Membrane Vesicles as Drug Delivery Systems: Source, Preparation, Modification, Drug Loading, In Vivo Administration and Biodistribution, and Application in Various Diseases
Abstract
:1. Introduction
2. Sources of Membrane Vesicles for DDSs
3. Preparation and Modification of Membrane Vesicles as DDSs
4. Drug Loading of Membrane Vesicles as DDSs
5. Characterization of Membrane Vesicles as DDSs
6. In Vivo Administration and Biodistribution of Membrane Vesicles as DDSs
7. Applications of Membrane Vesicles as DDSs for Treating Different Diseases
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wei, B.; Li, Y.; Ao, M.; Shao, W.; Wang, K.; Rong, T.; Zhou, Y.; Chen, Y. Ganglioside GM3-functionalized reconstituted high-density lipoprotein (GM3-rHDL) as a novel nanocarrier enhances antiatherosclerotic efficacy of statins in apoE−/− C57BL/6 mice. Pharmaceutics 2022, 14, 2534. [Google Scholar] [CrossRef] [PubMed]
- Rong, T.; Wei, B.; Ao, M.; Zhao, H.; Li, Y.; Zhang, Y.; Qin, Y.; Zhou, J.; Zhou, F.; Chen, Y. Enhanced anti-atherosclerotic efficacy of pH-responsively releasable ganglioside GM3 delivered by reconstituted high-density lipoprotein. Int. J. Mol. Sci. 2021, 22, 13624. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.S.; Zhang, X.J.; Zhang, W.D.A.; Zhao, S.Y.; Chen, Y. Identification and characterization of cell-bound membrane vesicles. BBA-Biomembr. 2017, 1859, 756–766. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, Y.; Zhang, W.D.; Tang, Q.S.; Zhou, Y.; Li, Y.F.; Rong, T.; Wang, H.Y.; Chen, Y. Isolated cell-bound membrane vesicles (CBMVs) as a novel class of drug nanocarriers. J. Nanobiotechnol 2020, 18, 69. [Google Scholar] [CrossRef]
- Zhou, Y.; Qin, Y.; Sun, C.H.; Liu, K.F.; Zhang, W.D.; Gaman, M.A.; Chen, Y. Cell-bound membrane vesicles contain antioxidative proteins and probably have an antioxidative function in cells or a therapeutic potential. J. Drug Deliv. Sci. Technol. 2023, 81, 104240. [Google Scholar] [CrossRef]
- Ester, M.C.; Day, R.M. Production and Utility of Extracellular Vesicles with 3D Culture Methods. Pharmaceutics 2023, 15, 663. [Google Scholar] [CrossRef]
- Mukhopadhya, A.; Tsiapalis, D.; McNamee, N.; Talbot, B.; O’Driscoll, L. Doxorubicin Loading into Milk and Mesenchymal Stem Cells’ Extracellular Vesicles as Drug Delivery Vehicles. Pharmaceutics 2023, 15, 718. [Google Scholar] [CrossRef]
- Zhong, Y.X.; Wang, X.D.; Zhao, X.; Shen, J.H.; Wu, X.; Gao, P.F.; Yang, P.; Chen, J.g.; An, W.L. Multifunctional Milk-Derived Small Extracellular Vesicles and Their Biomedical Applications. Pharmaceutics 2023, 15, 1418. [Google Scholar] [CrossRef]
- Pomatto, M.A.C.; Gai, C.R.; Negro, F.; Massari, L.; Deregibus, M.C.; Grange, C.; De Rosa, F.G.; Camussi, G. Plant-Derived Extracellular Vesicles as a Delivery Platform for RNA-Based Vaccine: Feasibility Study of an Oral and Intranasal SARS-CoV-2 Vaccine. Pharmaceutics 2023, 15, 974. [Google Scholar] [CrossRef]
- You, B.S.; Yang, Y.; Zhou, Z.X.; Yan, Y.M.; Zhang, L.L.; Jin, J.H.; Qian, H. Extracellular Vesicles: A New Frontier for Cardiac Repair. Pharmaceutics 2022, 14, 1848. [Google Scholar] [CrossRef]
- Tolomeo, A.M.; Zuccolotto, G.; Malvicini, R.; De Lazzari, G.; Penna, A.; Franco, C.; Caicci, F.; Magarotto, F.; Quarta, S.; Pozzobon, M.; et al. Biodistribution of Intratracheal, Intranasal, and Intravenous Injections of Human Mesenchymal Stromal Cell-Derived Extracellular Vesicles in a Mouse Model for Drug Delivery Studies. Pharmaceutics 2023, 15, 548. [Google Scholar] [CrossRef]
- Zhang, Y.M.; Gao, W.; Yuan, J.; Zhong, X.; Yao, K.; Luo, R.; Liu, H.B. CCR7 Mediates Dendritic-Cell-Derived Exosome Migration and Improves Cardiac Function after Myocardial Infarction. Pharmaceutics 2023, 15, 461. [Google Scholar] [CrossRef]
