Establishment and Evaluation of a Parametric Population Pharmacokinetic Model Repository for Ganciclovir and Valganciclovir
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy
2.2. Information Extraction
2.3. Quality Control of the PPK Model Repository
2.4. Effect of Covariates on Clearance Variation
2.5. Application of the PPK Model Repository
2.5.1. Monte Carlo Simulation for the Probability of Target Attainment
2.5.2. AUC Calculator Based on Maximum a Posteriori Method
3. Results
3.1. Identification of the Included Studies
3.2. Overview of Included PPK Models for GCV and VGCV
3.2.1. Study and PPK Model Characteristics
Study (Publication Year) | Software/ Algorithm | Fixed Effect Parameters | Between-Subject Variability (%) | Residual Unexplained Variability | Internal Validation | External Validation (N = No. of Subjects) | Model Application | Simulation Target | |
---|---|---|---|---|---|---|---|---|---|
Lalagkas et al. (2023) * [27] | NONMEM / FOCE-I | CL (L/h) Vc (L) Q (L/h) Vp (L) Ka (1/h) F Tlag (h) | =6.93 × (CKD-EPI/55)0.817 × (BW/70)0.75 = 43.1 × (BW/70) = 9.23 × (BW/70)0.75 = 219 × (BW/70) = 0.766 = 0.699 = 0.331 | 29.9 36.1 / 103.4 45.7 16.6 / | 28.2% (proportional error) 0.237 mg/L (additive error) | GOF pcVPC NPDE Bootstrap | N = 22 | evaluate and design dosing regime | AUC0–24h: 40–50 mg/L·h |
Nguyen et al. (2021) [11] | Monolix / SAEM | CL (L/h) Vc (L) Q (L/h) Vp (L) Ka (1/h) F | =2.55 × (BW/11.7)0.75 × (eGFR/167)0.763× 0.806critically ill = 5.96 × (BW/11.7) = 0.222 × (BW/11.7)0.75 = 1.29 × (BW/11.7) = 0.506 = 0.438 | 48.6 46.9 / / / / | 47.7% (proportional error) | GOF NPDE pcVPC | N = 35 | design dosing regime | preventive AUC0–24h: 40–80 mg·h/L curative AUC0–24h: 80–120 mg·h/L |
Franck et al. (2021) [9] | NONMEM / NR | CL (L/h) Vc (L) Q (L/h) Vp (L) Tlag (h) Ka (1/h) F | =6.9 × (BW/26.7)0.75 × (CrCL/149.8)0.88 = 9.7 × (BW/26.7) = 10.9 = 7.6 × (BW/26.7) = 0.33 = 0.73 = 0.43 | 66.3 76.8 / / / 83.7 55.7 | 0.98 mg/L (additive error) | GOF pcVPC NPDE Bootstrap | NR | design dosing regime | AUC0–24h: 40–60 mg·h/L |
Chen et al. (2021) [26] | NONMEM / FOCE | CL/F (L/h) Vc/F (L) Q/F (L/h) Vp/F (L) Ka (1/h) Tlag (h) | =7.09 × (1 + CLcr/68.3 × 1.08) = 10.8 = 3.96 = 174 = 0.23 = 0.93 | 27.2 153 63.1 107 / / | 42.9% (exponential error) | GOF VPC Bootstrap | N = 30 | LSS design dosing regime | AUC0–24h: 40–50 mg·h/L |
Li et al. (2021) [29] | Phoenix NLME / FOCE-LB | CL (L/h) Vc (L) | =5.23 × KF0.92 × (BW/12.0)1.02 = 11.35 × (BW/12.0)0.80 | 12.9 65.8 | 8.23% (proportional error) | GOF VPC Bootstrap NPDE | NR | design dosing regime | AUC0–24h: 40–50 mg·h/L |
Krens et al. (2020) [10] | NONMEM / FOCE-I | CL (L/h) Vc (L) | =2.3 × (CKD-EPI/65)0.71 = 42 | 47.0 80.0 | 43% (proportional error) | GOF VPC Bootstrap | NR | evaluate dosing regime | Ctrough > 1.5 mg/L |
Facchin et al. (2019) [28] | NONMEM / FOCE-I | CL/F (L/h) Vc/F (L) Q/F (L/h) Vp/F (L) Ka (1/h) Tlag (h) | =9.07 × (SCR/72.5)-0.768 × BSA1.31 × 1.15GENDER = 45 × BSA1.28 × 1.14GENDER = 1.46 = 18.5 = 6.96 = 0.86 | 16.0 9.3 / 54.6 59.2 / | 23.5% (proportional error) | GOF pcVPC NPDE Bootstrap | NR | design dosing regime | AUCss-12h AUCss-24h |
