Gene Ontology Analysis Highlights Biological Processes Influencing Responsiveness to Biological Therapy in Psoriasis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search
- Disease terms: “Psoriasis” [Mesh] OR “psoriasis”;
- Drug terms: “Tumor Necrosis Factor Inhibitors” [Mesh] OR “TNF inhibitor” OR (“Etanercept” [Mesh] OR “etanercept biosimilar SB4” [Supplementary Concept]) OR (“Adalimumab” [Mesh] OR “adalimumab biosimilar HS016” [Supplementary Concept]) OR “Certolizumab Pegol” [Mesh] OR (“Infliximab” [Mesh] OR “SB2 infliximab” [Supplementary Concept]) OR “IL-17 inhibitor” OR “brodalumab” [Supplementary Concept] OR “secukinumab” [Supplementary Concept] OR “ixekizumab” [Supplementary Concept] OR “IL-23 inhibitor” OR “tildrakizumab” [Supplementary Concept] OR “risankizumab” [Supplementary Concept] OR “guselkumab” [Supplementary Concept] OR “IL-12/23 inhibitor” OR “Ustekinumab” [Mesh];
- Response terms: “Biomarkers, Pharmacological” [Mesh] OR “Treatment Outcome” [Mesh] OR “Pharmacogenetics” [Mesh] OR “treatment response” OR “response marker” OR “response biomarker” OR “therapy outcome” OR “therapy response”;
- Type of biomarkers terms: “Genetics” [Mesh] OR “Genomics” [Mesh].
- Disease terms: “Psoriasis” [Mesh] OR “Psoriasis/drug therapy” [Mesh] OR “Psoriasis/genetics” [Mesh] OR “Psoriasis/blood” [Mesh];
- Drug terms: “Biological Therapy” [Mesh] OR “Dermatologic Agents” [Mesh] OR “Dermatologic Agents/therapeutic use” [Mesh] OR “Dermatologic Agents/pharmacology” [Mesh] OR “Anti-Inflammatory Agents/therapeutic use” [Mesh] OR “Biological Products/therapeutic use” [Mesh] OR “Antibodies, Monoclonal, Humanized” [Mesh] OR “Antibodies, Monoclonal, Humanized/therapeutic use” [Mesh] OR “Molecular Targeted Therapy” [Mesh] OR “Antibodies, Monoclonal” [Mesh] OR “Antibodies, Monoclonal/therapeutic use” [Mesh] OR “Tumor Necrosis Factor-alpha/antagonists and inhibitors” [Mesh] OR “Etanercept” [Mesh] OR “Etanercept/therapeutic use” [Mesh] OR “Adalimumab” [Mesh] OR “Adalimumab/therapeutic use” [Mesh] OR “Infliximab/therapeutic use” [Mesh] OR “Interleukin-17/antagonists and inhibitors” [Mesh] OR “Interleukin-17” [Mesh] OR “secukinumab” [Supplementary Concept] OR “Interleukin-12/antagonists and inhibitors” [Mesh] OR “Interleukin-23/antagonists and inhibitors” [Mesh] OR “Interleukin-12 Subunit p40/genetics” [Mesh] OR “Ustekinumab” [Mesh] OR “Ustekinumab/therapeutic use” [Mesh];
- Response terms: “Biomarkers, Pharmacological” [Mesh] OR “Treatment Outcome” [Mesh] OR “Biomarkers” [Mesh] OR “Pharmacogenomic Variants” [Mesh] OR “Pharmacogenetics” [Mesh] OR “Biomarkers/metabolism” [Mesh] OR “Genome-Wide Association Study” [Mesh] OR “Precision Medicine” [Mesh];
- Type of biomarkers: “Polymorphism, Genetic” [Mesh] OR “Genetic Markers” [Mesh] OR “Polymorphism, Single Nucleotide” [Mesh] OR “Biomarkers/blood” [Mesh] OR “Genetic Variation/genetics” [Mesh].
2.2. Gene Ontology Analysis
- Ontology/pathways selected:
- Biological Process (13 May 2021);
- Cellular Component (13 May 2021);
- Molecular Function (13 May 2021);
- Evidence selected: only All_Experimental.
