(-)-5-Demethoxygrandisin B a New Lignan from Virola surinamensis (Rol.) Warb. Leaves: Evaluation of the Leishmanicidal Activity by In Vitro and In Silico Approaches
Abstract
:1. Introduction
2. Materials and Methods
2.1. Botanical Material, Extraction, and Isolation
2.2. Spectroscopy of HRMS and NMR for Structural Characterization, and Optic Rotation Determination
2.3. Ethical Statements and Animals
2.4. Peritoneal Macrophage Isolation and Parasite Cultures
2.5. Cytotoxicity Assay
2.6. Antileishmanial Activity Assay and Selectivity Index
2.7. Nitrite Quantification
2.8. Transmission Electron Microscopy
2.9. Determination of Mitochondrial Membrane Potential (MMP) (ΔΨm)
2.10. Molecular Docking
2.11. Molecular Dynamics
Binding Free-Energy Calculations
2.12. Statistical Analysis
3. Results
3.1. Lignan Structure Elucidation
3.2. Antileishmanial Activity and Cytotoxicity
3.3. Nitrite Quantification in L. amazonensis-Infected Peritoneal Macrophages Treated with (-)-5-Demethoxygrandisin B
3.4. Ultrastructural Changes
3.5. Mitochondrial Membrane Potential (Δψm) by Flow Cytometry
3.6. Molecular Docking
3.7. Molecular Dynamics
3.8. Binding Free-Energy Calculations
3.9. Per-Residue Energy Decomposition
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schultes, R.E. A New Narcotic Snuff from the Northwest Amazon. Bot. Mus. Lealf. Harv. Univ. 1954, 16, 241–260. [Google Scholar] [CrossRef]
- Rodrigues, W.A. Revisão Taxonômica Das Espécies de Virola aublet (Myristicaceae) Do Brasil. Acta. Amaz. 1980, 10, 3–127. [Google Scholar] [CrossRef]
- Ferri, P.H.; Barata, L.E.S. Neolignans and a Phenylpropanoid from Virola Pavonis Leaves. Phytochemistry 1992, 31, 1375–1377. [Google Scholar] [CrossRef]
- Lopes, L.M.X.; Yoshida, M.; Gottlieb, O.R. 1,11-Diarylundecan-1-One and 4-Aryltetralone Neolignans from Virola Sebifera. Phytochemistry 1982, 21, 751–755. [Google Scholar] [CrossRef]
- Lopes, N.P.; dos Santos, P.A.; Kato, M.J.; Yoshida, M. New Butenolides in Plantlets of Virola Surinamensis (Myristicaceae). Chem. Pharm. Bull. 2004, 52, 1255–1257. [Google Scholar] [CrossRef]
- Rye, C.E.; Barker, D. Asymmetric Synthesis and Anti-Protozoal Activity of the 8,4′-Oxyneolignans Virolin, Surinamensin and Analogues. Eur. J. Med. Chem. 2013, 60, 240–248. [Google Scholar] [CrossRef] [PubMed]
- Messiano, G.B.; Santos, R.A.d.S.; Ferreira, L.D.S.; Simões, R.A.; Jabor, V.A.P.; Kato, M.J.; Lopes, N.P.; Pupo, M.T.; de Oliveira, A.R.M. In Vitro Metabolism Study of the Promising Anticancer Agent the Lignan (−)-Grandisin. J. Pharm. Biomed. Anal. 2013, 72, 240–244. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, A.A.V.; Galdino, P.M.; Nascimento, M.V.M.; Kato, M.J.; Valadares, M.C.; Cunha, L.C.; Costa, E.A. Antinociceptive and Antiinflammatory Activities of Grandisin Extracted from Virola surinamensis. Phytother. Res. 2010, 24, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Lopes, N.P.; Kato, M.J.; de Andrade, E.H.A.; Maia, J.G.S.; Yoshida, M.; Planchart, A.R.; Katzin, A.M. Antimalarial Use of Volatile Oil from Leaves of Virola Surinamensis (Rol.) Warb. by Waiãpi Amazon Indians. J. Ethnopharmacol. 1999, 67, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Cabral, M.M.O.; Barbosa-Filho, J.M.; Maia, G.L.A.; Chaves, M.C.O.; Braga, M.V.; De Souza, W.; Soares, R.O.A. Neolignans from Plants in Northeastern Brazil (Lauraceae) with Activity against Trypanosoma Cruzi. Exp. Parasitol. 2010, 124, 319–324. [Google Scholar] [CrossRef]