Horvatits et al. (2014) [24] | NONMEM / FOCE | CL (L/h) Vc (L) Q (L/h) Vp (L) | =2.2 = 32.4 = 16.8 = 33.5 | 61.5 33.6 34.7 60.6 | 7.22% (proportional error) | GOF VPC | NR | design dosing regime | AUC0–24h: 50 mg·h/L Ctrough > 2 mg/L |
Vezina et al. (2014) [25] | NONMEM / FOCE-I | CL/F (L/h) Vc/F (L) Q/F (L/h) Vp/F (L) Ka (1/h) Tlag (h) | =14.5 × ((CLcr/60) × (70/BW))0.492 × (BW/70)0.75 = 87.5 × (BW/70) = 4.80 × (BW/70)0.75 = 42.6 × (BW/70) = 3 = 0.5 | 33.5 / / / / / | 32.7% (proportional error) | GOF VPC NPDE Bootstrap | NR | evaluate dosing regime | AUC0-ꝏ: 40–50 mg·h/L |
Vezina et al. (2010) [8] | NONMEM / FOCE-I | CL/F (L/h) Vc/F (L) Ka (1/h) | =7.33 = 35.1 = 0.85 | 36.3 41.4 74.3 | 33.5% (proportional error) | GOF | NR | analysis of efficacy | AUC0–ꝏ |
Caldés et al. (2009) * [21] | NONMEM / FOCE-I | CL (L/h) Vc (L) Q (L/h) Vp (L) Ka (1/h) F Tlag (h) | =7.49 × (CLcr/57) = 31.90 = 10.2 = 32.0 = 0.895 = 0.825 = 0.382 | 32.7 47.6 / / 68.1 22.1 / | 14.3% (proportional error) 0.465 μg/mL (additive error) | GOF Bootstrap | NR | evaluate and design dosing regime | AUC0–24h: 45 mg·h/L |
Perrottet et al. (2009) [22] | NONMEM / FOCE | CL (L/h) Vc (L) Q (L/h) Vp (L) F Ka (1/h) | =θGraftType × GFRMDRD × 1.21sex = 24 × (BW/70) × 0.78sex = 4.1 = 22 = 0.6 = 0.56 | 26 20 / / / / | 21% (proportional error) | GOF | NR | analysis of prophylactic efficacy and tolerability | AUC Ctrough |
Zhao et al. (2009) [23] | NONMEM / FOCE | CL/F (L/h) Vc/F (L) Vp/F (L) Q/F (L/h) Ka (1/h) Tlag (h) | =8.04 × (CLcr/89)2.93 + 3.62 × (BW/28) = 5.2 = 30.7 = 3.97 = 0.369 = 0.743 | 23.83 58.22 / / 32.25 / | 20.93% (exponential error) | GOF VPC Bootstrap | NR | design dosing regime | AUC0–24h: 45 mg·h/L Ctrough: 0.5 mg/L, 1 mg/L |
Acosta et al. (2007) [20] | NONMEM / FOCE-I | CL (L/h) V (L) Ka (1/h) F | =0.146 × BW1.68 = 1.15 × BW = 0.591 = 0.536 | 28.4 / / 12.4 | 45.4% (exponential error) | GOF | NR | evaluate dosing regime | AUC0–12h: 27 mg·h/L |
Zhou et al. (1996) [19] | NONMEM / NR | CL (L/h) Vc (L) | =0.262 + (0.00271 × ASCC) = 0.627 + (0.437 × BW) | 35.4 COV = 28.5 30.1 | 8.46% (proportional error) | NR | NR | evaluate effect of covariates | concentration–time profiles |
Yuen et al. (1995) [18] | NONMEM / NR | CL (L/h) Vc (L) Vp (L) Q (L/h) | =0.382 + 0.168 × BW × CLcr/100 × (1-T) × (1-CMV) = 0.381 × BW = 0.511 × BW = 13.4 | 47.5 27.5 / / | 36.1% (proportional error) | NR | NR | evaluate effect of HIV | concentration–time profiles |
3.2.2. Application of Model-Based Simulation
3.3. Overview of PPK Model Repository
3.3.1. QC result
3.3.2. Comparison of GCV and VGCV PK Profiles
3.3.3. Covariate Screening and Covariate Effect
3.4. Model Repository Applications
3.4.1. Probability of Target Attainment
3.4.2. AUC calculator based on MAP-BE
4. Discussion
4.1. Simulated Concentration–Time Profiles of Ganciclovir
4.2. Simulated Concentration–Time Profiles of Valganciclovir
4.3. Covariates Effects on Estimated PK Parameters
4.4. Envisioning the Application of Model Repository
