Development of a Physiologically Based Pharmacokinetic Model for Nitrofurantoin in Rabbits, Rats, and Humans
Abstract
:1. Introduction
2. Methods
2.1. PBPK Model Structure to Describe NFT Kinetics
2.2. Modeling Strategy
2.3. Model Parameterization and Evaluation
3. Results
3.1. Glomerular Filtration Is Insufficient to Describe Rabbit Plasma and Urine NFT Kinetics
3.2. Tubular Secretion and Reabsorption Jointly Explaining Dose-Dependent NFT Kinetics
3.3. Renal Clearance and EHR Successfully Describe NFT Kinetics in Rats and Rabbits
3.4. Extrapolation of PBPK Model from Rats and Rabbits to Humans
3.5. Influence of GFR on Excretion and Build-Up of Systemic NFT Concentration
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bessone, F.; Ferrari, A.; Hernandez, N.; Mendizabal, M.; Ridruejo, E.; Zerega, A.; Tanno, F.; Reggiardo, M.V.; Vorobioff, J.; Tanno, H.; et al. Nitrofurantoin-induced liver injury: Long-term follow-up in two prospective DILI registries. Arch. Toxicol. 2022, 97, 593–602. [Google Scholar] [CrossRef] [PubMed]
- Muller, A.; Verhaegh, E.; Harbarth, S.; Mouton, J.; Huttner, A. Nitrofurantoin’s efficacy and safety as prophylaxis for urinary tract infections: A systematic review of the literature and meta-analysis of controlled trials. Clin. Microbiol. Infect. 2017, 23, 355–362. [Google Scholar] [CrossRef]
- NIH Nitrofurantoin. LiverTox. 2020; pp. 1–19. Available online: https://www.ncbi.nlm.nih.gov/books/NBK548318/ (accessed on 1 December 2022).
- Wijma, R.A.; Huttner, A.; Koch, B.C.P.; Mouton, J.W.; Muller, A.E. Review of the pharmacokinetic properties of nitrofurantoin and nitroxoline. J. Antimicrob. Chemother. 2018, 73, 2916–2926. [Google Scholar] [CrossRef] [PubMed]
- Wonnacott, S.; Gala, D.; Shah, M.; Kaul, D.; Kumar, V. An Unusual Case of Drug-Induced Liver Injury Secondary to Nitrofurantoin Use. Cureus 2022, 14, e26882. [Google Scholar] [CrossRef] [PubMed]
- Luk, T.; Edwards, B.D.; Bates, D.; Evernden, C.; Edwards, J. Nitrofurantoin-induced liver failure. Can. Fam. Physician 2021, 67, 342–344. [Google Scholar] [CrossRef] [PubMed]
- Holmberg, L.; Boman, G.; Böttiger, L.E.; Eriksson, B.; Spross, R.; Wessling, A. Adverse reactions to nitrofurantoin. Am. J. Med. 1980, 69, 733–738. [Google Scholar] [CrossRef]
- Sharp, J.R.; Ishak, K.G.; Zimmerman, H.J. Chronic active hepatitis and severe hepatic necrosis associated with nitrofurantoin. Ann. Intern. Med. 1980, 92, 14–19. [Google Scholar] [CrossRef]
- Appleyard, S.; Saraswati, R.; Gorard, D.A. Autoimmune hepatitis triggered by nitrofurantoin: A case series. J. Med. Case Rep. 2010, 4, 311. [Google Scholar] [CrossRef]
- Hydes, T.; Wright, M.; Jaynes, E.; Nash, K. Nitrofurantoin immune-mediated drug-induced liver injury: A serious complication of a commonly prescribed medication. BMJ Case Rep. 2014, 2014, bcr2013203136. [Google Scholar] [CrossRef]
- Wijaya, L.S.; Rau, C.; Braun, T.S.; Marangoz, S.; Spegg, V.; Vlasveld, M.; Albrecht, W.; Brecklinghaus, T.; Kamp, H.; Beltman, J.B.; et al. Stimulation of de novo glutathione synthesis by nitrofurantoin for enhanced resilience of hepatocytes. Cell Biol. Toxicol. 2022, 38, 847–864. [Google Scholar] [CrossRef]
