2798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okuda, T.; Kokubu, E.; Kawana, T.; Saito, A.; Okuda, K.; Ishihara, K. Synergy in biofilm formation between Fusobacterium nucleatum and Prevotella species. Anaerobe 2012, 18, 110–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossoni, R.D.; de Barros, P.P.; Lopes, L.A.D.C.; Ribeiro, F.C.; Nakatsuka, T.; Kasaba, H.; Junqueira, J.C. Effects of surface pre-reacted glass-ionomer (S-PRG) eluate on Candida spp.: Antifungal activity, anti-biofilm properties, and protective effects on Galleria mellonella against C. albicans infection. Biofouling 2019, 35, 997–1006. [Google Scholar] [CrossRef] [PubMed]
- Esteban Florez, F.L.; Hiers, R.D.; Smart, K.; Kreth, J.; Qi, F.; Merritt, J.; Khajotia, S.S. Real-time assessment of Streptococcus mutans biofilm metabolism on resin composite. Dent. Mater. 2016, 32, 1263–1269. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Wang, S.; Cheng, L.; Jiang, Y.; Melo, M.A.S.; Weir, M.D.; Oates, T.W.; Zhou, X.; Xu, H.H.K. Novel dental composite with capability to suppress cariogenic species and promote non-cariogenic species in oral biofilms. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 94, 587–596. [Google Scholar] [CrossRef]
- Komalsingsakul, A.; Srisatjaluk, R.L.; Senawongse, P. Effect of brushing on surface roughness, fluoride release, and biofilm formation with different tooth-colored materials. J. Dent. Sci. 2022, 17, 389–398. [Google Scholar] [CrossRef]
- Ximénez-Fyvie, L.A.; Haffajee, A.D.; Socransky, S.S. Comparison of the microbiota of supra- and subgingival plaque in health and periodontitis. J. Clin. Periodontol. 2000, 27, 648–657. [Google Scholar] [CrossRef]
- Yamaguchi-Ueda, K.; Akazaw, Y.; Kawarabayashi, K.; Sugimoto, A.; Nakagawa, H.; Miyazaki, A.; Kurogoushi, R.; Iwata, K.; Kitamura, T.; Yamada, A.; et al. Combination of ions promotes cell migration via extracellular signal-regulated kinase 1/2 signaling pathway in human gingival fibroblasts. Mol. Med. Rep. 2019, 19, 5039–5045. [Google Scholar] [CrossRef]
Strains in the Multispecies Biofilm |
---|
Actinomyces complex |
Actinomyces gerencseriae (ATCC 23840) |
Actinomyces israelii (ATCC 12102) |
Actinomyces oris (ATCC 43146) |
Actinomyces naeslundii (ATCC 12104) |
Purple complex |
Actinomyces odontolyticus (ATCC 17929) Veillonella parvula (ATCC 10790) |
Yellow complex |
Streptococcus intermedius (ATCC 27335) |
Streptococcus mitis (ATCC 49456) |
Streptococcus gordonii (ATCC 10558) |
Streptococcus oralis (ATCC 35037) |
Streptococcus sanguinis (ATCC 10556) |
Green complex Aggregatibacter actinomycetemcomitans (ATCC 29523) |
Capnocytophaga ochracea (ATCC 33596) |
Capnocytophaga gingivalis (ATCC 33624) |
Capnocytophaga sputigena (ATCC 33612) |
Eikenella corrodens (ATCC 23834) |
Orange complex Campylobacter showae (ATCC 51146) Campylobacter gracilis (ATCC 33236) Eubacterium nodatum (ATCC 33099) |
Fusobacterium nucleatum vincentii (ATCC 49256) |
Parvimonas micra (ATCC 33270) |
Fusobacterium nucleatum polymorphum (ATCC 10953) |
Fusobacterium periodonticum (ATCC 33693) |
Prevotella intermedia (ATCC 25611) Streptococcus constellatus (ATCC 27823) |
Red complex |
Porphyromonas gingivalis (ATCC 33277) |
Tannerella forsythia (ATCC 43037) |
Other |
Gemella morbillorum (ATCC 27824) |
Propionibacterium acnes (ATCC 11827) |
Selenomonas noxia (ATCC 43541) |
Streptococcus anginosus (ATCC 33397) |
Streptococcus mutans (ATCC 25175) |
Complex | Control Group Mean ± SD | Test Group Mean ± SD | p-Value Mann–Whitney |
---|---|---|---|
Actinomyces | 4.02 ± 0.46 | 3.54 ± 2.35 | 0.511 |
Purple | 64.41 ± 6.52 | 60.24 ± 22.62 | 0.517 |
Yellow | 3.94 ± 2.77 | 3.9 ± 3.68 | 0.874 |
Green | 1.24 ± 0.46 | 2.86 ± 3.86 | 0.227 |
Orange | 15.71 ± 3.50 | 18.67 ± 12.79 | 0.427 |
Red | 0.14 ± 0.15 | 0.1 ± 0.18 | 0.039 |
Other | 10.54 ± 2.81 | 10.69 ± 6.14 | 0.936 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanaka, C.J.; Rodrigues, J.A.; Pingueiro, J.M.S.; Macedo, T.T.; Feres, M.; Shibli, J.A.; Bueno-Silva, B. Antibacterial Activity of a Bioactive Tooth-Coating Material Containing Surface Pre-Reacted Glass in a Complex Multispecies Subgingival Biofilm. Pharmaceutics 2023, 15, 1727. https://doi.org/10.3390/pharmaceutics15061727
Tanaka CJ, Rodrigues JA, Pingueiro JMS, Macedo TT, Feres M, Shibli JA, Bueno-Silva B. Antibacterial Activity of a Bioactive Tooth-Coating Material Containing Surface Pre-Reacted Glass in a Complex Multispecies Subgingival Biofilm. Pharmaceutics. 2023; 15(6):1727. https://doi.org/10.3390/pharmaceutics15061727
Chicago/Turabian StyleTanaka, Caio Junji, José Augusto Rodrigues, João Marcos Spessoto Pingueiro, Tatiane Tiemi Macedo, Magda Feres, Jamil Awad Shibli, and Bruno Bueno-Silva. 2023. "Antibacterial Activity of a Bioactive Tooth-Coating Material Containing Surface Pre-Reacted Glass in a Complex Multispecies Subgingival Biofilm" Pharmaceutics 15, no. 6: 1727. https://doi.org/10.3390/pharmaceutics15061727
APA StyleTanaka, C. J., Rodrigues, J. A., Pingueiro, J. M. S., Macedo, T. T., Feres, M., Shibli, J. A., & Bueno-Silva, B. (2023). Antibacterial Activity of a Bioactive Tooth-Coating Material Containing Surface Pre-Reacted Glass in a Complex Multispecies Subgingival Biofilm. Pharmaceutics, 15(6), 1727. https://doi.org/10.3390/pharmaceutics15061727