Enhancing Cancer Treatment Through Combined Approaches: Photodynamic Therapy in Concert with Other Modalities
Abstract
:1. Introduction
2. PDT in Lung Cancer and Combination Therapies
2.1. PDT with Chemotherapy in Lung Cancer
2.2. PDT with Surgery in Lung Cancer
2.3. PDT with Radiotherapy in Lung Cancer
Combined Therapy | Photosensitizer | Dose | Light Source | Study Type | Ref. | |
---|---|---|---|---|---|---|
Chemotherapy | doxorubicin (2.5 mg/kg) | [(methyl-3-(1-meta-iodo-benzyloxy) ethyl-3-devinylpyropheophorbide-a] | 1 μM/kg | 665 nm (135 J/cm2) | in vitro, in vivo | [16] |
cisplatin (5 mg/kg) | EtNBS-COOH | 2 μM in 200 μL | 630–650 nm (15 J/cm2) | in vivo | [14] | |
paclitaxel (200 mg/m2), carboplatin (AUC < 6) | Radachlorin® | 1 mg/kg | 662 nm (150 J/cm2) | clinical | [8] | |
Surgery | preoperative PDT | HpD | 2.5–3.0 mg/kg | 630 nm (60–600 J/cm2) | clinical | [22] |
Photofrin® | 2.0 mg/kg | 630 nm (100–800 J/cm2) | clinical | [23] | ||
Photofrin® | 2 mg/kg | 630 nm (200 J/cm2) | clinical | [24] | ||
intraoperative PDT | porfimer sodium | 2 mg/kg | 630 nm (30 J/cm2) | clinical | [27] | |
Photofrin® | - | 630 nm (30 J/cm2) | clinical | [32] | ||
Photofrin® | 2 mg/kg | 630 nm (120 J/cm2) | clinical | [33] | ||
Radiotherapy | iridium-192 (5 Gy) | Photofrin® | 2 mg/kg | 630 nm (200 J/cm2) | clinical | [36] |
X-ray (5 Gy) | MC540-SAO:Eu@mSiO2 | 50 µg/mL, 4.25 mg/kg | in vitro, in vivo | [39] |
3. PDT in Breast Cancer and Combination Therapies
3.1. PDT with Chemotherapy in Breast Cancer
3.2. PDT with Surgery in Breast Cancer
3.3. PDT with Radiotherapy in Breast Cancer
Combined Therapy | Photosensitizer | Dose | Light Source | Study Type | Ref. | |
---|---|---|---|---|---|---|
Chemotherapy | cisplatin (8 μM) | ICG | 20 μM | 805 nm (25 J/cm2) | in vitro | [47] |
doxorubicin (9.925 μM) | 5-ALA | 0.55 mM | 633 nm (0.25 W) | in vitro | [48] | |
doxorubicin (0.5 µM) | sulfonated zinc phthalocyanine (ZnPcS) | 0.25 µM | 681.5 nm (5 J/cm2) | in vitro | [53] | |
doxorubicin (0.5 μg/mL) | methylene blue | 15 μg/mL | 660 nm (3 J/cm2) | in vitro | [54] | |
cisplatin (3 mg/kg) | Photolon® | 2.5 mg/kg | 660 nm (80 J/cm2) | in vivo | [55] | |
capecitabine (600 mg/kg/day) | 5-ALA | 200 mg/kg | 633 nm (100 J/cm2) | in vivo | [56] | |
Surgery | laser ablation followed by PDT | methylene blue nanocomplex | 10.05 mg/mL | 655 nm (0.2 J/cm2) | in vivo | [66] |
mastectomy after PDT | verteporfin | 0.4 mg/kg | 690 nm (20, 30, 40, 50 J/cm2) | clinical | [67] | |
Radiotherapy | X-ray (4 Gy) | ICG | 50 µM | 730 nm (60 J/cm2) | in vitro | [68] |
X-ray (4 Gy) | mitoxantrone | 1 µM | 660 ±10 nm (10 J/cm2) | in vitro | [72] | |
X-ray (2 Gy) | Radachlorin® | 2.5 μg/mL | 660 nm (12 J/cm2) | in vitro | [73] | |
X-ray (2 Gy) | gallium phthalocyanine chloride (GaPcCl) | 100 μg/mL | 660 nm (2.8 J/cm2) | in vitro | [74] | |
X-ray (5 Gy) | pH-low insertion peptide (pHLIP) conjugated copper-cysteamine (Cu-Cy) nanoparticles | 16 μg | - | in vivo | [76] |
4. PDT in Cholangiocarcinoma and Combination Therapies
4.1. PDT with Chemotherapy in Cholangiocarcinoma
4.2. PDT with Surgery in Cholangiocarcinoma
4.2.1. PDT with Resection in Cholangiocarcinoma
4.2.2. PDT with Stent in Unresectable Cholangiocarcinoma
Combined Therapy | Photosensitizer | Dose | Light Source | Study Type | Ref. | |