3. Results
3.1. Literature Search
3.2. Biomarkers
3.3. Gene Ontology Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rendon, A.; Schakel, K. Psoriasis Pathogenesis and Treatment. Int. J. Mol. Sci. 2019, 20, 1475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parisi, R.; Iskandar, I.Y.K.; Kontopantelis, E.; Augustin, M.; Griffiths, C.E.M.; Ashcroft, D.M.; Global Psoriasis Atlas. National, regional, and worldwide epidemiology of psoriasis: Systematic analysis and modelling study. BMJ 2020, 369, m1590. [Google Scholar] [CrossRef] [PubMed]
- WHO. Global Report on Psoriasis; WHO: Geneva, Switzerland, 2016. [Google Scholar]
- Griffiths, C.E.M.; Armstrong, A.W.; Gudjonsson, J.E.; Barker, J. Psoriasis. Lancet 2021, 397, 1301–1315. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Low, H.Q.; Wang, L.; Li, Y.; Ellinghaus, E.; Han, J.; Estivill, X.; Sun, L.; Zuo, X.; Shen, C.; et al. Genome-wide meta-analysis identifies multiple novel associations and ethnic heterogeneity of psoriasis susceptibility. Nat. Commun. 2015, 6, 6916. [Google Scholar] [CrossRef] [Green Version]
- Tsoi, L.C.; Stuart, P.E.; Tian, C.; Gudjonsson, J.E.; Das, S.; Zawistowski, M.; Ellinghaus, E.; Barker, J.N.; Chandran, V.; Dand, N.; et al. Large scale meta-analysis characterizes genetic architecture for common psoriasis associated variants. Nat. Commun. 2017, 8, 15382. [Google Scholar] [CrossRef] [Green Version]
- Aydin, B.; Arga, K.Y.; Karadag, A.S. Omics-Driven Biomarkers of Psoriasis: Recent Insights, Current Challenges, and Future Prospects. Clin. Cosmet. Investig. Dermatol. 2020, 13, 611–625. [Google Scholar] [CrossRef]
- Gottlieb, A.B.; Chao, C.; Dann, F. Psoriasis comorbidities. J. Dermatol. Treat. 2008, 19, 5–21. [Google Scholar] [CrossRef]
- Wolf, N.; Quaranta, M.; Prescott, N.J.; Allen, M.; Smith, R.; Burden, A.D.; Worthington, J.; Griffiths, C.E.; Mathew, C.G.; Barker, J.N.; et al. Psoriasis is associated with pleiotropic susceptibility loci identified in type II diabetes and Crohn disease. J. Med. Genet. 2008, 45, 114–116. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, A.W.; Read, C. Pathophysiology, Clinical Presentation, and Treatment of Psoriasis: A Review. JAMA 2020, 323, 1945–1960. [Google Scholar] [CrossRef] [PubMed]
- Brownstone, N.D.; Hong, J.; Mosca, M.; Hadeler, E.; Liao, W.; Bhutani, T.; Koo, J. Biologic Treatments of Psoriasis: An Update for the Clinician. Biologics 2021, 15, 39–51. [Google Scholar] [CrossRef]
- Langley, R.G.; Elewski, B.E.; Lebwohl, M.; Reich, K.; Griffiths, C.E.; Papp, K.; Puig, L.; Nakagawa, H.; Spelman, L.; Sigurgeirsson, B.; et al. Secukinumab in plaque psoriasis—Results of two phase 3 trials. N. Engl. J. Med. 2014, 371, 326–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farahnik, B.; Beroukhim, K.; Zhu, T.H.; Abrouk, M.; Nakamura, M.; Singh, R.; Lee, K.; Bhutani, T.; Koo, J. Ixekizumab for the Treatment of Psoriasis: A Review of Phase III Trials. Dermatol. Ther. 2016, 6, 25–37. [Google Scholar] [CrossRef] [Green Version]
- Puig, L. Brodalumab: The first anti-IL-17 receptor agent for psoriasis. Drugs Today 2017, 53, 283–297. [Google Scholar] [CrossRef]
- Reich, K.; Griffiths, C.E.M.; Gordon, K.B.; Papp, K.A.; Song, M.; Randazzo, B.; Li, S.; Shen, Y.K.; Han, C.; Kimball, A.B.; et al. Maintenance of clinical response and consistent safety profile with up to 3 years of continuous treatment with guselkumab: Results from the VOYAGE 1 and VOYAGE 2 trials. J. Am. Acad. Dermatol. 2020, 82, 936–945. [Google Scholar] [CrossRef] [Green Version]
- Fu, H.; Guo, J. Efficacy of guselkumab compared with adalimumab for psoriasis: A meta-analysis of randomized controlled studies. Postepy Dermatol. Alergol. 2022, 39, 953–958. [Google Scholar] [CrossRef]
- Menter, A.; Tyring, S.K.; Gordon, K.; Kimball, A.B.; Leonardi, C.L.; Langley, R.G.; Strober, B.E.; Kaul, M.; Gu, Y.; Okun, M.; et al. Adalimumab therapy for moderate to severe psoriasis: A randomized, controlled phase III trial. J. Am. Acad. Dermatol. 2008, 58, 106–115. [Google Scholar] [CrossRef]
- Thakur, V.; Mahajan, R. Novel Therapeutic Target(s) for Psoriatic Disease. Front. Med. 2022, 9, 712313. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.Y.; Wang, C.W.; Chen, C.B.; Chen, W.T.; Chang, Y.C.; Hui, R.C.; Chung, W.H. Pharmacogenomics on the Treatment Response in Patients with Psoriasis: An Updated Review. Int. J. Mol. Sci. 2023, 24, 7329. [Google Scholar] [CrossRef] [PubMed]