- Lopes, N.; Chicaro, P.; Kato, M.; Albuquerque, S.; Yoshida, M. Flavonoids and Lignans from Virola surinamensis Twigs and Their In Vitro Activity against Trypanosoma cruzi. Planta Med. 1998, 64, 667–669. [Google Scholar] [CrossRef]
- Lopes, N.P.; de Almeida Blumenthal, E.E.; Cavalheiro, A.J.; Kato, M.J.; Yoshida, M. Lignans, γ-Lactones and Propiophenones of Virola Surinamensis. Phytochemistry 1996, 43, 1089–1092. [Google Scholar] [CrossRef]
- dos Santos Maia, M.; Raimundo e Silva, J.P.; de Lima Nunes, T.A.; Saraiva de Sousa, J.M.; Soares Rodrigues, G.C.; Messias Monteiro, A.F.; Fechine Tavares, J.; da Franca Rodrigues, K.A.B.; Mendonça-Junior, F.J.; Scotti, L.; et al. Virtual Screening and the In Vitro Assessment of the Antileishmanial Activity of Lignans. Molecules 2020, 25, 2281. [Google Scholar] [CrossRef] [PubMed]
- Mann, S.; Frasca, K.; Scherrer, S.; Henao-Martínez, A.F.; Newman, S.; Ramanan, P.; Suarez, J.A. A Review of Leishmaniasis: Current Knowledge and Future Directions. Curr. Trop. Med. Rep. 2021, 8, 121–132. [Google Scholar] [CrossRef] [PubMed]
- WHO. Leishmaniasis. Available online: https://www.who.int/news-room/fact-sheets/detail/leishmaniasis (accessed on 15 March 2023).
- Imran, M.; Khan, S.A.; Abida; Alshrari, A.S.; Eltahir Mudawi, M.M.; Alshammari, M.K.; Harshan, A.A.; Alshammari, N.A. Small Molecules as Kinetoplastid Specific Proteasome Inhibitors for Leishmaniasis: A Patent Review from 1998 to 2021. Expert. Opin. Ther. Pat. 2022, 32, 591–604. [Google Scholar] [CrossRef] [PubMed]
- Battista, T.; Colotti, G.; Ilari, A.; Fiorillo, A. Targeting Trypanothione Reductase, a Key Enzyme in the Redox Trypanosomatid Metabolism, to Develop New Drugs against Leishmaniasis and Trypanosomiases. Molecules 2020, 25, 1924. [Google Scholar] [CrossRef] [PubMed]
- Fiorillo, A.; Colotti, G.; Exertier, C.; Liuzzi, A.; Seghetti, F.; Salerno, A.; Caciolla, J.; Ilari, A. Innovative Approach for a Classic Target: Fragment Screening on Trypanothione Reductase Reveals New Opportunities for Drug Design. Front. Mol. Biosci. 2022, 9, 900882. [Google Scholar] [CrossRef]
- Gomes, P.; Quirós-Guerrero, L.; Muribeca, A.; Reis, J.; Pamplona, S.; Lima, A.; Trindade, M.; Silva, C.; Souza, J.; Boutin, J.; et al. Constituents of Chamaecrista diphylla (L.) Greene Leaves with Potent Antioxidant Capacity: A Feature-Based Molecular Network Dereplication Approach. Pharmaceutics 2021, 13, 681. [Google Scholar] [CrossRef]
- Gomes, P.; Quirós-Guerrero, L.; Silva, C.; Pamplona, S.; Boutin, J.A.; Eberlin, M.; Wolfender, J.-L.; Silva, M. Feature-Based Molecular Network-Guided Dereplication of Natural Bioactive Products from Leaves of Stryphnodendron pulcherrimum (Willd.) Hochr. Metabolites 2021, 11, 281. [Google Scholar] [CrossRef] [PubMed]