- Huang, L.; Be, X.; Tchaparian, E.H.; Colletti, A.E.; Roberts, J.; Langley, M.; Ling, Y.; Wong, B.K.; Jin, L. Deletion of Abcg2 has differential effects on excretion and pharmacokinetics of probe substrates in rats. J. Pharmacol. Exp. Ther. 2012, 343, 316–324. [Google Scholar] [CrossRef] [PubMed]
- Kiang, T.K.L.; Ford, J.-A.; Yoshida, E.M.; Partovi, N. Nitrofurantoin-Associated Lung and Liver Toxicity Leading to Liver Transplantation in a Middle-Aged Patient. Can. J. Hosp. Pharm. 2011, 64, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Oplinger, M.; Andrews, C.O. Nitrofurantoin Contraindication in Patients with a Creatinine Clearance Below 60 mL/min: Looking for the Evidence. Ann. Pharmacother. 2013, 47, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Howard, P.; Wood, S. DGI-052 Outcomes with the Use of Nitrofurantoin in Renal Impairment in Primary Care—A Pilot Study. Eur. J. Hosp. Pharm. 2013, 20, A114. [Google Scholar] [CrossRef]
- Geerts, A.F.J.; Eppenga, W.L.; Heerdink, R.; Derijks, H.J.; Wensing, M.J.P.; Egberts, T.C.G.; De Smet, P.A.G.M. Ineffectiveness and adverse events of nitrofurantoin in women with urinary tract infection and renal impairment in primary care. Eur. J. Clin. Pharmacol. 2013, 69, 1701–1707. [Google Scholar] [CrossRef]
- Watari, N.; Aizawa, K.; Kaneniwa, N. Dose- and Time-Dependent Kinetics of the Renal Excretion of Nitrofurantoin in The Rabbit. J. Pharm. Sci. 1985, 74, 165–170. [Google Scholar] [CrossRef]
- Watari, N.; Funaki, T.; Aizawa, K.; Kaneniwa, N. Nonlinear assessment of nitrofurantoin bioavailability in rabbits. J. Pharmacokinet. Biopharm. 1983, 11, 529–545. [Google Scholar] [CrossRef]
- Woodruff, M.W.; Malvin, R.L.; Thompson, I.M. The Renal Transport of Nitrofurantoin. JAMA 1961, 175, 1132–1135. [Google Scholar] [CrossRef]
- Merino, G.; Jonker, J.W.; Wagenaar, E.; van Herwaarden, A.E.; Schinkel, A.H. The breast cancer resistance protein (BCRP/ABCG2) affects pharmacokinetics, hepatobiliary excretion, and milk secretion of the antibiotic nitrofurantoin. Mol. Pharmacol. 2005, 67, 1758–1764. [Google Scholar] [CrossRef]
- Merino, G.; van Herwaarden, A.E.; Wagenaar, E.; Jonker, J.W.; Schinkel, A.H. Sex-dependent expression and activity of the atp-binding cassette transporter breast cancer resistance protein (BCRP/ABCG2) in liver. Mol. Pharmacol. 2005, 67, 1765–1771. [Google Scholar] [CrossRef]
- Kawase, A.; Matsumoto, Y.; Hadano, M.; Ishii, Y.; Iwaki, M. Differential Effects of Chrysin on Nitrofurantoin Pharmacokinetics Mediated by Intestinal Breast Cancer Resistance Protein in Rats and Mice. J. Pharm. Pharm. Sci. 2009, 12, 150–163. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Morris, M.E. Effects of the Flavonoid Chrysin on Nitrofurantoin Pharmacokinetics in Rats: Potential Involvement of ABCG2. Drug Metab. Dispos. 2007, 35, 268–274. [Google Scholar] [CrossRef]
- Berezhkovskiy, L.M. Volume of Distribution at Steady State for a Linear Pharmacokinetic System with Peripheral Elimination. J. Pharm. Sci. 2004, 93, 1628–1640. [Google Scholar] [CrossRef] [PubMed]