4.5. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Badr, A.A.; Ajarim, T.D.S. Ganciclovir. Profiles Drug Subst. Excip. Relat. Methodol. 2018, 43, 1–208. [Google Scholar] [CrossRef] [PubMed]
- Littler, E.; Stuart, A.D.; Chee, M.S. Human cytomegalovirus UL97 open reading frame encodes a protein that phosphorylates the antiviral nucleoside analogue ganciclovir. Nature 1992, 358, 160–162. [Google Scholar] [CrossRef]
- Cocohoba, J.M.; McNicholl, I.R. Valganciclovir: An advance in cytomegalovirus therapeutics. Ann. Pharmacother. 2002, 36, 1075–1079. [Google Scholar] [CrossRef]
- Martin, D.F.; Sierra-Madero, J.; Walmsley, S.; Wolitz, R.A.; Macey, K.; Georgiou, P.; Robinson, C.A.; Stempien, M.J.; Valganciclovir Study Group. A controlled trial of valganciclovir as induction therapy for cytomegalovirus retinitis. N. Engl. J. Med. 2002, 346, 1119–1126. [Google Scholar] [CrossRef]
- Faulds, D.; Heel, R.C. Ganciclovir. A review of its antiviral activity, pharmacokinetic properties and therapeutic efficacy in cytomegalovirus infections. Drugs 1990, 39, 597–638. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, C.; Sawchuk, R.; Chinnock, B.; de Miranda, P.; Balfour, H.H., Jr. Human pharmacokinetics of the antiviral drug DHPG. Clin. Pharmacol. Ther. 1986, 40, 281–286. [Google Scholar] [CrossRef]
- Märtson, A.G.; Edwina, A.E.; Burgerhof, J.G.M.; Berger, S.P.; de Joode, A.; Damman, K.; Verschuuren, E.A.M.; Blokzijl, H.; Bakker, M.; Span, L.F.; et al. Ganciclovir therapeutic drug monitoring in transplant recipients. J. Antimicrob. Chemother. 2021, 76, 2356–2363. [Google Scholar] [CrossRef]
- Vezina, H.E.; Brundage, R.C.; Hevins, T.E.; Balfour, H.H., Jr. The pharmacokinetics of valganciclovir prophylaxis in pediatric solid organ transplant patients at risk for Epstein-Barr virus disease. Clin. Pharmacol. Adv. Appl. 2010, 2, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Franck, B.; Woillard, J.B.; Theoret, Y.; Bittencourt, H.; Demers, E.; Briand, A.; Marquet, P.; Lapeyraque, A.L.; Ovetchkine, P.; Autmizguine, J. Population pharmacokinetics of ganciclovir and valganciclovir in pediatric solid organ and stem cell transplant recipients. Br. J. Clin. Pharmacol. 2020, 29, 3105–3114. [Google Scholar]
- Krens, S.D.; Hodiamont, C.J.; Juffermans, N.P.; Mathôt, R.A.A.; van Hest, R.M. Population Pharmacokinetics of Ganciclovir in Critically Ill Patients. Ther. Drug Monit. 2020, 42, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.; Oualha, M.; Briand, C.; Bendavid, M.; Béranger, A.; Benaboud, S.; Tréluyer, J.M.; Zheng, Y.; Foissac, F.; Winter, S.; et al. Population pharmacokinetics of intravenous ganciclovir and oral valganciclovir in a pediatric population to optimize dosing regimens. Antimicrob. Agents Chemother. 2021, 65, e02254-20. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Li, Z.R.; Wang, C.Y.; Zhu, X.; Jiao, Z. Population Pharmacokinetics of Levetiracetam: A Systematic Review. Clin. Pharmacokinet. 2021, 60, 305–318. [Google Scholar] [CrossRef]