- Silva-Silva, J.V.; Moragas-Tellis, C.J.; Chagas, M.D.S.d.S.; de Souza, P.V.R.; Souza, C.d.S.F.d.; Hardoim, D.d.J.; Taniwaki, N.N.; Moreira, D.d.L.; Behrens, M.D.; Calabrese, K.d.S.; et al. Antileishmanial Activity of Flavones-Rich Fraction From Arrabidaea chica Verlot (Bignoniaceae). Front. Pharmacol. 2021, 12, 703985. [Google Scholar] [CrossRef] [PubMed]
- Silva-Silva, J.V.; Moragas-Tellis, C.J.; Chagas, M.S.S.; Souza, P.V.R.; Moreira, D.L.; de Souza, C.S.F.; Teixeira, K.F.; Cenci, A.R.; de Oliveira, A.S.; Almeida-Souza, F.; et al. Carajurin: A Anthocyanidin from Arrabidaea chica as a Potential Biological Marker of Antileishmanial Activity. Biomed. Pharmacother. 2021, 141, 111910. [Google Scholar] [CrossRef] [PubMed]
- Ramos, G.d.C.; Silva-Silva, J.V.; Watanabe, L.A.; de Sousa Siqueira, J.E.; Almeida-Souza, F.; Calabrese, K.S.; do Rosario Marinho, A.M.; Marinho, P.S.B.; de Oliveira, A.S. Phomoxanthone A, Compound of Endophytic Fungi Paecilomyces Sp. and Its Potential Antimicrobial and Antiparasitic. Antibiotics 2022, 11, 1332. [Google Scholar] [CrossRef]
- Pina, J.R.S.; Silva-Silva, J.V.; Carvalho, J.M.; Bitencourt, H.R.; Watanabe, L.A.; Fernandes, J.M.P.; Souza, G.E.d.; Aguiar, A.C.C.; Guido, R.V.C.; Almeida-Souza, F.; et al. Antiprotozoal and Antibacterial Activity of Ravenelin, a Xanthone Isolated from the Endophytic Fungus Exserohilum Rostratum. Molecules 2021, 26, 3339. [Google Scholar] [CrossRef] [PubMed]
- Silva-Silva, J.V.; Moreira, R.F.; Watanabe, L.A.; de Souza, C.D.S.F.; Hardoim, D.J.; Taniwaki, N.N.; Bertho, A.L.; Teixeira, K.F.; Cenci, A.R.; Doring, T.H.; et al. Monomethylsulochrin Isolated from Biomass Extract of Aspergillus Sp. against Leishmania Amazonensis: In Vitro Biological Evaluation and Molecular Docking. Front. Cell. Infect. Microbiol. 2022, 12, 974910. [Google Scholar] [CrossRef]
- Silva-Silva, J.V.; Moragas-Tellis, C.J.; Chagas, M.S.S.; Souza, P.V.R.; Moreira, D.L.; Hardoim, D.J.; Taniwaki, N.N.; Costa, V.F.A.; Bertho, A.L.; Brondani, D.; et al. Carajurin Induces Apoptosis in Leishmania amazonensis Promastigotes through Reactive Oxygen Species Production and Mitochondrial Dysfunction. Pharmaceuticals 2022, 15, 331. [Google Scholar] [CrossRef] [PubMed]
- Jones, G.; Willett, P.; Glen, R.C.; Leach, A.R.; Taylor, R. Development and Validation of a Genetic Algorithm for Flexible Docking 1 1Edited by F. E. Cohen. J. Mol. Biol. 1997, 267, 727–748. [Google Scholar] [CrossRef]
- Baiocco, P.; Colotti, G.; Franceschini, S.; Ilari, A. Molecular Basis of Antimony Treatment in Leishmaniasis. J. Med. Chem. 2009, 52, 2603–2612. [Google Scholar] [CrossRef]
- Lodhi, S.S.; Farmer, R.; Singh, A.K.; Jaiswal, Y.K.; Wadhwa, G. 3D Structure Generation, Virtual Screening and Docking of Human Ras-Associated Binding (Rab3A) Protein Involved in Tumourigenesis. Mol. Biol. Rep. 2014, 41, 3951–3959. [Google Scholar] [CrossRef]