- Huh, Y.; Smith, D.E.; Feng, M.R. Interspecies scaling and prediction of human clearance: Comparison of small- and macro-molecule drugs. Xenobiotica 2011, 41, 972–987. [Google Scholar] [CrossRef] [PubMed]
- Deepika, D.; Sharma, R.P.; Schuhmacher, M.; Kumar, V. Risk Assessment of Perfluorooctane Sulfonate (PFOS) using Dynamic Age Dependent Physiologically based Pharmacokinetic Model (PBPK) across Human Lifetime. Environ. Res. 2021, 199, 111287. [Google Scholar] [CrossRef]
- Bois, F.Y.; Maszle, D.R. MCSim: A Monte Carlo Simulation Program. J. Stat. Softw. 1997, 2, 1–60. [Google Scholar] [CrossRef]
- Paul, M.F.; Bender, R.C.; Nohle, E.G. Renal excretion of nitrofurantoin (Furadantin). Am. J. Physiol. Content 1959, 197, 580–584. [Google Scholar] [CrossRef]
- Wagner, D.L.; Nesbitt, J.D.; Conklin, J.D.; Hailey, F.J. Absorption of orally, intraduodenally, and intraileally administered nitrofurantoin in man. Int. J. Pharm. 1989, 57, 177–180. [Google Scholar] [CrossRef]
- Hsieh, N.-H.; Reisfeld, B.; Chiu, W.A. pksensi: An R package to apply global sensitivity analysis in physiologically based kinetic modeling. SoftwareX 2020, 12, 100609. [Google Scholar] [CrossRef]
- Ishizuka, H.; Konno, K.; Shiina, T.; Naganuma, H.; Nishimura, K.; Ito, K.; Suzuki, H.; Sugiyama, Y. Species Differences in the Transport Activity for Organic Anions across the Bile Canalicular Membrane. J. Pharmacol. Exp. Ther. 1999, 290, 1324–1330. [Google Scholar]
- Bräunlich, H.; Bonow, A.; Schröter, S. Age-dependence of renal tubular reabsorption of nitrofurantoin. Arch. Int. Pharmacodyn. Ther. 1978, 232, 92–101. [Google Scholar] [PubMed]
- Wierzba, K.; Wańkowicz, B.; Rogóyski, A.; Prokopczyk, J.; Piekarczyk, A.; Kamińska, E.; Bozkowa, K. Experimental and clinical pharmacokinetics of nitrofurantoin in the early period of life. Padiatr. Padol. 1982, 17, 293–299. [Google Scholar] [PubMed]
- Wijma, R.A.; Fransen, F.; Muller, A.E.; Mouton, J.W. Optimizing dosing of nitrofurantoin from a PK/PD point of view: What do we need to know? Drug Resist. Updates 2019, 43, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Conklin, J.D. The Pharmacokinetics of Nitrofurantoin and its Related Bioavailability. In Antibiotics and Chemotherapy; S.Karger AG: Berlin, Germany, 1978; Volume 25, pp. 233–252. [Google Scholar] [CrossRef]
- Oo, C.Y.; Paxton, E.W.; McNamara, P.J. Active Transport of Nitrofurantoin into Rat Milk. In Bioactive Components of Human Milk; Springer: Boston, MA, USA, 2001; Volume 501, pp. 547–552. [Google Scholar] [CrossRef]
- Adkison, K.K.; Vaidya, S.S.; Lee, D.Y.; Koo, S.H.; Li, L.; Mehta, A.A.; Gross, A.S.; Polli, J.W.; Lou, Y.; Lee, E.J.D. The ABCG2 C421A polymorphism does not affect oral nitrofurantoin pharmacokinetics in healthy Chinese male subjects. Br. J. Clin. Pharmacol. 2008, 66, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Riches, Z.; Abanda, N.; Collier, A.C. BCRP protein levels do not differ regionally in adult human livers, but decline in the elderly. Chem.-Biol. Interact. 2015, 242, 203–210. [Google Scholar] [CrossRef]