- Kotton, C.N.; Kumar, D.; Caliendo, A.M.; Huprikar, S.; Chou, S.; Danziger-Isakov, L.; Humar, A. The Third International Consensus Guidelines on the Management of Cytomegalovirus in Solid-organ Transplantation. Transplantation 2018, 102, 900–931. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.T.; Wang, C.Y.; Yin, Y.W.; Li, Z.R.; Lin, W.W.; Zhu, M.; Jiao, Z. Population pharmacokinetics of oxcarbazepine: A systematic review. Expert Rev. Clin. Pharmacol. 2021, 14, 853–864. [Google Scholar] [CrossRef] [PubMed]
- Wiltshire, H.; Paya, C.V.; Pescovitz, M.D.; Humar, A.; Dominguez, E.; Washburn, K.; Blumberg, E.; Alexander, B.; Freeman, R.; Heaton, N.; et al. Pharmacodynamics of oral ganciclovir and valganciclovir in solid organ transplant recipients. Transplantation 2005, 79, 1477–1483. [Google Scholar] [CrossRef] [Green Version]
- Kang, D.; Bae, K.S.; Houk, B.E.; Savic, R.M.; Karlsson, M.O. Standard Error of Empirical Bayes Estimate in NONMEM® VI. Korean J. Physiol. Pharmacol. 2012, 16, 97–106. [Google Scholar] [CrossRef] [Green Version]
- Yuen, G.J.; Drusano, G.L.; Fletcher, C.; Capparelli, E.; Connor, J.D.; Lalezari, J.P.; Drew, L.; Follansbee, S.; Busch, D.; Jacobson, M.; et al. Population differences in ganciclovir clearance as determined by nonlinear mixed-effects modelling. Antimicrob. Agents Chemother. 1995, 39, 2350–2352. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.J.; Gruber, W.; Demmler, G.; Jacobs, R.; Reuman, P.; Adler, S.; Shelton, M.; Pass, R.; Britt, B.; Trang, J.M.; et al. Population pharmacokinetics of ganciclovir in newborns with congenital cytomegalovirus infections. NIAID Collaborative Antiviral Study Group. Antimicrob. Agents Chemother. 1996, 40, 2202–2205. [Google Scholar] [CrossRef] [Green Version]
- Acosta, E.P.; Brundage, R.C.; King, J.R.; Sánchez, P.J.; Sood, S.; Agrawal, V.; Homans, J.; Jacobs, R.F.; Lang, D.; Romero, J.R.; et al. Ganciclovir population pharmacokinetics in neonates following intravenous administration of ganciclovir and oral administration of a liquid valganciclovir formulation. Clin. Pharmacol. Ther. 2007, 81, 867–872. [Google Scholar] [CrossRef]
- Caldés, A.; Colom, H.; Armendariz, Y.; Garrido, M.J.; Troconiz, I.F.; Gil-Vernet, S.; Lloberas, N.; Pou, L.; Peraire, C.; Grinyó, J.M. Population pharmacokinetics of ganciclovir after intravenous ganciclovir and oral valganciclovir administration in solid organ transplant patients infected with cytomegalovirus. Antimicrob. Agents Chemother. 2009, 53, 4816–4824. [Google Scholar] [CrossRef] [Green Version]
- Perrottet, N.; Csajka, C.; Pascual, M.; Manuel, O.; Lamoth, F.; Meylan, P.; Aubert, J.D.; Venetz, J.P.; Soccal, P.; Decosterd, L.A.; et al. Population pharmacokinetics of ganciclovir in solid-organ transplant recipients receiving oral valganciclovir. Antimicrob. Agents Chemother. 2009, 53, 3017–3023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, W.; Baudouin, V.; Zhang, D.; Deschenes, G.; Le Guellec, C.; Jacqz-Aigrain, E. Population pharmacokinetics of ganciclovir following administration of valganciclovir in paediatric renal transplant patients. Clin. Pharmacokinet. 2009, 48, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Horvatits, T.; Kitzberger, R.; Drolz, A.; Zauner, C.; Jager, W.; Bohmdorfer, M.; Kraff, S.; Fritsch, A.; Thalhammer, F.; Fuhrmann, V.; et al. Pharmacokinetics of ganciclovir during continuous venovenous hemodiafiltration in critically Ill patients. Antimicrob. Agents Chemother. 2014, 58, 94–101. [Google Scholar] [CrossRef] [Green Version]