- Yuan, Y.W.; Sun, J.; You, T.Y.; Shen, W.W.; Xu, W.Q.; Dong, Q.; Cui, M. Extracellular Vesicle-Based Therapeutics in Neurological Disorders. Pharmaceutics 2022, 14, 2652. [Google Scholar] [CrossRef]
- Huang, J.W.; Xu, Y.; Wang, Y.X.; Su, Z.; Li, T.T.; Wu, S.S.; Mao, Y.H.; Zhang, S.H.; Weng, X.Q.; Yuan, Y. Advances in the Study of Exosomes as Drug Delivery Systems for Bone-Related Diseases. Pharmaceutics 2023, 15, 220. [Google Scholar] [CrossRef]
- Biagiotti, S.; Abbas, F.; Montanari, M.; Barattini, C.; Rossi, L.; Magnani, M.; Papa, S.; Canonico, B. Extracellular Vesicles as New Players in Drug Delivery: A Focus on Red Blood Cells-Derived EVs. Pharmaceutics 2023, 15, 365. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Brown, A.; Johnson, B.; Diebold, D.; Asano, K.; Marriott, G.; Lu, B. Genetically Engineered Extracellular Vesicles Harboring Transmembrane Scaffolds Exhibit Differences in Their Size, Expression Levels of Specific Surface Markers and Cell-Uptake. Pharmaceutics 2022, 14, 2564. [Google Scholar] [CrossRef]
- Donoso-Meneses, D.; Figueroa-Valdes, A.I.; Khoury, M.; Alcayaga-Miranda, F. Oral Administration as a Potential Alternative for the Delivery of Small Extracellular Vesicles. Pharmaceutics 2023, 15, 716. [Google Scholar] [CrossRef]
- Celik, P.A.; Erdogan-Gover, K.; Barut, D.; Enuh, B.M.; Amasya, G.; Sengel-Turk, C.T.; Derkus, B.; Cabuk, A. Bacterial Membrane Vesicles as Smart Drug Delivery and Carrier Systems: A New Nanosystems Tool for Current Anticancer and Antimicrobial Therapy. Pharmaceutics 2023, 15, 1052. [Google Scholar] [CrossRef]
- Krzyzek, P.; Marinacci, B.; Vitale, I.; Grande, R. Extracellular Vesicles of Probiotics: Shedding Light on the Biological Activity and Future Applications. Pharmaceutics 2023, 15, 522. [Google Scholar] [CrossRef]
- Srivastava, P.; Kim, K.S. Membrane Vesicles Derived from Gut Microbiota and Probiotics: Cutting-Edge Therapeutic Approaches for Multidrug-Resistant Superbugs Linked to Neurological Anomalies. Pharmaceutics 2022, 14, 2370. [Google Scholar] [CrossRef]
- Chen, W.J.; Wu, Y.L.; Deng, J.J.; Yang, Z.M.; Chen, J.B.; Tan, Q.; Guo, M.F.; Jin, Y. Phospholipid-Membrane-Based Nanovesicles Acting as Vaccines for Tumor Immunotherapy: Classification, Mechanisms and Applications. Pharmaceutics 2022, 14, 2446. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lu, Y.M.; Xu, Y.X.; Zhou, Z.K.; Li, Y.C.; Ling, W.; Song, W.L. Bio-Inspired Drug Delivery Systems: From Synthetic Polypeptide Vesicles to Outer Membrane Vesicles. Pharmaceutics 2023, 15, 368. [Google Scholar] [CrossRef] [PubMed]
- Dzaman, K.; Czerwaty, K. Extracellular Vesicle-Based Drug Delivery Systems for Head and Neck Squamous Cell Carcinoma: A Systematic Review. Pharmaceutics 2023, 15, 1327. [Google Scholar] [CrossRef] [PubMed]
- Li, T.W.; Li, X.Q.; Han, G.P.; Liang, M.; Yang, Z.R.; Zhang, C.Y.; Huang, S.Z.; Tai, S.; Yu, S. The Therapeutic Potential and Clinical Significance of Exosomes as Carriers of Drug Delivery System. Pharmaceutics 2023, 15, 21. [Google Scholar] [CrossRef] [PubMed]
- Akbari, A.; Nazari-Khanamiri, F.; Ahmadi, M.; Shoaran, M.; Rezaie, J. Engineered Exosomes for Tumor-Targeted Drug Delivery: A Focus on Genetic and Chemical Functionalization. Pharmaceutics 2023, 15, 66. [Google Scholar] [CrossRef]
- Sun, K.; Zheng, X.; Jin, H.Z.; Yu, F.; Zhao, W. Exosomes as CNS Drug Delivery Tools and Their Applications. Pharmaceutics 2022, 14, 2252. [Google Scholar] [CrossRef]
- Zhu, X.L.; Gao, M.Y.; Yang, Y.F.; Li, W.M.; Bao, J.; Li, Y. The CRISPR/Cas9 System Delivered by Extracellular Vesicles. Pharmaceutics 2023, 15, 984. [Google Scholar] [CrossRef]
- Rupert, D.L.M.; Claudio, V.; Lasser, C.; Bally, M. Methods for the physical characterization and quantification of extracellular vesicles in biological samples. BBA-Gen. Subj. 2017, 1861, 3164–3179. [Google Scholar] [CrossRef]