- Niemeijer, M.; Wiecek, W.; Huppelschoten, S.; Bouwman, P.; Baze, A.; Parmentier, C.; Richert, L.; Paules, R.S.; Bois, F.Y.; van de Water, B. Transcriptomic mapping of the inter-individual variability of cellular stress response activation in primary human hepatocytes. bioRxiv 2021. [Google Scholar] [CrossRef]
- Heldring, M.M.; Wijaya, L.S.; Niemeijer, M.; Yang, H.; Lakhal, T.; Le Dévédec, S.E.; van de Water, B.; Beltman, J.B. Model-based translation of DNA damage signaling dynamics across cell types. PLoS Comput. Biol. 2022, 18, e1010264. [Google Scholar] [CrossRef]
- Brown, R.P.; Delp, M.D.; Lindstedt, S.L.; Rhomberg, L.R.; Beliles, R.P. Physiological parameter values for physiologically based pharmacokinetic models. Toxicol. Ind. Health 1997, 13, 407–484. [Google Scholar] [CrossRef]
- Campbell, J.L.; Andersen, M.E.; Hinderliter, P.M.; Yi, K.D.; Pastoor, T.P.; Breckenridge, C.B.; Clewel, H.J. PBPK model for atrazine and its chlorotriazine metabolites in rat and human. Toxicol. Sci. 2016, 150, 441–453. [Google Scholar] [CrossRef]
- Davies, B.; Morris, T. Physiological Parameters in Laboratory Animals and Humans. Pharm. Res. 1993, 10, 1093–1095. [Google Scholar] [CrossRef]
- Katayama, R.; Yamaguchi, N.; Yamashita, T.; Watanabe, S.; Satoh, H.; Yamagishi, N.; Furuhama, K. Calculation of glomerular filtration rate in conscious rats by the use of a bolus injection of iodixanol and a single blood sample. J. Pharmacol. Toxicol. Methods 2010, 61, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Michigoshi, Y.; Katayama, R.; Yamagishi, N.; Kato, M.; Saito, J.; Satoh, H.; Furuhama, K. Estimation of glomerular filtration rate in rabbits by a single-sample method using iodixanol. Lab. Anim. 2012, 46, 341–344. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Zou, P.; Fang, Y.; Li, Y. Physiologically based pharmacokinetic model to predict drug concentrations of breast cancer resistance protein substrates in milk. Biopharm. Drug Dispos. 2022, 43, 221–232. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, R.P.; Burgers, E.J.; Beltman, J.B. Development of a Physiologically Based Pharmacokinetic Model for Nitrofurantoin in Rabbits, Rats, and Humans. Pharmaceutics 2023, 15, 2199. https://doi.org/10.3390/pharmaceutics15092199
Sharma RP, Burgers EJ, Beltman JB. Development of a Physiologically Based Pharmacokinetic Model for Nitrofurantoin in Rabbits, Rats, and Humans. Pharmaceutics. 2023; 15(9):2199. https://doi.org/10.3390/pharmaceutics15092199
Chicago/Turabian StyleSharma, Raju Prasad, Elsje J. Burgers, and Joost B. Beltman. 2023. "Development of a Physiologically Based Pharmacokinetic Model for Nitrofurantoin in Rabbits, Rats, and Humans" Pharmaceutics 15, no. 9: 2199. https://doi.org/10.3390/pharmaceutics15092199
APA StyleSharma, R. P., Burgers, E. J., & Beltman, J. B. (2023). Development of a Physiologically Based Pharmacokinetic Model for Nitrofurantoin in Rabbits, Rats, and Humans. Pharmaceutics, 15(9), 2199. https://doi.org/10.3390/pharmaceutics15092199