- Ruiz-Santaquiteria, M.; de Castro, S.; Toro, M.A.; de Lucio, H.; Gutiérrez, K.J.; Sánchez-Murcia, P.A.; Jiménez, M.Á.; Gago, F.; Jiménez-Ruiz, A.; Camarasa, M.-J.; et al. Trypanothione Reductase Inhibition and Anti-Leishmanial Activity of All-Hydrocarbon Stapled α-Helical Peptides with Improved Proteolytic Stability. Eur. J. Med. Chem. 2018, 149, 238–247. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef]
- Halgren, T.A. Merck Molecular Force Field. I. Basis, Form, Scope, Parameterization, and Performance of MMFF94. J. Comput. Chem. 1996, 17, 490–519. [Google Scholar] [CrossRef]
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An Advanced Semantic Chemical Editor, Visualization, and Analysis Platform. J. Cheminform. 2012, 4, 17. [Google Scholar] [CrossRef]
- Ilari, A.; Fiorillo, A.; Genovese, I.; Colotti, G. Polyamine-Trypanothione Pathway: An Update. Future Med. Chem. 2017, 9, 61–77. [Google Scholar] [CrossRef]
- Verdonk, M.L.; Cole, J.C.; Hartshorn, M.J.; Murray, C.W.; Taylor, R.D. Improved Protein-Ligand Docking Using GOLD. Proteins 2003, 52, 609–623. [Google Scholar] [CrossRef]
- Stierand, K.; Maaß, P.C.; Rarey, M. Molecular Complexes at a Glance: Automated Generation of Two-Dimensional Complex Diagrams. Bioinformatics 2006, 22, 1710–1716. [Google Scholar] [CrossRef] [PubMed]
- Stierand, K.; Rarey, M. From Modeling to Medicinal Chemistry: Automatic Generation of Two-Dimensional Complex Diagrams. ChemMedChem 2007, 2, 853–860. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Frisch, M.; Trucks, G.; Schlegel, K.; Scuseria, G.; Robb, M.; Cheeseman, J.; Montgomery, J.; Vreven, T.; Kudin, K.-N.; et al. Gaussian 03: Revision C.02; Gaussian Inc.: Pittsburgh, PA, USA, 2003. [Google Scholar]
- Bayly, C.I.; Cieplak, P.; Cornell, W.; Kollman, P.A. A Well-Behaved Electrostatic Potential Based Method Using Charge Restraints for Deriving Atomic Charges: The RESP Model. J. Phys. Chem. 1993, 97, 10269–10280. [Google Scholar] [CrossRef]
- Hariharan, P.C.; Pople, J.A. The Influence of Polarization Functions on Molecular Orbital Hydrogenation Energies. Theor. Chim. Acta 1973, 28, 213–222. [Google Scholar] [CrossRef]
- Li, H.; Robertson, A.D.; Jensen, J.H. Very Fast Empirical Prediction and Rationalization of Protein PKa Values. Proteins 2005, 61, 704–721. [Google Scholar] [CrossRef] [PubMed]
- Salomon-Ferrer, R.; Götz, A.W.; Poole, D.; Le Grand, S.; Walker, R.C. Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 2. Explicit Solvent Particle Mesh Ewald. J. Chem. Theory Comput. 2013, 9, 3878–3888. [Google Scholar] [CrossRef]
- Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and Testing of a General Amber Force Field. J. Comput. Chem. 2004, 25, 1157–1174. [Google Scholar] [CrossRef] [PubMed]
- Hornak, V.; Abel, R.; Okur, A.; Strockbine, B.; Roitberg, A.; Simmerling, C. Comparison of Multiple Amber Force Fields and Development of Improved Protein Backbone Parameters. Proteins 2006, 65, 712–725. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983, 79, 926–935. [Google Scholar] [CrossRef]