- Gardiner, C.; Di Vizio, D.; Sahoo, S.; Thery, C.; Witwer, K.W.; Wauben, M.; Hill, A.F. Techniques used for the isolation and characterization of extracellular vesicles: Results of a worldwide survey. J. Extracell. Vesicles 2016, 5, 32945. [Google Scholar] [CrossRef]
- Thery, C.; Witwer, K.W.; Aikawa, E.; Alcaraz, M.J.; Anderson, J.D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G.K.; et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 2018, 7, 1535750. [Google Scholar] [CrossRef] [Green Version]
- Spiers, H.V.M.; Stadler, L.K.J.; Smith, H.; Kosmoliaptsis, V. Extracellular Vesicles as Drug Delivery Systems in Organ Transplantation: The Next Frontier. Pharmaceutics 2023, 15, 891. [Google Scholar] [CrossRef]
- Jiapaer, Z.; Li, C.Y.; Yang, X.Y.; Sun, L.F.; Chatterjee, E.; Zhang, L.Y.; Lei, J.; Li, G.P. Extracellular Non-Coding RNAs in Cardiovascular Diseases. Pharmaceutics 2023, 15, 155. [Google Scholar] [CrossRef]
- Lim, W.Q.; Luk, K.H.M.; Lee, K.Y.; Nurul, N.; Loh, S.J.; Yeow, Z.X.; Wong, Q.X.; Looi, Q.H.D.; Chong, P.P.; How, C.W.; et al. Small Extracellular Vesicles’ miRNAs: Biomarkers and Therapeutics for Neurodegenerative Diseases. Pharmaceutics 2023, 15, 1216. [Google Scholar] [CrossRef]
- Cai, J.; Jiang, H. Application potential of probiotics in acute myocardial infarction. Cardiovasc. Innov. Appl. 2022, 7, 1–9. [Google Scholar] [CrossRef]
Category | MISEV2014 | MISEV2018 |
---|---|---|
Quantification | No recommendations | Both the source of EV and the preparation of EV must be described quantitatively. Sourse: Number of cultured cells, total starting volume of biofluid, or weight/volume/size of tissue. Preparation: Total protein amount, total particle number, total lipid quantification and the ratios among these. |
General characterization | Analysis of the protein composition of EVs requires “three positives and one negative”, with at least three positive protein markers containing at least one transmembrane/lipid bound protein, and one cytoplasmic protein; at least one negative protein marker. | Still valid but the categories of EV proteins to characterize have evolved. Mainly used for property identification, assessment of EV purity, subtype differentiation. |
Characterization of individual EV | Use of 2 different but complementary techniques, such as electron microscopy and single particle analysis instruments (not electron microscope-based) | Still valid but techniques used to analyze EVs have envolved. |
Additional characterization | --- | The topology of EV associated components should be assessed |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, C.; Qin, Y.; Zhuang, H.; Zhang, Y.; Wu, Z.; Chen, Y. Membrane Vesicles as Drug Delivery Systems: Source, Preparation, Modification, Drug Loading, In Vivo Administration and Biodistribution, and Application in Various Diseases. Pharmaceutics 2023, 15, 1903. https://doi.org/10.3390/pharmaceutics15071903
Sun C, Qin Y, Zhuang H, Zhang Y, Wu Z, Chen Y. Membrane Vesicles as Drug Delivery Systems: Source, Preparation, Modification, Drug Loading, In Vivo Administration and Biodistribution, and Application in Various Diseases. Pharmaceutics. 2023; 15(7):1903. https://doi.org/10.3390/pharmaceutics15071903
Chicago/Turabian StyleSun, Chenhan, Ying Qin, Hongda Zhuang, Yuan Zhang, Zhiwen Wu, and Yong Chen. 2023. "Membrane Vesicles as Drug Delivery Systems: Source, Preparation, Modification, Drug Loading, In Vivo Administration and Biodistribution, and Application in Various Diseases" Pharmaceutics 15, no. 7: 1903. https://doi.org/10.3390/pharmaceutics15071903
APA StyleSun, C., Qin, Y., Zhuang, H., Zhang, Y., Wu, Z., & Chen, Y. (2023). Membrane Vesicles as Drug Delivery Systems: Source, Preparation, Modification, Drug Loading, In Vivo Administration and Biodistribution, and Application in Various Diseases. Pharmaceutics, 15(7), 1903. https://doi.org/10.3390/pharmaceutics15071903