- Caputo, V.; Strafella, C.; Cosio, T.; Lanna, C.; Campione, E.; Novelli, G.; Giardina, E.; Cascella, R. Pharmacogenomics: An Update on Biologics and Small-Molecule Drugs in the Treatment of Psoriasis. Genes 2021, 12, 1398. [Google Scholar] [CrossRef]
- Prieto-Perez, R.; Cabaleiro, T.; Dauden, E.; Ochoa, D.; Roman, M.; Abad-Santos, F. Pharmacogenetics of topical and systemic treatment of psoriasis. Pharmacogenomics 2013, 14, 1623–1634. [Google Scholar] [CrossRef]
- Jezernik, G.; Gorenjak, M.; Potocnik, U. Gene Ontology Analysis Highlights Biological Processes Influencing Non-Response to Anti-TNF Therapy in Rheumatoid Arthritis. Biomedicines 2022, 10, 1808. [Google Scholar] [CrossRef]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Bindea, G.; Mlecnik, B.; Hackl, H.; Charoentong, P.; Tosolini, M.; Kirilovsky, A.; Fridman, W.H.; Pages, F.; Trajanoski, Z.; Galon, J. ClueGO: A Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 2009, 25, 1091–1093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raudvere, U.; Kolberg, L.; Kuzmin, I.; Arak, T.; Adler, P.; Peterson, H.; Vilo, J. g:Profiler: A web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019, 47, W191–W198. [Google Scholar] [CrossRef] [Green Version]
- Ovejero-Benito, M.C.; Munoz-Aceituno, E.; Sabador, D.; Almoguera, B.; Prieto-Perez, R.; Hakonarson, H.; Coto-Segura, P.; Carretero, G.; Reolid, A.; Llamas-Velasco, M.; et al. Genome-wide association analysis of psoriasis patients treated with anti-TNF drugs. Exp. Dermatol. 2020, 29, 1225–1232. [Google Scholar] [CrossRef]
- Torii, K.; Morita, A. Specific single nucleotide polymorphism genotypes and association of an IL-12B polymorphism with secondary failure of infliximab therapy in Japanese psoriasis patients. J. Dermatol. Sci. 2020, 99, 135–136. [Google Scholar] [CrossRef]
- Coto-Segura, P.; Gonzalez-Lara, L.; Batalla, A.; Eiris, N.; Queiro, R.; Coto, E. NFKBIZ and CW6 in Adalimumab Response Among Psoriasis Patients: Genetic Association and Alternative Transcript Analysis. Mol. Diagn. Ther. 2019, 23, 627–633. [Google Scholar] [CrossRef]
- Dand, N.; Duckworth, M.; Baudry, D.; Russell, A.; Curtis, C.J.; Lee, S.H.; Evans, I.; Mason, K.J.; Alsharqi, A.; Becher, G.; et al. HLA-C*06:02 genotype is a predictive biomarker of biologic treatment response in psoriasis. J. Allergy Clin. Immunol. 2019, 143, 2120–2130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ovejero-Benito, M.C.; Prieto-Perez, R.; Llamas-Velasco, M.; Munoz-Aceituno, E.; Reolid, A.; Saiz-Rodriguez, M.; Belmonte, C.; Roman, M.; Ochoa, D.; Talegon, M.; et al. Polymorphisms associated with adalimumab and infliximab response in moderate-to-severe plaque psoriasis. Pharmacogenomics 2018, 19, 7–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raposo, I.; Carvalho, C.; Bettencourt, A.; Da Silva, B.M.; Leite, L.; Selores, M.; Torres, T. Psoriasis pharmacogenetics: HLA-Cw*0602 as a marker of therapeutic response to ustekinumab. Eur. J. Dermatol. 2017, 27, 528–530. [Google Scholar] [CrossRef]
- Loft, N.D.; Skov, L.; Iversen, L.; Gniadecki, R.; Dam, T.N.; Brandslund, I.; Hoffmann, H.J.; Andersen, M.R.; Dessau, R.B.; Bergmann, A.C.; et al. Associations between functional polymorphisms and response to biological treatment in Danish patients with psoriasis. Pharmacogenomics J. 2018, 18, 494–500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ovejero-Benito, M.C.; Prieto-Perez, R.; Llamas-Velasco, M.; Belmonte, C.; Cabaleiro, T.; Roman, M.; Ochoa, D.; Talegon, M.; Saiz-Rodriguez, M.; Dauden, E.; et al. Polymorphisms associated with etanercept response in moderate-to-severe plaque psoriasis. Pharmacogenomics 2017, 18, 631–638. [Google Scholar] [CrossRef]
- Talamonti, M.; Galluzzo, M.; van den Reek, J.M.; de Jong, E.M.; Lambert, J.L.W.; Malagoli, P.; Bianchi, L.; Costanzo, A. Role of the HLA-C*06 allele in clinical response to ustekinumab: Evidence from real life in a large cohort of European patients. Br. J. Dermatol. 2017, 177, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Prieto-Perez, R.; Llamas-Velasco, M.; Cabaleiro, T.; Solano-Lopez, G.; Marquez, B.; Roman, M.; Ochoa, D.; Talegon, M.; Dauden, E.; Abad-Santos, F. Pharmacogenetics of ustekinumab in patients with moderate-to-severe plaque psoriasis. Pharmacogenomics 2017, 18, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Nishikawa, R.; Nagai, H.; Bito, T.; Ikeda, T.; Horikawa, T.; Adachi, A.; Matsubara, T.; Nishigori, C. Genetic prediction of the effectiveness of biologics for psoriasis treatment. J. Dermatol. 2016, 43, 1273–1277. [Google Scholar] [CrossRef] [Green Version]