- Vezina, H.E.; Brundage, R.C.; Balfour, H.H., Jr. Population pharmacokinetics of valganciclovir prophylaxis in paediatric and adult solid organ transplant recipients. Br. J. Clin. Pharmacol. 2014, 78, 343–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, B.; Hu, S.S.; Rui, W.B.; An, H.M.; Zhai, X.H.; Wang, X.H.; Lu, J.Q.; Shao, K.; Zhou, P.J. Population Pharmacokinetics and Bayesian Estimation of the Area Under the Concentration-Time Curve for Ganciclovir in Adult Chinese Renal Allograft Recipients After Valganciclovir Administration. J. Clin. Pharmacol. 2021, 61, 328–338. [Google Scholar] [CrossRef]
- Lalagkas, P.N.; Iliou, J.; Rigo, R.; Miarons, M.; Fernandez-Alarcon, B.; Bestard, O.; Cruzado, J.M.; Melilli, E.; Torras, J.; Grinyo, J.M.; et al. Comparison of Three Renal Function Formulas for Ganciclovir/Valganciclovir Dose Individualization in CMV-Infected Solid Organ Transplantation Patients Using a Population Approach. Clin. Pharmacokinet. 2023, 62, 861–880. [Google Scholar] [CrossRef]
- Facchin, A.; Elie, V.; Benyoub, N.; Magreault, S.; Maisin, A.; Storme, T.; Zhao, W.; Deschenes, G.; Jacqz-Aigrain, E. Population pharmacokinetics of ganciclovir after valganciclovir treatment in children with renal transplant. Antimicrob. Agents Chemother. 2019, 63, e01192-19. [Google Scholar] [CrossRef]
- Li, S.; Shu, C.; Wu, S.; Xu, H.; Wang, Y. Population Pharmacokinetics and Dose Optimization of Ganciclovir in Critically Ill Children. Front. Pharmacol. 2020, 11, 614164. [Google Scholar] [CrossRef]
- Gao, A.; Cachat, F.; Faouzi, M.; Bardy, D.; Mosig, D.; Meyrat, B.J.; Girardin, E.; Chehade, H. Comparison of the glomerular filtration rate in children by the new revised Schwartz formula and a new generalized formula. Kidney Int. 2013, 83, 524–530. [Google Scholar] [CrossRef] [Green Version]
- Wolfe, E.J.; Mathur, V.; Tomlanovich, S.; Jung, D.; Wong, R.; Griffy, K.; Aweeka, F.T. Pharmacokinetics of mycophenolate mofetil and intravenous ganciclovir alone and in combination in renal transplant recipients. Pharmacotherapy 1997, 17, 591–598. [Google Scholar] [CrossRef] [PubMed]
- Klein, I.H.; Abrahams, A.; van Ede, T.; Hené, R.J.; Koomans, H.A.; Ligtenberg, G. Different effects of tacrolimus and cyclosporine on renal hemodynamics and blood pressure in healthy subjects. Transplantation 2002, 73, 732–736. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez Hernandez, F.; Carter, S.J.; Iso-Sipilä, J.; Goldsmith, P.; Almousa, A.A.; Gastine, S.; Lilaonitkul, W.; Kloprogge, F.; Standing, J.F. An automated approach to identify scientific publications reporting pharmacokinetic parameters. Wellcome Open Res. 2021, 6, 88. [Google Scholar] [CrossRef] [PubMed]
Virtual Patients | Neonates | Infants | Children | Adults |
---|---|---|---|---|
Sex | Male | Male | Male | Male |
Age | 40 weeks (PMA) | 1 year old | 10 years old | 40 years old |
Weight (kg) | 3 | 10 | 30 | 70 |
Height (cm) | 50 | 70 | 130 | 170 |