---|---|---|---|---|---|---|
Chemotherapy | oxaliplatin (10 mg/kg), gemcitabine (50 mg/kg) | Laserphyrin® | 5 mg/kg | 664 ± 2 nm (60 J/cm2) | in vitro in vivo | [94] |
gemcitabine, ± cisplatin | porfimer sodium | 2 mg/kg | - | clinical | [97] | |
S-1 | - | - | - | clinical | [98] | |
gemcitabine, platinum | Photofrin II® | 2 mg/kg | 630 nm (180 J/cm2) | clinical | [99] | |
- | Photosan® Photofrin® Foscan® | 1.5–2.5 mg/kg, 2 mg/kg, 0.04 mg/kg | clinical | [100] | ||
Surgery | resection | Photofrin® | 2 mg/kg | 630 nm (242 ± 20 J/cm2) | clinical | [112] |
resection | Photofrin® | 2 mg/kg | 630 nm (50–100 J/cm2) | clinical | [89] | |
stent | Photofrin® | 2 mg/kg | 633 ± 3 nm (180 J/cm2) | clinical | [107] | |
stent | Photofrin® | 2 mg/kg | 630 nm laser (180 J/cm2) | clinical | [113] | |
stent | Photofrin II® | 2 mg/kg | 633 ± 3 nm (180–200 J/cm2) | clinical | [119] | |
stent | hematoporphyrin | 2 mg/kg | 630 nm (250 J/cm2) | clinical | [120] |
5. PDT in Cervical Cancer and Combination Therapies
5.1. PDT with Chemotherapy in Cervical Cancer
5.2. PDT with Surgery in Cervical Cancer
5.2.1. PDT with LEEP in Cervical Cancer
5.2.2. PDT with Hysterectomy in Cervical Cancer
Combined Therapy | Photosensitizer | Dose | Light Source | Study Type | Ref. | |
---|---|---|---|---|---|---|
Chemotherapy | cisplatin (0.1~20 mg/L) | 5-ALA | 0.1~4 mM/L | 635 nm (5 J/cm2) | in vitro | [154] |
carboplatin (0–1000 µM) | Photofrin® | 20 µM | 630 nm (0–3300 mJ/1.32 cm2) | in vitro | [158] | |
cisplatin (1.3–166 µM) | Photogem®, Methylene blue | 5 mg/mL 10 mg/mL | [PG-PDT] 630 nm (1.39 or 2.76 J/cm2) [MB-PDT] 660 nm (1.29, 2.56, 5.11 or 12.9 J/cm2) | in vitro | [161] | |
cisplatin (1.3 μM) | Photogem®, Methylene blue | 0.5 μM 19.5 μM | [PG-PDT] 630 nm (2.76 J/cm2) [MB-PDT] 660 nm (5.11 J/cm2) | in vitro | [162] | |
carboplatin (75 mg/m2) | Photogem®, Photofrin® | 2.5 mg/kg, 2 mg/kg | (240 J/cm2, exocervix) (250 J/cm, endocervix) | clinical | [155] | |
Surgery | LEEP, conization | Photogem® | 2 mg/kg | 630 nm (150 J/cm2, cervix) (200 J/cm2, endocervical canal) | clinical | [184] |
LEEP, conization | Photogem® | 2 mg/kg | 630 nm | clinical | [188] | |
LEEP | 5-ALA | 20% solution | 635 nm (80 mw/cm2) | clinical | [172] | |
LEEP, conization | 5-ALA | 20% solution | 632.8 nm (100 J/cm2) | clinical | [170] | |
hysterectomy | 5-ALA | 20% solution | 635 nm (100 J/cm2) | clinical | [189] | |
hysterectomy | 5-ALA | 20% solution | 635 nm (80 J/cm2) | clinical | [190] |
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
5-ALA | 5-aminolevulinic acid |
ASCUS | atypical squamous cells of undetermined significance |
BCS | breast-conserving surgery |
BDC | bile duct carcinoma |
BSA | bovine serum albumin |
BW | body weight |
CCPDT | concurrent chemo-photodynamic therapy |
CDDP | cis-diamminedichloroplatinum |
CICD | caspase-independent cell death |
CIN | cervical intraepithelial neoplasia |
CKC | cold knife conization |
CPBN | capecitabine |
CR | complete response |
Cu-Cy | copper-cysteamine |
DOX | doxorubicin |
EPR | enhanced permeability and retention |
ERCP | endoscopic retrograde cholangiopancreatography |
FDA | Food and Drug Administration |
FIGO | International Federation of Gynecology and Obstetrics |
GaPcCl | gallium phthalocyanine chloride |
HDR | high dose rate |