- Prieto-Perez, R.; Solano-Lopez, G.; Cabaleiro, T.; Roman, M.; Ochoa, D.; Talegon, M.; Baniandres, O.; Lopez-Estebaranz, J.L.; de la Cueva, P.; Dauden, E.; et al. New polymorphisms associated with response to anti-TNF drugs in patients with moderate-to-severe plaque psoriasis. Pharmacogenomics J. 2018, 18, 70–75. [Google Scholar] [CrossRef] [Green Version]
- van den Reek, J.; Coenen, M.J.H.; van de L’Isle Arias, M.; Zweegers, J.; Rodijk-Olthuis, D.; Schalkwijk, J.; Vermeulen, S.H.; Joosten, I.; van de Kerkhof, P.C.M.; Seyger, M.M.B.; et al. Polymorphisms in CD84, IL12B and TNFAIP3 are associated with response to biologics in patients with psoriasis. Br. J. Dermatol. 2017, 176, 1288–1296. [Google Scholar] [CrossRef]
- Mendrinou, E.; Patsatsi, A.; Zafiriou, E.; Papadopoulou, D.; Aggelou, L.; Sarri, C.; Mamuris, Z.; Kyriakou, A.; Sotiriadis, D.; Roussaki-Schulze, A.; et al. FCGR3A-V158F polymorphism is a disease-specific pharmacogenetic marker for the treatment of psoriasis with Fc-containing TNFalpha inhibitors. Pharmacogenomics J. 2017, 17, 237–241. [Google Scholar] [CrossRef]
- Masouri, S.; Stefanaki, I.; Ntritsos, G.; Kypreou, K.P.; Drakaki, E.; Evangelou, E.; Nicolaidou, E.; Stratigos, A.J.; Antoniou, C. A Pharmacogenetic Study of Psoriasis Risk Variants in a Greek Population and Prediction of Responses to Anti-TNF-alpha and Anti-IL-12/23 Agents. Mol. Diagn. Ther. 2016, 20, 221–225. [Google Scholar] [CrossRef]
- Galluzzo, M.; Boca, A.N.; Botti, E.; Potenza, C.; Malara, G.; Malagoli, P.; Vesa, S.; Chimenti, S.; Buzoianu, A.D.; Talamonti, M.; et al. IL12B (p40) Gene Polymorphisms Contribute to Ustekinumab Response Prediction in Psoriasis. Dermatology 2016, 232, 230–236. [Google Scholar] [CrossRef]
- Prieto-Perez, R.; Solano-Lopez, G.; Cabaleiro, T.; Roman, M.; Ochoa, D.; Talegon, M.; Baniandres, O.; Lopez Estebaranz, J.L.; de la Cueva, P.; Dauden, E.; et al. The polymorphism rs763780 in the IL-17F gene is associated with response to biological drugs in patients with psoriasis. Pharmacogenomics 2015, 16, 1723–1731. [Google Scholar] [CrossRef]
- Gonzalez-Lara, L.; Batalla, A.; Coto, E.; Gomez, J.; Eiris, N.; Santos-Juanes, J.; Queiro, R.; Coto-Segura, P. The TNFRSF1B rs1061622 polymorphism (p.M196R) is associated with biological drug outcome in Psoriasis patients. Arch. Dermatol. Res. 2015, 307, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Julia, A.; Ferrandiz, C.; Dauden, E.; Fonseca, E.; Fernandez-Lopez, E.; Sanchez-Carazo, J.L.; Vanaclocha, F.; Puig, L.; Moreno-Ramirez, D.; Lopez-Estebaranz, J.L.; et al. Association of the PDE3A-SLCO1C1 locus with the response to anti-TNF agents in psoriasis. Pharmacogenomics J. 2015, 15, 322–325. [Google Scholar] [CrossRef] [PubMed]
- Chiu, H.Y.; Wang, T.S.; Chan, C.C.; Cheng, Y.P.; Lin, S.J.; Tsai, T.F. Human leucocyte antigen-Cw6 as a predictor for clinical response to ustekinumab, an interleukin-12/23 blocker, in Chinese patients with psoriasis: A retrospective analysis. Br. J. Dermatol. 2014, 171, 1181–1188. [Google Scholar] [CrossRef] [PubMed]
- Gallo, E.; Cabaleiro, T.; Roman, M.; Solano-Lopez, G.; Abad-Santos, F.; Garcia-Diez, A.; Dauden, E. The relationship between tumour necrosis factor (TNF)-alpha promoter and IL12B/IL-23R genes polymorphisms and the efficacy of anti-TNF-alpha therapy in psoriasis: A case-control study. Br. J. Dermatol. 2013, 169, 819–829. [Google Scholar] [CrossRef]
- Zupancic, K.; Skok, K.; Repnik, K.; Weersma, R.K.; Potocnik, U.; Skok, P. Multi-locus genetic risk score predicts risk for Crohn’s disease in Slovenian population. World J. Gastroenterol. 2016, 22, 3777–3784. [Google Scholar] [CrossRef]
- Gorenjak, M.; Repnik, K.; Jezernik, G.; Jurgec, S.; Skok, P.; Potocnik, U. Genetic prediction profile for adalimumab response in Slovenian Crohn’s disease patients. Z. Gastroenterol. 2019, 57, 1218–1225. [Google Scholar] [CrossRef]
- Arijs, I.; Li, K.; Toedter, G.; Quintens, R.; Van Lommel, L.; Van Steen, K.; Leemans, P.; De Hertogh, G.; Lemaire, K.; Ferrante, M.; et al. Mucosal gene signatures to predict response to infliximab in patients with ulcerative colitis. Gut 2009, 58, 1612–1619. [Google Scholar] [CrossRef] [Green Version]
- Pochard, C.; Coquenlorge, S.; Freyssinet, M.; Naveilhan, P.; Bourreille, A.; Neunlist, M.; Rolli-Derkinderen, M. The multiple faces of inflammatory enteric glial cells: Is Crohn’s disease a gliopathy? Am. J. Physiol. Gastrointest. Liver Physiol. 2018, 315, G1–G11. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Han, T.; Gao, L.; Zhang, D. The Involvement of Glial Cell-Derived Neurotrophic Factor in Inflammatory Bowel Disease. J. Interferon Cytokine Res. 2022, 42, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Schirmer, L.; Schafer, D.P.; Bartels, T.; Rowitch, D.H.; Calabresi, P.A. Diversity and Function of Glial Cell Types in Multiple Sclerosis. Trends Immunol. 2021, 42, 228–247. [Google Scholar] [CrossRef]