SCR (μmol/L) | 30 | 50 | 70 | 95 |
Study (Publication Year) | Country (Type of Study) | No. of Subjects (M/F) | Population Characteristic | No. of Observations | Sampling of Schedule | Age Mean ± SD Median (Range) | Weight (kg) Mean ± SD Median (Range] | Formulation | Dose Regimen Mean ± SD Median (Range] | Bioassay [LLOQ] |
---|---|---|---|---|---|---|---|---|---|---|
Lalagkas et al. (2023) [27] | Spain (Prospective) | 60 (39/21) | Caucasian patients with established CMV infections undergoing allogeneic SOT (kidney, liver and heart) | 640 | IS 1 and SS 2 | 57 years (22–78) | 68 (43–131) | GCV i.v. VGCV p.o. | GCV for CMV infection were 2.5 mg/kg/12 h, 2.5 mg/kg/24 h, and 1.25 mg/kg/24 h. VGCV for CMV infection were of 450 mg every 12, 24, and 48 h. For prophylaxis, VGCV was given at 450 mg every 24, 48 and 84 h | HPLC [0.5 mg/L] |
Nguyen et al. (2021) [11] | France (Prospective) | 105 (59/46) | Pediatrics | 374 | NR | 2.5 years (0.01–17.3) | 11.7 (2.6–80) | GCV i.v. VGCV p.o. | GCV: 10 mg/kg/day (1.2–15.4) VGCV: 36 mg/kg/day (14.6–83.8) GCV and VGCV were administered twice daily | LC–MS [0.05 μg/mL] |
Franck et al. (2021) [9] | Canada (Retrospective) | 50 (30/20) | Pediatric SOT and SCT recipients | 580 | IS 1 for GCV IS 2 for VGCV | 7.5 years (0.5–17.4) | 26.7 (5.96–87) | GCV i.v. VGCV p.o. | Pre-emptive approach for the prevention of CMV disease: 5 mg/kg/12 h GCV or 10 mg/kg/12 h VGCV | HPLC [0.039 mg/L] |
Chen et al. (2021) [26] | China (Prospective) | 70 (46/24) | Adult Chinese renal allograft recipients | 768 | IS 3 | 42.3 ± 9.95 years | 61.1 ± 11.0 | VGCV p.o. | 450 mg/day 900 mg/day | LC–MS GCV: [0.048 mg/L] VGCV: [0.0048 mg/L] |
Li et al. (2021) [29] | China (Retrospective) | 104 (54/50) | Critically ill pediatric patients | 138 | NR | 3.06 ± 2.99 years 2.46 years (0.10–12.83) | 13.7 ± 8.3 12.0 (2.5–55.0) | GCV i.v. | 5 mg/kg/12 h | HPLC [0.1 μg/mL] |
Krens et al. (2020) [10] | Netherlands (Retrospective) | 34 (17/17) | Critically ill patients | 128 | NR | 56 years (30–82) | 70 (44–140) | GCV i.v. | 2.8 mg/kg/day (0.7–20) | HPLC [0.5 mg/L] LC–MS/MS [0.1 mg/L] |
Facchin et al. (2019) [28] | France (Retrospective) | 104 (66/38) | Children with renal transplant | 1212 | IS 4 | 12.2 years (2.1–20.5) | 30.35 (11.9–83.0) | VGCV p.o. | 18.5 mg/kg once a day or twice a day (5.0–70.2) | HPLC [0.25 mg/mL] |
Horvatits et al. (2014) [24] | Australia (Prospective) | 9 (8/1) | Critically ill patients with suspected or proven CMV infection | NR | IS 5 | 56 ± 9 years | 86 ± 25 | GCV i.v. | 5 mg/kg in 0.5 h infusion via a central line | HPLC [5 ng/mL] |
Vezina et al. (2014) [25] | United States (Prospective) | 95 (60/35) | Pediatric and adult kidney, liver and lung transplant patients | 269 | SS | children: 0 to 24 months: 15 months (6–17) 2 to 11 years: 7 years (5–10) 12 to 17 years: 13 years (12–15) adults: 53 years (18–78) | children: 33 (6.9–61.1) adults: 71.8 (8.05–115) | VGCV tablet, oral solution | Most subjects: VGCV tablet, 900 mg every 24 h or 450 mg every 12, 24 or 48 h 8 subjects (7 children): VGCV oral solution, 350 mg, 300 mg, 270 mg, 225 mg, 150 mg or 75 mg every 24 h | HPLC [50 ng/mL] |