HDRILBT | high dose rate intraluminal brachytherapy |
HG VAIN | high-grade vaginal intraepithelial lesions |
HpD | hematoporphyrin derivative |
hr-HPV | high-risk human papillomavirus |
HSIL | high-grade squamous intraepithelial lesions |
ICG | indocyanine green |
LCT | liquid-based cervical cytology |
LDH | lactate dehydrogenase |
LEEP | loop electrosurgical excision procedure |
LSIL | low-grade squamous intraepithelial lesion |
MB | methylene blue |
MB-DOX | doxorubicin-methylene blue |
MT | mitoxantrone |
nanoMB | biocompatible nanocomplex formulation of methylene blue |
NCC | nonresectable cholangiocarcinoma |
NOZ | bile duct carcinoma cell line |
NSCLC | non-small cell lung carcinoma |
PCNA LI | proliferating cell nuclear antigen labeling index |
PDT | photodynamic therapy |
PDX | patient-derived xenograft |
PG | photogem |
pHLIP | pH-low insertion peptide |
PpIX | protoporphyrin IX |
PS | photosensitizer |
PTCS | percutaneous transhepatic choledochoscopy |
PVIA | percentage of the VEGF-immunopositive area |
QOL | quality of life |
RCI | Reid colposcopic index |
ROS | reactive oxygen species |
S-1 | oral fluoropyrimidine prodrug that contains tegafur, 5-chloro-2,4-dihydroxypyridine (CDHP), and potassium oxonate (Oxo) |
SCLC | small cell lung carcinoma |
TBARS | thiobarbituric acid reactive substance |
TCT | thinprep cytologic test |
TPS | talaporfin sodium |
UHC | unresectable hilar cholangiocarcinoma |
X-PDT | X-ray induced photodynamic therapy |
ZnPcS-PDT | sulfonated zinc phthalocyanine-mediated photodynamic therapy |
References
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer Statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.Y.; Chang, J.-E. Targeted Therapy for Cancers: From Ongoing Clinical Trials to FDA-Approved Drugs. Int. J. Mol. Sci. 2023, 24, 13618. [Google Scholar] [CrossRef] [PubMed]
- Rhew, K.; Chae, Y.-J.; Chang, J.-E. Progress and Recent Trends in Photodynamic Therapy with Nanoparticles. J. Pharm. Investig. 2022, 52, 587–599. [Google Scholar] [CrossRef]
- Kim, T.E.; Chang, J.-E. Recent Studies in Photodynamic Therapy for Cancer Treatment: From Basic Research to Clinical Trials. Pharmaceutics 2023, 15, 2257. [Google Scholar] [CrossRef]
- Kim, J.; Kim, J.; Yoon, H.; Chae, Y.; Rhew, K.; Chang, J.-E. The In Vitro and In Vivo Anticancer Effect of Photomed for Photodynamic Therapy: Comparison with Photofrin and Radachlorin. Curr. Issues Mol. Biol. 2023, 45, 2474–2490. [Google Scholar] [CrossRef]
- Gunaydin, G.; Gedik, M.E.; Ayan, S. Photodynamic Therapy for the Treatment and Diagnosis of Cancer–A Review of the Current Clinical Status. Front. Chem. 2021, 9, 686303. [Google Scholar] [CrossRef]
- Chou, T.C. Theoretical Basis, Experimental Design, and Computerized Simulation of Synergism and Antagonism in Drug Combination Studies. Pharmacol. Rev. 2006, 58, 621–681. [Google Scholar] [CrossRef]
- Akopov, A.; Rusanov, A.; Gerasin, A.; Kazakov, N.; Urtenova, M.; Chistyakov, I. Preoperative Endobronchial Photodynamic Therapy Improves Resectability in Initially Irresectable (Inoperable) Locally Advanced Non Small Cell Lung Cancer. Photodiagnosis. Photodyn. Ther. 2014, 11, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Riquet, M.; Achour, K.; Foucault, C.; Le Pimpec Barthes, F.; Dujon, A.; Cazes, A. Microscopic Residual Disease After Resection for Lung Cancer: A Multifaceted but Poor Factor of Prognosis. Ann. Thorac. Surg. 2010, 89, 870–875. [Google Scholar] [CrossRef]