- Healy, L.M.; Stratton, J.A.; Kuhlmann, T.; Antel, J. The role of glial cells in multiple sclerosis disease progression. Nat. Rev. Neurol. 2022, 18, 237–248. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.P.; Huang, L.; Flores, J.; Ding, Y.; Li, P.; Peng, J.; Zuo, G.; Zhang, J.H.; Lu, J.; Tang, J.P. Secukinumab attenuates reactive astrogliosis via IL-17RA/(C/EBPbeta)/SIRT1 pathway in a rat model of germinal matrix hemorrhage. CNS Neurosci. Ther. 2019, 25, 1151–1161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amatya, B.; Wennersten, G.; Nordlind, K. Patients’ perspective of pruritus in chronic plaque psoriasis: A questionnaire-based study. J. Eur. Acad. Dermatol. Venereol. 2008, 22, 822–826. [Google Scholar] [CrossRef] [PubMed]
- Yosipovitch, G.; Goon, A.; Wee, J.; Chan, Y.H.; Goh, C.L. The prevalence and clinical characteristics of pruritus among patients with extensive psoriasis. Br. J. Dermatol. 2000, 143, 969–973. [Google Scholar] [CrossRef]
- Shiratori-Hayashi, M.; Tsuda, M. Spinal glial cells in itch modulation. Pharmacol. Res. Perspect. 2021, 9, e00754. [Google Scholar] [CrossRef]
- Griffiths, C.E.; Reich, K.; Lebwohl, M.; van de Kerkhof, P.; Paul, C.; Menter, A.; Cameron, G.S.; Erickson, J.; Zhang, L.; Secrest, R.J.; et al. Comparison of ixekizumab with etanercept or placebo in moderate-to-severe psoriasis (UNCOVER-2 and UNCOVER-3): Results from two phase 3 randomised trials. Lancet 2015, 386, 541–551. [Google Scholar] [CrossRef]
- Strober, B.; Sigurgeirsson, B.; Popp, G.; Sinclair, R.; Krell, J.; Stonkus, S.; Septe, M.; Elewski, B.E.; Gottlieb, A.B.; Zhao, Y.; et al. Secukinumab improves patient-reported psoriasis symptoms of itching, pain, and scaling: Results of two phase 3, randomized, placebo-controlled clinical trials. Int. J. Dermatol. 2016, 55, 401–407. [Google Scholar] [CrossRef]
- Yosipovitch, G.; Soung, J.; Weiss, J.; Muscianisi, E.; Meng, X.; Gilloteau, I.; Elewski, B.E. Secukinumab Provides Rapid Relief From Itching and Pain in Patients with Moderate-to-Severe Psoriasis: Patient Symptom Diary Data from Two Phase 3, Randomized, Placebo-controlled Clinical Trials. Acta Derm. Venereol. 2019, 99, 820–821. [Google Scholar] [CrossRef] [Green Version]
- Blauvelt, A.; Reich, K.; Tsai, T.F.; Tyring, S.; Vanaclocha, F.; Kingo, K.; Ziv, M.; Pinter, A.; Vender, R.; Hugot, S.; et al. Secukinumab is superior to ustekinumab in clearing skin of subjects with moderate-to-severe plaque psoriasis up to 1 year: Results from the CLEAR study. J. Am. Acad. Dermatol. 2017, 76, 60–69.e69. [Google Scholar] [CrossRef]
- Gottlieb, A.B.; Gordon, K.; Hsu, S.; Elewski, B.; Eichenfield, L.F.; Kircik, L.; Rastogi, S.; Pillai, R.; Israel, R. Improvement in itch and other psoriasis symptoms with brodalumab in phase 3 randomized controlled trials. J. Eur. Acad. Dermatol. Venereol. 2018, 32, 1305–1313. [Google Scholar] [CrossRef]
- Feldman, S.R.; Thaci, D.; Gooderham, M.; Augustin, M.; de la Cruz, C.; Mallbris, L.; Buonanno, M.; Tatulych, S.; Kaur, M.; Lan, S.; et al. Tofacitinib improves pruritus and health-related quality of life up to 52 weeks: Results from 2 randomized phase III trials in patients with moderate to severe plaque psoriasis. J. Am. Acad. Dermatol. 2016, 75, 1162–1170.e3. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, T.; Sakai, K.; Sanders, K.M.; Yosipovitch, G.; Akiyama, T. Antipruritic Effects of Janus Kinase Inhibitor Tofacitinib in a Mouse Model of Psoriasis. Acta Derm. Venereol. 2019, 99, 298–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Z.; Qin, Z.; Zhang, J.; Wang, Y. Microglia-mediated chronic psoriatic itch induced by imiquimod. Mol. Pain 2020, 16, 1744806920934998. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lam, K.S.; Kraegen, E.W.; Sweeney, G.; Zhang, J.; Tso, A.W.; Chow, W.S.; Wat, N.M.; Xu, J.Y.; Hoo, R.L.; et al. Lipocalin-2 is an inflammatory marker closely associated with obesity, insulin resistance, and hyperglycemia in humans. Clin. Chem. 2007, 53, 34–41. [Google Scholar] [CrossRef] [Green Version]