- Case, D.A.; Cheatham, T.E.; Darden, T.; Gohlke, H.; Luo, R.; Merz, K.M.; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R.J. The Amber Biomolecular Simulation Programs. J. Comput. Chem. 2005, 26, 1668–1688. [Google Scholar] [CrossRef] [PubMed]
- Loncharich, R.J.; Brooks, B.R.; Pastor, R.W. Langevin Dynamics of Peptides: The Frictional Dependence of Isomerization Rates OfN-Acetylalanyl-N?-Methylamide. Biopolymers 1992, 32, 523–535. [Google Scholar] [CrossRef] [PubMed]
- Darden, T.; York, D.; Pedersen, L. Particle Mesh Ewald: An N⋅log(N) Method for Ewald Sums in Large Systems. J. Chem. Phys. 1993, 98, 10089–10092. [Google Scholar] [CrossRef]
- Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H.J.C. Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes. J. Comput. Phys. 1977, 23, 327–341. [Google Scholar] [CrossRef]
- Verlet, L. Computer “Experiments” on Classical Fluids. II. Equilibrium Correlation Functions. Phys. Rev. 1968, 165, 201–214. [Google Scholar] [CrossRef]
- Roe, D.R.; Cheatham, T.E. PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. J. Chem. Theory Comput. 2013, 9, 3084–3095. [Google Scholar] [CrossRef]
- Kollman, P.A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S.; Chong, L.; Lee, M.; Lee, T.; Duan, Y.; Wang, W.; et al. Calculating Structures and Free Energies of Complex Molecules: Combining Molecular Mechanics and Continuum Models. ACC Chem. Res. 2000, 33, 889–897. [Google Scholar] [CrossRef]
- Massova, I.; Kollman, P.A. Combined Molecular Mechanical and Continuum Solvent Approach (MM-PBSA/GBSA) to Predict Ligand Binding. Perspect. Drug Discov. Des. 2000, 18, 113–135. [Google Scholar] [CrossRef]
- Miller, B.R.; McGee, T.D.; Swails, J.M.; Homeyer, N.; Gohlke, H.; Roitberg, A.E. MMPBSA.Py: An Efficient Program for End-State Free Energy Calculations. J. Chem. Theory Comput. 2012, 8, 3314–3321. [Google Scholar] [CrossRef]
- Raza, S.; Ranaghan, K.E.; van der Kamp, M.W.; Woods, C.J.; Mulholland, A.J.; Azam, S.S. Visualizing Protein–Ligand Binding with Chemical Energy-Wise Decomposition (CHEWD): Application to Ligand Binding in the Kallikrein-8 S1 Site. J. Comput. Aided Mol. Des. 2019, 33, 461–475. [Google Scholar] [CrossRef]
- Barata, L.E.S.; Baker, P.M.; Gottlieb, O.R.; Rùveda, E.A. Neolignans of Virola Surinamensis. Phytochemistry 1978, 17, 783–786. [Google Scholar] [CrossRef]
- Fonseca, S.F. 1945-RMN-13c de Lignanas Da Araucaria Angustifolia, de Neolignanas Ariltetralinicas e Tetraidrofuranicas e de Derivados Da Podofilotoxina. Tese (Doutorado), Universidade Estadual de Campinas, Campinas, Brazil, 1980. [Google Scholar] [CrossRef]
- Karplus, M. Contact Electron-Spin Coupling of Nuclear Magnetic Moments. J. Chem. Phys. 1959, 30, 11–15. [Google Scholar] [CrossRef]
- Kubanek, J.; Hay, M.E.; Brown, P.J.; Lindquist, N.; Fenical, W. Lignoid Chemical Defenses in the Freshwater Macrophyte Saururus Cernuus. Chemoecology 2001, 11, 1–8. [Google Scholar] [CrossRef]