- Raz, D.J.; He, B.; Rosell, R.; Jablons, D.M. Bronchioloalveolar Carcinoma: A Review. Clin. Lung Cancer 2006, 7, 313–322. [Google Scholar] [CrossRef]
- Hayata, Y.; Kato, H.; Konaka, C.; Ono, J.; Takizawa, N. Hematoporphyrin Derivative and Laser Photoradiation in the Treatment of Lung Cancer. Chest 1982, 81, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Hopwood, P.; Stephens, R.J. Symptoms at Presentation for Treatment in Patients with Lung Cancer: Implications for the Evaluation of Palliative Treatment. Br. J. Cancer 1995, 71, 633–636. [Google Scholar] [CrossRef] [PubMed]
- Simone, C.B.; Friedberg, J.S.; Glatstein, E.; Stevenson, J.P.; Sterman, D.H.; Hahn, S.M.; Cengel, K.A. Photodynamic Therapy for the Treatment of Non-Small Cell Lung Cancer. J. Thorac. Dis. 2012, 4, 63–75. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.S.; Peng, Y.B.; Yao, M.; Teng, J.P.; Ni, D.; Zhu, Z.J.; Zhuang, B.F.; Yang, Z.Y. Cisplatin and Photodynamic Therapy Exert Synergistic Inhibitory Effects on Small-Cell Lung Cancer Cell Viability and Xenograft Tumor Growth. Biochem. Biophys. Res. Commun. 2017, 487, 567–572. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Sadée, W. Membrane Transporters and Channels in Chemoresistance and -Sensitivity of Tumor Cells. Cancer Lett. 2006, 239, 168–182. [Google Scholar] [CrossRef] [PubMed]
- Cacaccio, J.C.; Durrani, F.A.; Missert, J.R.; Pandey, R.K. Photodynamic Therapy in Combination with Doxorubicin Is Superior to Monotherapy for the Treatment of Lung Cancer. Biomedicines 2022, 10, 857. [Google Scholar] [CrossRef] [PubMed]
- Chan, B.A.; Coward, J.I.G. Chemotherapy Advances in Small-Cell Lung Cancer. J. Thorac. Dis. 2013, 5, S565. [Google Scholar] [CrossRef] [PubMed]
- Depierre, A.; Milleron, B.; Moro-Sibilot, D.; Chevret, S.; Quoix, E.; Lebeau, B.; Braun, D.; Breton, J.-L.; Lemarie, E.; Gouva, S.; et al. Preoperative Chemotherapy Followed by Surgery Compared with Primary Surgery in Resectable Stage I (Except T1N0), II, and IIIa Non–Small-Cell Lung Cancer. J. Clin. Oncol. 2002, 20, 247–253. [Google Scholar] [CrossRef]
- Burdett, S.; Stewart, L.A.; Rydzewska, L. A Systematic Review and Meta-Analysis of the Literature: Chemotherapy and Surgery versus Surgery Alone in Non-Small Cell Lung Cancer. J. Thorac. Oncol. 2006, 1, 611–621. [Google Scholar] [CrossRef]
- Rosell, R.; Gó Mez-Codina, J.; Camps, C.; Sánchez, J.J.; Maestre, J.; Padilla, J.; Cantó, A.; Abad, A.; Roig, J. Preresectional Chemotherapy in Stage IIIA Non-Small-Cell Lung Cancer: A 7-Year Assessment of a Randomized Controlled Trial. Lung Cancer 1999, 47, 7–14. [Google Scholar] [CrossRef]
- Roth, J.A.; Neely Atkinson, E.; Fossella, F.; Komaki, R.; Bernadette Ryan, M.; Putnam Jr, J.; Soo Lee, J.; Dhingra, H.; De Caro, L.; Chasen, M.; et al. Long-Term Follow-up of Patients Enrolled in a Randomized Trial Comparing Perioperative Chemotherapy and Surgery with Surgery Alone in Resectable Stage IIIA Non-Small-Cell Lung Cancer. Lung Cancer 1998, 21, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Kato, H.; Konaka, C.; Ono, J.; Kawate, N.; Nishimiya, K.; Shinohara, H.; Saito, M.; Sakai, H.; Noguchi, M.; Kito, T.; et al. Preoperative Laser Photodynamic Therapy in Combination with Operation in Lung Cancer. J. Thorac. Cardiovasc. Surg. 1985, 90, 420–429. [Google Scholar] [CrossRef] [PubMed]