- Viau, A.; El Karoui, K.; Laouari, D.; Burtin, M.; Nguyen, C.; Mori, K.; Pillebout, E.; Berger, T.; Mak, T.W.; Knebelmann, B.; et al. Lipocalin 2 is essential for chronic kidney disease progression in mice and humans. J. Clin. Investig. 2010, 120, 4065–4076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cowland, J.B.; Borregaard, N. The individual regulation of granule protein mRNA levels during neutrophil maturation explains the heterogeneity of neutrophil granules. J. Leukoc. Biol. 1999, 66, 989–995. [Google Scholar] [CrossRef]
- Choi, K.M.; Lee, J.S.; Kim, E.J.; Baik, S.H.; Seo, H.S.; Choi, D.S.; Oh, D.J.; Park, C.G. Implication of lipocalin-2 and visfatin levels in patients with coronary heart disease. Eur. J. Endocrinol. 2008, 158, 203–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yndestad, A.; Landro, L.; Ueland, T.; Dahl, C.P.; Flo, T.H.; Vinge, L.E.; Espevik, T.; Froland, S.S.; Husberg, C.; Christensen, G.; et al. Increased systemic and myocardial expression of neutrophil gelatinase-associated lipocalin in clinical and experimental heart failure. Eur. Heart J. 2009, 30, 1229–1236. [Google Scholar] [CrossRef] [Green Version]
- Aizawa, N.; Ishiuji, Y.; Tominaga, M.; Sakata, S.; Takahashi, N.; Yanaba, K.; Umezawa, Y.; Asahina, A.; Kimura, U.; Suga, Y.; et al. Relationship between the Degrees of Itch and Serum Lipocalin-2 Levels in Patients with Psoriasis. J. Immunol. Res. 2019, 2019, 8171373. [Google Scholar] [CrossRef]
- Kamata, M.; Tada, Y.; Tatsuta, A.; Kawashima, T.; Shibata, S.; Mitsui, H.; Asano, Y.; Sugaya, M.; Kadono, T.; Kanda, N.; et al. Serum lipocalin-2 levels are increased in patients with psoriasis. Clin. Exp. Dermatol. 2012, 37, 296–299. [Google Scholar] [CrossRef]
- Shao, S.; Cao, T.; Jin, L.; Li, B.; Fang, H.; Zhang, J.; Zhang, Y.; Hu, J.; Wang, G. Increased Lipocalin-2 Contributes to the Pathogenesis of Psoriasis by Modulating Neutrophil Chemotaxis and Cytokine Secretion. J. Investig. Dermatol. 2016, 136, 1418–1428. [Google Scholar] [CrossRef] [Green Version]
- Kjeldsen, L.; Bainton, D.F.; Sengelov, H.; Borregaard, N. Identification of neutrophil gelatinase-associated lipocalin as a novel matrix protein of specific granules in human neutrophils. Blood 1994, 83, 799–807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xing, C.; Wang, X.; Cheng, C.; Montaner, J.; Mandeville, E.; Leung, W.; van Leyen, K.; Lok, J.; Wang, X.; Lo, E.H. Neuronal production of lipocalin-2 as a help-me signal for glial activation. Stroke 2014, 45, 2085–2092. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Park, J.Y.; Lee, W.H.; Kim, H.; Park, H.C.; Mori, K.; Suk, K. Lipocalin-2 is an autocrine mediator of reactive astrocytosis. J. Neurosci. 2009, 29, 234–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reich, A.; Heisig, M.; Phan, N.Q.; Taneda, K.; Takamori, K.; Takeuchi, S.; Furue, M.; Blome, C.; Augustin, M.; Stander, S.; et al. Visual analogue scale: Evaluation of the instrument for the assessment of pruritus. Acta Derm. Venereol. 2012, 92, 497–501. [Google Scholar] [CrossRef] [Green Version]
- Goldminz, A.M.; Au, S.C.; Kim, N.; Gottlieb, A.B.; Lizzul, P.F. NF-kappaB: An essential transcription factor in psoriasis. J. Dermatol. Sci. 2013, 69, 89–94. [Google Scholar] [CrossRef]
- Howell, M.D.; Kuo, F.I.; Smith, P.A. Targeting the Janus Kinase Family in Autoimmune Skin Diseases. Front. Immunol. 2019, 10, 2342. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, T.; Gilroy, D.W.; Colville-Nash, P.R.; Willoughby, D.A. Possible new role for NF-kappaB in the resolution of inflammation. Nat. Med. 2001, 7, 1291–1297. [Google Scholar] [CrossRef]
- Andres-Ejarque, R.; Ale, H.B.; Grys, K.; Tosi, I.; Solanky, S.; Ainali, C.; Catak, Z.; Sreeneebus, H.; Saklatvala, J.; Dand, N.; et al. Enhanced NF-kappaB signaling in type-2 dendritic cells at baseline predicts non-response to adalimumab in psoriasis. Nat. Commun. 2021, 12, 4741. [Google Scholar] [CrossRef]
- Takematsu, H.; Tagami, H. Granulocyte-macrophage colony-stimulating factor in psoriasis. Dermatologica 1990, 181, 16–20. [Google Scholar] [CrossRef] [PubMed]
- Bonifati, C.; Carducci, M.; Cordiali Fei, P.; Trento, E.; Sacerdoti, G.; Fazio, M.; Ameglio, F. Correlated increases of tumour necrosis factor-alpha, interleukin-6 and granulocyte monocyte-colony stimulating factor levels in suction blister fluids and sera of psoriatic patients relationships with disease severity. Clin. Exp. Dermatol. 1994, 19, 383–387. [Google Scholar] [CrossRef] [PubMed]
- Kupper, T.S.; Lee, F.; Coleman, D.; Chodakewitz, J.; Flood, P.; Horowitz, M. Keratinocyte derived T-cell growth factor (KTGF) is identical to granulocyte macrophage colony stimulating factor (GM-CSF). J. Investig. Dermatol. 1988, 91, 185–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wicks, I.P.; Roberts, A.W. Targeting GM-CSF in inflammatory diseases. Nat. Rev. Rheumatol. 2016, 12, 37–48. [Google Scholar] [CrossRef]