- Kubanek, J.; Fenical, W.; Hay, M.E.; Brown, P.J.; Lindquist, N. Two Antifeedant Lignans from the Freshwater Macrophyte Saururus Cernuus. Phytochemistry 2000, 54, 281–287. [Google Scholar] [CrossRef]
- Hwang, B.Y.; Lee, J.-H.; Nam, J.B.; Hong, Y.-S.; Lee, J.J. Lignans from Saururus Chinensis Inhibiting the Transcription Factor NF-ΚB. Phytochemistry 2003, 64, 765–771. [Google Scholar] [CrossRef] [PubMed]
- Biftu, T.; Hazra, B.G.; Stevenson, R.; Williams, J.R. Syntheses of Lignans from 2,3-Diarolybutanes. J. Chem. Soc. Perkin. Trans. 1 1978, 1147–1150. [Google Scholar] [CrossRef]
- Patel, D.K. Grandisin and Its Therapeutic Potential and Pharmacological Activities: A Review. Pharmacol. Res. Mod. Chin. Med. 2022, 5, 100176. [Google Scholar] [CrossRef]
- Veiga, A.; Albuquerque, K.; Corrêa, M.E.; Brigido, H.; Silva e Silva, J.; Campos, M.; Silveira, F.; Santos, L.; Dolabela, M. Leishmania Amazonensis and Leishmania Chagasi: In Vitro Leishmanicide Activity of Virola Surinamensis (Rol.) Warb. Exp. Parasitol. 2017, 175, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Gervazoni, L.F.O.; Barcellos, G.B.; Ferreira-Paes, T.; Almeida-Amaral, E.E. Use of Natural Products in Leishmaniasis Chemotherapy: An Overview. Front. Chem. 2020, 8, 579891. [Google Scholar] [CrossRef]
- Conrado, G.G.; Grazzia, N.; de Oliveira, A.d.S.S.; Franco, C.H.; Moraes, C.B.; Gadelha, F.R.; Miguel, D.C.; Garcia, V.L. Prospecting and Identifying Phyllanthus Amarus Lignans with Antileishmanial and Antitrypanosomal Activity. Planta Med. 2020, 86, 782–789. [Google Scholar] [CrossRef]
- Lukeš, J.; Hashimi, H.; Zíková, A. Unexplained Complexity of the Mitochondrial Genome and Transcriptome in Kinetoplastid Flagellates. Curr. Genet. 2005, 48, 277–299. [Google Scholar] [CrossRef] [PubMed]
- Menna-Barreto, R.F.S.; de Castro, S.L. The Double-Edged Sword in Pathogenic Trypanosomatids: The Pivotal Role of Mitochondria in Oxidative Stress and Bioenergetics. Biomed. Res. Int. 2014, 2014, 614014. [Google Scholar] [CrossRef] [PubMed]
- Rottini, M.M.; Amaral, A.C.F.; Ferreira, J.L.P.; de Andrade Silva, J.R.; Taniwaki, N.N.; da Silva Freitas de Souza, C.; d’Escoffier, L.N.; Almeida-Souza, F.; de Jesus Hardoim, D.; da Costa, S.C.G.; et al. In Vitro Evaluation of (-)α-Bisabolol as a Promising Agent against Leishmania Amazonensis. Exp. Parasitol. 2015, 148, 66–72. [Google Scholar] [CrossRef] [PubMed]
- de Medeiros, M.d.G.F.; da Silva, A.C.; Citó, A.M. das G.L.; Borges, A.R.; de Lima, S.G.; Lopes, J.A.D.; Figueiredo, R.C.B.Q. In Vitro Antileishmanial Activity and Cytotoxicity of Essential Oil from Lippia sidoides Cham. Parasitol. Int. 2011, 60, 237–241. [Google Scholar] [CrossRef]
- Teixeira de Macedo Silva, S.; Visbal, G.; Lima Prado Godinho, J.; Urbina, J.A.; de Souza, W.; Cola Fernandes Rodrigues, J. In Vitro Antileishmanial Activity of Ravuconazole, a Triazole Antifungal Drug, as a Potential Treatment for Leishmaniasis. J. Antimicrob. Chemother. 2018, 73, 2360–2373. [Google Scholar] [CrossRef]