- Okunaka, T.; Hiyoshi, T.; Furukawa, K.; Yamamoto, H.; Tsuchida, T.; Usuda, J.; Kumasaka, H.; Ishida, J.; Konaka, C.; Kato, H. Lung Cancers Treated with Photodynamic Therapy and Surgery. Diagn. Ther. Endosc. 1999, 5, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Allison, R.R.; Bansal, S. Photodynamic Therapy for Peripheral Lung Cancer. Photodiagn. Photodyn. Ther. 2022, 38, 102825. [Google Scholar] [CrossRef] [PubMed]
- Freitag, L.; Ernst, A.; Thomas, M.; Prenzel, R.; Wahlers, B.; Macha, H.N. Sequential Photodynamic Therapy (PDT) and High Dose Brachytherapy for Endobronchial Tumour Control in Patients with Limited Bronchogenic Carcinoma. Thorax 2004, 59, 790–793. [Google Scholar] [CrossRef] [PubMed]
- Lim, E.; Clough, R.; Goldstraw, P.; Edmonds, L.; Aokage, K.; Yoshida, J.; Nagai, K.; Shintani, Y.; Ohta, M.; Okumura, M.; et al. Impact of Positive Pleural Lavage Cytology on Survival in Patients Having Lung Resection for Non-Small-Cell Lung Cancer: An International Individual Patient Data Meta-Analysis. J. Thorac. Cardiovasc. Surg. 2010, 139, 1441–1446. [Google Scholar] [CrossRef] [PubMed]
- Friedberg, J.S.; Mick, R.; Stevenson, J.P.; Zhu, T.; Busch, T.M.; Shin, D.; Smith, D.; Culligan, M.; Dimofte, A.; Glatstein, E.; et al. Phase II Trial of Pleural Photodynamic Therapy and Surgery for Patients with Non-Small-Cell Lung Cancer with Pleural Spread. J. Clin. Oncol. 2004, 22, 2192–2201. [Google Scholar] [CrossRef]
- Reyes, L.; Parvez, Z.; Regal, A.M.; Takita, H. Neoadjuvant Chemotherapy and Operations in the Treatment of Lung Cancer with Pleural Effusion. J. Thorac. Cardiovasc. Surg. 1991, 101, 946–947. [Google Scholar] [CrossRef]
- Martini, N.; Bains, M.S.; Beattie, E.J. Indications for Pleurectomy in Malignant Effusion. Cancer 1975, 35, 734–738. [Google Scholar] [CrossRef]
- Werner-Wasik, M.; Scott, C.; Cox, J.D.; Sause, W.T.; Byhardt, R.W.; Asbell, S.; Russell, A.; Komaki, R.; Lee, J.S. Recursive Partitioning Analysis of 1999 Radiation Therapy Oncology Group (RTOG) Patients with Locally-Advanced Non-Small-Cell Lung Cancer (LA-NSCLC): Identification of Five Groups with Different Survival. Int. J. Radiat. Oncol. 2000, 48, 1475–1482. [Google Scholar] [CrossRef] [PubMed]
- Furuse, K.; Fukuoka, M.; Kawahara, M.; Nishikawa, H.; Takada, Y.; Kudoh, S.; Katagami, N.; Ariyoshi, Y. Phase III Study of Concurrent versus Sequential Thoracic Radiotherapy in Combination with Mitomycin, Vindesine, and Cisplatin in Unresectable Stage III Non-Small-Cell Lung Cancer. J. Clin. Oncol. 1999, 17, 2692–2699. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.C.; Hsieh, Y.S.; Tseng, Y.F.; Shieh, M.J.; Chen, J.S.; Lai, H.S.; Lee, J.M. Pleural Photodynamic Therapy and Surgery in Lung Cancer and Thymoma Patients with Pleural Spread. PLoS ONE 2015, 10, e0133230. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.S.; Kim, H.J. Definitive Surgery and Intraoperative Photodynamic Therapy for Locally Advanced Non-Small Cell Lung Cancer: A Case Report. World J. Surg. Oncol. 2022, 20, 265. [Google Scholar] [CrossRef]