- Elloso, M.M.; Gomez-Angelats, M.; Fourie, A.M. Targeting the Th17 pathway in psoriasis. J. Leukoc. Biol. 2012, 92, 1187–1197. [Google Scholar] [CrossRef]
- Miller, G.; Pillarisetty, V.G.; Shah, A.B.; Lahrs, S.; Xing, Z.; DeMatteo, R.P. Endogenous granulocyte-macrophage colony-stimulating factor overexpression in vivo results in the long-term recruitment of a distinct dendritic cell population with enhanced immunostimulatory function. J. Immunol. 2002, 169, 2875–2885. [Google Scholar] [CrossRef]
- Papp, K.A.; Gooderham, M.; Jenkins, R.; Vender, R.; Szepietowski, J.C.; Wagner, T.; Hunt, B.; Souberbielle, B.; NEPTUNE Investigators. Granulocyte-macrophage colony-stimulating factor (GM-CSF) as a therapeutic target in psoriasis: Randomized, controlled investigation using namilumab, a specific human anti-GM-CSF monoclonal antibody. Br. J. Dermatol. 2019, 180, 1352–1360. [Google Scholar] [CrossRef] [Green Version]
- Solberg, S.M.; Sandvik, L.F.; Eidsheim, M.; Jonsson, R.; Bryceson, Y.T.; Appel, S. Serum cytokine measurements and biological therapy of psoriasis—Prospects for personalized treatment? Scand. J. Immunol. 2018, 88, e12725. [Google Scholar] [CrossRef] [Green Version]
- Johnson, A.D.; Yanek, L.R.; Chen, M.H.; Faraday, N.; Larson, M.G.; Tofler, G.; Lin, S.J.; Kraja, A.T.; Province, M.A.; Yang, Q.; et al. Genome-wide meta-analyses identifies seven loci associated with platelet aggregation in response to agonists. Nat. Genet. 2010, 42, 608–613. [Google Scholar] [CrossRef]
- Bakogiannis, C.; Sachse, M.; Stamatelopoulos, K.; Stellos, K. Platelet-derived chemokines in inflammation and atherosclerosis. Cytokine 2019, 122, 154157. [Google Scholar] [CrossRef]
- Gran, F.; Kerstan, A.; Serfling, E.; Goebeler, M.; Muhammad, K. Current Developments in the Immunology of Psoriasis. Yale J. Biol. Med. 2020, 93, 97–110. [Google Scholar]
- Renne, J.; Schafer, V.; Werfel, T.; Wittmann, M. Interleukin-1 from epithelial cells fosters T cell-dependent skin inflammation. Br. J. Dermatol. 2010, 162, 1198–1205. [Google Scholar] [CrossRef]
- Cai, Y.; Xue, F.; Fleming, C.; Yang, J.; Ding, C.; Ma, Y.; Liu, M.; Zhang, H.G.; Zheng, J.; Xiong, N.; et al. Differential developmental requirement and peripheral regulation for dermal Vgamma4 and Vgamma6T17 cells in health and inflammation. Nat. Commun. 2014, 5, 3986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, J.; Wang, Y.; Li, Y.; Zhong, X.; Gong, Y.; Ding, Y.; Yu, N.; Shi, Y. Based on Gene Expression Analysis: Low-Density Neutrophil Expression Is a Characteristic of the Fast Responders Treated with Guselkumab for Psoriasis. Front. Immunol. 2022, 13, 865875. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Qin, G.; Meng, Z.; Du, T.; Wang, X.; Tang, Y.; Cao, J. IL-1beta, IL-17A and combined phototherapy predicts higher while previous systemic biologic treatment predicts lower treatment response to etanercept in psoriasis patients. Inflammopharmacology 2019, 27, 57–66. [Google Scholar] [CrossRef] [PubMed]
Associated Gene | Biological Treatment | Study |
---|---|---|
AKAP13 | TNF-α inhibitors | [26] |
SUPT3H | ||
CDH12 | ||
HNRNPKP3 | ||
NPFFR2 | ||
IL12B | TNF-α inhibitors | [27] |
NFKBIZ | TNF-α inhibitors | [28] |
HLA-C (Cw6) * | ||
HLA-C (HLA-C * 06:02) * | TNF-α inhibitors, | [29] |
IL-12/23 inhibitors | ||
IL10 | TNF-α inhibitors | [30] |
IVL | ||
PGLYRP3 | ||
SPRR2F | ||
TNFR1 | ||
MYD88 | ||
IL12B | ||
PTTG1 | ||
SLC22A4 | ||
CDKAL1 | ||
TNFAIP3 | ||
NFKBIA | ||
AP4E1 (USP8-TNFAIP8L3) * | ||
MAP3K14 | ||
ZNF816A | ||
SLC9A8 | ||
HLA-C (HLA-Cw0602) * | IL-12/23 inhibitors | [31] |
IL1B | TNF-α inhibitors | [32] |
LY96 | ||
TLR2 | ||
IL19 | TNF-α inhibitors | [33] |
PTGS2 | ||
CTNNA2 | ||
LINC01185‡ | ||
PTTG1 | ||
HLA-B (HLAB/MICA) * | ||
C17orf51‡ | ||
MAP3K1 | ||
ZNF816 (ZNF816A) * | ||
SDC4 | ||
GBP6 | ||
IVL | ||
IL12B | ||
HTR2A (5-HTR2A) * | ||
PSTPIP1 | ||
HLA-C (HLA-C * 06) * | IL-12/23 inhibitors | [34] |
TNFRSF1A | IL-12/23 inhibitors | [35] |
HTR2A | ||
NFKBIA | ||
ADAM33 | ||
IL13 | ||
CHUK | ||
C17orf51‡ | ||
ZNF816 (ZNF816A) * | ||
STAT4 | ||
SLC22A4 | ||
C9orf72 | ||
SPEN | TNF-α inhibitors | [36] |
JAG2 | ||
MACC1 | ||
GUCY1B3 | ||
PDE6A | ||
CDH23 | ||
SHOC2 | ||
LOC728724‡ | ||
ADRA2A | ||
KCNIP1 | ||
IL23R | TNF-α inhibitors | [37] |
PGLYRP4 (PGLYRP4-24) * | ||
PGLYRP3 (PGLYRP3-19) * | ||
PGLYRP4 (PGLYRP4-16) * | ||
PGLYRP4 (PGLYRP4-07) * | ||