- Inacio, J.D.F.; Fonseca, M.S.; Limaverde-Sousa, G.; Tomas, A.M.; Castro, H.; Almeida-Amaral, E.E. Epigallocathechin-O-3-Gallate Inhibits Trypanothione reductase of Leishmania infantum, Causing Alterations in Redox Balance and Leading to Parasite Death. Front. Cell. Infect. Microbiol. 2021, 11, 640561. [Google Scholar] [CrossRef] [PubMed]
- Tonelli, M.; Sparatore, A.; Basilico, N.; Cavicchini, L.; Parapini, S.; Tasso, B.; Laurini, E.; Pricl, S.; Boido, V.; Sparatore, F. Quinolizidine-Derived Lucanthone and Amitriptyline Analogues Endowed with Potent Antileishmanial Activity. Pharmaceuticals 2020, 13, 339. [Google Scholar] [CrossRef]
- Kuldeep, J.R.; Karthik, R.; Kaur, P.; Goyal, N.; Siddiqi, M.I. Identification of Potential Anti-Leishmanial Agents Using Computational Investigation and Biological Evaluation against Trypanothione reductase. J. Biomol. Struct. Dyn. 2021, 39, 960–969. [Google Scholar] [CrossRef]
- De Oliveira, R.B.; Vaz, A.B.; Alves, R.O.; Liarte, D.B.; Donnici, C.L.; Romanha, A.J.; Zani, C.L. Arylfurans as Potential Trypanosoma Cruzi Trypanothione Reductase Inhibitors. Mem. Inst. Oswaldo Cruz. 2006, 101, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Colotti, G.; Baiocco, P.; Fiorillo, A.; Boffi, A.; Poser, E.; Di Chiaro, F.; Ilari, A. Structural Insights into the Enzymes of the Trypanothione Pathway: Targets for Antileishmaniasis Drugs. Future Med. Chem. 2013, 5, 1861–1875. [Google Scholar] [CrossRef] [PubMed]
- Souza, A.; Cardoso, F.; Martins, L.; Alves, C.; Silva, J.; Molfetta, F. Molecular Modelling Study of Heteroarylamide/Sulfonamide Compounds with Antitrypanosomal Activity. J. Braz. Chem. Soc 2021, 32, 83–97. [Google Scholar] [CrossRef]
- Vargas, J.A.R.; Lopez, A.G.; Piñol, M.C.; Froeyen, M. Molecular Docking Study on the Interaction between 2-Substituted-4,5-Difuryl Imidazoles with Different Protein Target for Antileishmanial Activity. J. App. Pharm. Sci. 2018, 8, 14–22. [Google Scholar] [CrossRef]
- da Silva, A.D.; dos Santos, J.A.; Machado, P.A.; Alves, L.A.; Laque, L.C.; de Souza, V.C.; Coimbra, E.S.; Capriles, P.V.S.Z. Insights about Resveratrol Analogs against Trypanothione Reductase of Leishmania braziliensis: Molecular Modeling, Computational Docking and In Vitro Antileishmanial Studies. J. Biomol. Struct. Dyn. 2019, 37, 2960–2969. [Google Scholar] [CrossRef]
- Feitosa, A.O.; Ferreira, F.J.N.; Brigido, H.P.C.; Bastos, M.L.C.; Carvalho, J.M.; Carneiro, A.S.; Dolabela, M.F.; Marinho, P.S.B.; Marinho, A.M.R. Study on Experimental Leishmanicidal Activity and In Silico of Cytochalasin B. J. Braz. Chem. Soc. 2019, 30, 592–596. [Google Scholar] [CrossRef]
No. | δ1H in ppm (CDCl3) (400 MHz) | δC in ppm (100 MHz) | HMBC |
---|---|---|---|
1 | - | 137.46 | - |
2 | 6.63 (s) | 103.14 | 88.47 (3J) |
3 | - | 153.27 | - |
4 | - | 138.12 | - |
5 | - | 153.27 | - |
6 | 6.63 (s) | 103.14 | 153.27 (2J) 138.12 (3J) 137.87 (3J) |
7 | 4.65 (d, 4.5 Hz) | 88.35 | - |
8 | 1.80–1.78 (m) | 51.06 | 88.35 (2J) |
9 | 1.09 (d, 6.0 Hz) | 14.07/13.83 | - |
1′ | - | 134.86 | - |
2′ | 6.96 (d, 1.8 Hz) | 109.27 | 148.55 (2J) |
3′ | - | 148.60 | - |
4′ | - | 149.14 | - |
5′ | 6.85 (d, 8.1 Hz) | 110.97 | 134.86 (3J) |