Vezina et al. (2010) [8] | United States (Prospective) | 8 (6/2) | Pediatric SOT patients at risk for Epstein–Barr virus disease | 43 | SS and IS 6 | 2.1 years (1.3–6.2) | 14.1 (9.4–19.8) | VGCV suspension | 11.1 mg/kg/12 h (10.1–12.1) 7.4 mg/kg/day (5.3–11.3) | HPLC [25 ng/mL] |
Caldés et al. (2009) [21] | Spain (Prospective) | 20 (10/10) | SOT recipients (kidney, liver or heart) with established CMV infection | 382 | IS 7 | 55.7 ± 11.8 years | 66.2 ± 12.9 | GCV i.v. VGCV p.o. | 5 mg/kg/12 h GCV for 5 days followed by 900 mg/12 h VGCV for 16 days | HPLC [0.5 μg/mL] |
Perrottet et al. (2009) [22] | Switzerland (Prospective) | 65 (45/20) | SOT recipients (kidney, lung or heart) | 437 | SS and IS | 55 years (18–70) | 72 (46–115) | GCV i.v. VGCV p.o. | GCV: 5 mg/kg/12 h for treatment VGCV: 900 mg/12 h for treatment, 450 or 900 mg/day for prophylaxis | HPLC [0.1 μg/mL] |
Zhao et al. (2009) [23] | France (Prospective) | 22 (11/11) | Pediatric renal transplant patients | 164 | IS 8 | 10 ± 5 years 9 years (3–17) | 34 ± 19 28 (12–76) | VGCV p.o. | Prophylactic therapy: 900 mg/24 h VGCV; Pre-emptive therapy: 5 mg/kg/12 h GCV for 15 days followed by 10 mg/kg/12 h VGCV for 3 months | HPLC [0.25 μg/mL] |
Acosta et al. (2007) [20] | United States (Prospective) | 24 (13/11) | Neonates with symptomatic congenital CMV disease | 484 | IS 9 and SS 10 | study1.0: 30 days (11–34) study2.0: 20 days (8–33) | study1.0: 2.7 (2.1–3.4) study2.0: 2.9 (1.9–4.4) | GCV i.v. VGCV p.o. | GCV: 6 mg/kg/12 h VGCV: 14 mg/kg/12 h | LC–MS [0.4 μg/mL] |
Zhou et al. (1996) [19] | United States (Prospective) | 27 NR | Newborns with acute symptomatic CMV disease | 219 | NR | Newborns | NR | GCV i.v. | A single dose of 4 or 6 mg/kg, 1 h constant-rate infusion | HPLC [0.1 μg/mL] |
Yuen et al. (1995) [18] | United States (Prospective) | 53 NR | 31 patients with CMV retinitis, 17 were shedding CMV in urine and 5 with SOT and renal dysfunction | 558 | SS 11 and IS 12 | NR | NR | GCV i.v. | 1.2–5.0 mg/kg, 1 h constant-rate infusion | HPLC [0.25 μg/mL] |
Study (Publication Year) | Tested covariates | Covariate Selection Criteria | Significant Covariates | ||||||
---|---|---|---|---|---|---|---|---|---|
Demographic | Laboratory Tests | Co-Administration | Forward Inclusion | Backward Elimination | CL | Vc | Q | Vp | |
Lalagkas et al. (2023) [27] | Weight, BSA, lean body weight, total body water, sex, age | SCR | NR | p < 0.05 | p < 0.01 | CKD-EPI, weight | Weight | Weight | Weight |
Nguyen et al. (2021) [11] | Weight, age, height, BSA, sex, critically ill | eGFR | NR | p < 0.05 | p < 0.01 | Weight, eGFR, critically ill | Weight | Weight | Weight |
Franck et al. (2021) [9] | Weight, BSA, sex, age, ethnicity, transplant type, formulation | SCR, urea, CrCL | NR | p < 0.05 | p < 0.01 | Weight, CrCL | Weight | NR | Weight |
Chen et al. (2021) [26] | Weight, sex, age, BSA, | CLcr | NR | p < 0.05 | p < 0.01 | CLcr | NR | NR | NR |
Li et al. (2021) [29] | Weight, sex, age, height, BSA | BUN, SCR, UA, TBIL, ALT, AST, KF | NR | p < 0.05 | p < 0.01 | Weight, KF | Weight | NR | NR |