PGLYRP4 (PGLYRP4-30) * | ||
PTGS2 | ||
IL19 | ||
LCE | ||
TNFR1 | ||
C17orf51‡ | ||
ZNF816 (ZNF816A) * | ||
CTNNA2 | ||
REL | ||
MYD88 | ||
IL12B | ||
PTTG1 | ||
MAP3K1 | ||
TSBP1 (C6orf10) * | ||
HLA-C | ||
CD84 | TNF-α inhibitors, | [38] |
IL12B | IL-12/23 inhibitors | |
TNFAIP3 | ||
FCGR3A | TNF-α inhibitors | [39] |
HLA-C | TNF-α inhibitors, | [40] |
TRAF3IP2 | ||
TNFAIP3 | ||
HLA-A | IL-12/23 inhibitors | |
ERAP1 | ||
HLA-C (HLA-Cw6) * | IL-12/23 inhibitors | [41] |
IL12B | ||
IL6 | ||
IL17F | TNF-α inhibitors, | [42] |
IL-12/23 inhibitors | ||
TNFRSF1B | TNF-α inhibitors, | [43] |
IL-12/23 inhibitors | ||
SLOCO1C1 (PDE3A-SLCO1C1) * | TNF-α inhibitors | [44] |
HLA-C (HLA-Cw6) * | IL-12/23 inhibitors | [45] |
TNF (TNF-α) * | TNF-α inhibitors | [46] |
IL23R | ||
HLA-C (HLA-Cw6) * |
GO ID | GO Term | Term p Value | Term p Value Corrected with Bonferroni Step Down | Associated Genes Found |
---|---|---|---|---|
GO:0043122 | regulation of I-kappaB kinase/NF-kappaB signaling | 4.32 × 10−11 | 3.37 × 10−9 | [AKAP13, CHUK, IL1B, MAP3K14, MYD88, TIRAP, TNF, TNFAIP3, TNFRSF1A, TRAF3IP2] |
GO:0098581 | detection of external biotic stimulus | 7.43 × 10−11 | 5.72 × 10−9 | [HLA-A, HLA-B, LY96, PGLYRP3, PGLYRP4, TLR2] |
GO:0051043 | regulation of membrane protein ectodomain proteolysis | 2.67 × 10−9 | 1.90 × 10−7 | [ADRA2A, IL10, IL1B, TNF, TNFRSF1B] |
GO:0032645 | regulation of granulocyte macrophage colony-stimulating factor production | 9.54 × 10−8 | 6.20 × 10−6 | [CD84, IL12B, IL17F, IL1B] |
GO:0060252 | positive regulation of glial cell proliferation | 4.09 × 10−7 | 2.41 × 10−5 | [IL1B, IL6, TNF] |
GO:0032651 | regulation of interleukin-1 beta production | 1.93 × 10−6 | 1.02 × 10−4 | [IL17F, IL6, MYD88, TNF, TNFAIP3] |
GO:0045672 | positive regulation of osteoclast differentiation | 4.84 × 10−6 | 2.23 × 10−4 | [IL12B, IL17F, TNF] |
GO:0050769 | positive regulation of neurogenesis | 7.40 × 10−6 | 3.11 × 10−4 | [IL1B, IL6, SPEN, TNF] |
GO:0050995 | negative regulation of lipid catabolic process | 8.84 × 10−6 | 3.45 × 10−4 | [ADRA2A, IL1B, TNF] |
GO:0050796 | regulation of insulin secretion | 2.37 × 10−5 | 6.87 × 10−4 | [ADRA2A, IL1B, IL6, TNF] |
GO ID | GO Term | Term p Value | Term p Value Corrected with Bonferroni Step Down | Cluster | Genes Cluster 1 | Genes Cluster 2 |
---|---|---|---|---|---|---|
GO:0071219 | cellular response to molecule of bacterial origin | 1.47 × 10−9 | 8.06 × 10−8 | Specific for Cluster 1 | [IL10, IL1B, LY96, TLR2, TNF, TNFAIP3, TNFRSF1B] | [IL1B, IL6, TNFAIP3] |
GO:0043123 * | positive regulation of I-kappaB kinase/NF-kappaB signaling | 1.72 × 10−9 | 9.31 × 10−8 | No Specific Cluster | [AKAP13, MAP3K14, MYD88, TNF, TNFRSF1A, TRAF3IP2] | [CHUK, TIRAP, TNFRSF1A] |
GO:0051043 * | regulation of membrane protein ectodomain proteolysis | 2.43 × 10−9 | 1.29 × 10−7 | Specific for Cluster 1 | [ADRA2A, IL10, IL1B, TNF, TNFRSF1B] | [IL1B] |
GO:0032757 | positive regulation of interleukin-8 production | 3.59 × 10−9 | 1.83 × 10−7 | No Specific Cluster | [IL1B, MYD88, TLR2, TNF] | [IL1B, IL6, TIRAP, TLR5] |
GO:0032755 | positive regulation of interleukin-6 production | 1.62 × 10−6 | 5.99 × 10−5 | No Specific Cluster | [IL1B, TLR2, TNF] | [IL1B, IL6, TIRAP] |
GO:0050995 * | negative regulation of lipid catabolic process | 8.37 × 10−6 | 2.43 × 10−4 | Specific for Cluster 1 | [ADRA2A, IL1B, TNF] | [IL1B] |
GO:0032653 | regulation of interleukin-10 production | 9.54 × 10−6 | 2.58 × 10−4 | Specific for Cluster 2 | [IL12B, IL23R] | [IL12B, IL13, IL6] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krušič, M.; Jezernik, G.; Potočnik, U. Gene Ontology Analysis Highlights Biological Processes Influencing Responsiveness to Biological Therapy in Psoriasis. Pharmaceutics 2023, 15, 2024. https://doi.org/10.3390/pharmaceutics15082024
Krušič M, Jezernik G, Potočnik U. Gene Ontology Analysis Highlights Biological Processes Influencing Responsiveness to Biological Therapy in Psoriasis. Pharmaceutics. 2023; 15(8):2024. https://doi.org/10.3390/pharmaceutics15082024
Chicago/Turabian StyleKrušič, Martina, Gregor Jezernik, and Uroš Potočnik. 2023. "Gene Ontology Analysis Highlights Biological Processes Influencing Responsiveness to Biological Therapy in Psoriasis" Pharmaceutics 15, no. 8: 2024. https://doi.org/10.3390/pharmaceutics15082024
APA StyleKrušič, M., Jezernik, G., & Potočnik, U. (2023). Gene Ontology Analysis Highlights Biological Processes Influencing Responsiveness to Biological Therapy in Psoriasis. Pharmaceutics, 15(8), 2024. https://doi.org/10.3390/pharmaceutics15082024