6′ | 6.92 dd (1.8 and 8.1 Hz) | 118.61 | 109.27 (3J) |
7′ | 4.63 (d, 4.5 Hz) | 88.47 | - |
8′ | 1.80–1.78 (m) | 50.97 | 88.35 (2J) |
9′ | 1.06 (d, 6.0 Hz) | 14.07/13.83 | 88.47 (3J) |
OMe-3/5 | 3.88 (s) | 56.18 | 153.27 (2J) |
OMe-4 | 3.83 (s) | 60.83 | 138.12 (2J) |
OMe-3′ | 3.87 (s) | 55.95 | 148.60 (2J) |
OMe-4′ | 3.91 (s) | 55.95 | 149.14 (2J) |
Compounds | Cytotoxicity | L. amazonensis | |||
---|---|---|---|---|---|
CC50 (µM) | Promastigote | Intracellular Amastigote | |||
IC50 (µM) | SIpro | IC50 (µM) | SIama | ||
(-)-5-demethoxygrandisin B | 193.37 | 7.0 | 26.6 | 26.04 | 7.4 |
Amphotericin B | 8.82 µM | 0.02226 | 396.1 | 0.1898 | 46.5 |
MMGBSA | MMPBSA | ||
---|---|---|---|
Contribution | TryR-(-)-5-Demethoxygrandisin B (kcal/mol) | Contribution | TryR-(-)-5-Demethoxygrandisin B (kcal/mol) |
ΔEvdw | −45.57 (2.33) | ΔEvdw | −45.57 (2.33) |
ΔEele | −5.10 (2.70) | ΔEele | −5.10 (2.70) |
ΔEGB | 26.00 (3.17) | ΔEPB | 29.95 (3.87) |
ΔEn-polar, GB | −5.74 (0.25) | ΔEn-polar, PB | −6.94 (0.24) |
ΔGsolv, GB | 20.26 (3.08) | ΔGsolv, PB | 23.01 (3.83) |
ΔGbind, GB | −30.41 (2.79) | ΔGbind, PB | −27.66 (3.55) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paes, S.S.; Silva-Silva, J.V.; Portal Gomes, P.W.; Silva, L.O.d.; Costa, A.P.L.d.; Lopes Júnior, M.L.; Hardoim, D.d.J.; Moragas-Tellis, C.J.; Taniwaki, N.N.; Bertho, A.L.; et al. (-)-5-Demethoxygrandisin B a New Lignan from Virola surinamensis (Rol.) Warb. Leaves: Evaluation of the Leishmanicidal Activity by In Vitro and In Silico Approaches. Pharmaceutics 2023, 15, 2292. https://doi.org/10.3390/pharmaceutics15092292
Paes SS, Silva-Silva JV, Portal Gomes PW, Silva LOd, Costa APLd, Lopes Júnior ML, Hardoim DdJ, Moragas-Tellis CJ, Taniwaki NN, Bertho AL, et al. (-)-5-Demethoxygrandisin B a New Lignan from Virola surinamensis (Rol.) Warb. Leaves: Evaluation of the Leishmanicidal Activity by In Vitro and In Silico Approaches. Pharmaceutics. 2023; 15(9):2292. https://doi.org/10.3390/pharmaceutics15092292
Chicago/Turabian StylePaes, Steven Souza, João Victor Silva-Silva, Paulo Wender Portal Gomes, Luely Oliveira da Silva, Ana Paula Lima da Costa, Manoel Leão Lopes Júnior, Daiana de Jesus Hardoim, Carla J. Moragas-Tellis, Noemi Nosomi Taniwaki, Alvaro Luiz Bertho, and et al. 2023. "(-)-5-Demethoxygrandisin B a New Lignan from Virola surinamensis (Rol.) Warb. Leaves: Evaluation of the Leishmanicidal Activity by In Vitro and In Silico Approaches" Pharmaceutics 15, no. 9: 2292. https://doi.org/10.3390/pharmaceutics15092292
APA StylePaes, S. S., Silva-Silva, J. V., Portal Gomes, P. W., Silva, L. O. d., Costa, A. P. L. d., Lopes Júnior, M. L., Hardoim, D. d. J., Moragas-Tellis, C. J., Taniwaki, N. N., Bertho, A. L., Molfetta, F. A. d., Almeida-Souza, F., Santos, L. S., & Calabrese, K. d. S. (2023). (-)-5-Demethoxygrandisin B a New Lignan from Virola surinamensis (Rol.) Warb. Leaves: Evaluation of the Leishmanicidal Activity by In Vitro and In Silico Approaches. Pharmaceutics, 15(9), 2292. https://doi.org/10.3390/pharmaceutics15092292