Krens et al. (2020) [10] | Weight, sex, age, IBW, ethnicity, comorbidity, CVVH | SCR, CKD-EPI, serum sodium | NR | p < 0.05 | p < 0.001 | CKD-EPI | NR | NR | NR |
Facchin et al. (2019) [28] | Weight, gender, age, height, BSA, underlying disease | SCR, serum uremia, proteinuria, CrCL | Mycophenolate mofetil, tacrolimus, cyclosporine, azathioprine | p < 0.05 | p < 0.01 | BSA, SCR, GENDER | BSA, GENDER | NR | NR |
Horvatits et al. (2014) * [24] | NR | NR | NR | NR | NR | NR | NR | NR | NR |
Vezina et al. (2014) [25] | Weight, sex, age, transplant type, donor source, recipient race, formulation, days post-transplant | SCR | Thymoglobulin, basiliximab, methylprednisolone, tacrolimus, ciclosporin or sirolimus | p < 0.005 | p < 0.005 | CLcr, weight | Weight | Weight | Weight |
Vezina et al. (2010) [8] | Weight, sex, age, height, BSA, transplant type | CrCL | NR | p < 0.05 | NR | NR | NR | NR | NR |
Caldés et al. (2009) [21] | Weight, sex, age | CLcr | Cyclosporine, mycophenolate mofetil, sirolimus, tacrolimus | p < 0.05 | p < 0.01 | CLcr | NR | NR | NR |
Perrottet et al. (2009) [22] | Weight, sex, age, height, transplant type, comorbidity | GFR | Cyclosporine, tacrolimus, mycophenolate, cotrimoxazole | NR | NR | GFRMDRD, sex | Weight, sex | NR | NR |
Zhao et al. (2009) [23] | Weight, age, height | CLcr, AST, ALT, serum protein | Prednisone, mycophenolate mofetil | p < 0.01 | p < 0.001 | CLcr, weight | NR | NR | NR |
Acosta et al. (2007) [20] | Weight, sex, PNA, BSA | NR | NR | p < 0.05 | NR | Weight | Weight | NR | NR |
Zhou et al. (1996) [19] | Weight | ASCC, PLAT | NR | p < 0.001 | p < 0.005 | ASCC | Weight | NR | NR |
Yuen et al. (1995) [18] | Weight, transplant (yes/no) | CLcr, CMV-shedding or CMV retinitis | NR | p < 0.005 | NR | Weight, CLcr, transplant(yes/no), CMV-shedding or CMV retinitis | Weight | NR | Weight |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, W.; Mak, W.; Gwee, A.; Gu, M.; Wu, Y.; Shi, Y.; He, Q.; Xiang, X.; Han, B.; Zhu, X. Establishment and Evaluation of a Parametric Population Pharmacokinetic Model Repository for Ganciclovir and Valganciclovir. Pharmaceutics 2023, 15, 1801. https://doi.org/10.3390/pharmaceutics15071801
Yang W, Mak W, Gwee A, Gu M, Wu Y, Shi Y, He Q, Xiang X, Han B, Zhu X. Establishment and Evaluation of a Parametric Population Pharmacokinetic Model Repository for Ganciclovir and Valganciclovir. Pharmaceutics. 2023; 15(7):1801. https://doi.org/10.3390/pharmaceutics15071801
Chicago/Turabian StyleYang, Wenyu, Wenyao Mak, Amanda Gwee, Meng Gu, Yue Wu, Yufei Shi, Qingfeng He, Xiaoqiang Xiang, Bing Han, and Xiao Zhu. 2023. "Establishment and Evaluation of a Parametric Population Pharmacokinetic Model Repository for Ganciclovir and Valganciclovir" Pharmaceutics 15, no. 7: 1801. https://doi.org/10.3390/pharmaceutics15071801
APA StyleYang, W., Mak, W., Gwee, A., Gu, M., Wu, Y., Shi, Y., He, Q., Xiang, X., Han, B., & Zhu, X. (2023). Establishment and Evaluation of a Parametric Population Pharmacokinetic Model Repository for Ganciclovir and Valganciclovir. Pharmaceutics, 15(7), 1801. https://doi.org/10.3390/pharmaceutics15071801