- Vinod, S.K.; Hau, E. Radiotherapy Treatment for Lung Cancer: Current Status and Future Directions. Respirology 2020, 25, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Delaney, G.P.; Barton, M.B. Evidence-Based Estimates of the Demand for Radiotherapy. Clin. Oncol. 2015, 27, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, B.D.; Allison, R.R.; Sibata, C.; Parent, T.; Downie, G. Results of Combined Photodynamic Therapy (PDT) and High Dose Rate Brachytherapy (HDR) in Treatment of Obstructive Endobronchial Non-Small Cell Lung Cancer (NSCLC). Photodiagn. Photodyn. Ther. 2010, 7, 50–58. [Google Scholar] [CrossRef]
- Santos, R.S.; Raftopoulos, Y.; Keenan, R.J.; Halal, A.; Maley, R.H.; Landreneau, R.J. Bronchoscopic Palliation of Primary Lung Cancer Single or Multimodality Therapy? Surg. Endosc. 2004, 18, 931–936. [Google Scholar] [CrossRef]
- Speiser, B.L.; Spartling, L. Remote Afterloading Brachytherapy for the Local Control of Endobronchial Carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 1993, 25, 579–587. [Google Scholar] [CrossRef]
- Wang, G.D.; Nguyen, H.T.; Chen, H.; Cox, P.B.; Wang, L.; Nagata, K.; Hao, Z.; Wang, A.; Li, Z.; Xie, J. X-Ray Induced Photodynamic Therapy: A Combination of Radiotherapy and Photodynamic Therapy. Theranostics 2016, 6, 2295–2305. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, J. Using Nanoparticles to Enable Simultaneous Radiation and Photodynamic Therapies for Cancer Treatment. J. Nanosci. Nanotechnol. 2006, 6, 1159–1166. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Wang, G.D.; Chuang, Y.J.; Zhen, Z.; Chen, X.; Biddinger, P.; Hao, Z.; Liu, F.; Shen, B.; Pan, Z.; et al. Nanoscintillator-Mediated X-Ray Inducible Photodynamic Therapy for in Vivo Cancer Treatment. Nano Lett. 2015, 15, 2249–2256. [Google Scholar] [CrossRef] [PubMed]
- Yoshizumi, T.; Brady, S.L.; Robbins, M.E.; Bourland, J.D. Specific Issues in Small Animal Dosimetry and Irradiator Calibration. Int. J. Radiat. Biol. 2011, 87, 1001–1010. [Google Scholar] [CrossRef]
- Ostańska, E.; Aebisher, D.; Bartusik-Aebisher, D. The Potential of Photodynamic Therapy in Current Breast Cancer Treatment Methodologies. Biomed. Pharmacother. 2021, 137, 111302. [Google Scholar] [CrossRef]
- Agostinis, P.; Berg, K.; Cengel, K.A.; Foster, T.H.; Girotti, A.W.; Gollnick, S.O.; Hahn, S.M.; Hamblin, M.R.; Juzeniene, A.; Kessel, D.; et al. Photodynamic Therapy of Cancer: An Update. CA Cancer J. Clin. 2011, 61, 250–281. [Google Scholar] [CrossRef]
- Luo, D.; Carter, K.A.; Miranda, D.; Lovell, J.F. Chemophototherapy: An Emerging Treatment Option for Solid Tumors. Adv. Sci. 2017, 4, 1600106. [Google Scholar] [CrossRef] [PubMed]
- Lamberti, M.J.; Rumie Vittar, N.B.; Rivarola, V.A. Breast Cancer as Photodynamic Therapy Target: Enhanced Therapeutic Efficiency by Overview of Tumor Complexity. World J. Clin. Oncol. 2014, 5, 901–907. [Google Scholar] [CrossRef] [PubMed]
- Crescenzi, E.; Varriale, L.; Iovino, M.; Chiaviello, A.; Veneziani, B.M.; Palumbo, G. Photodynamic Therapy with Indocyanine Green Complements and Enhances Low-Dose Cisplatin Cytotoxicity in MCF-7 Breast Cancer Cells. Mol. Cancer Ther. 2004, 3, 537–544. [Google Scholar] [CrossRef]
- Zakaria, S.; Gamal-Eldeen, A.M.; El-Daly, S.M.; Saleh, S. Synergistic Apoptotic Effect of Doxil® and Aminolevulinic Acid-Based Photodynamic Therapy on Human Breast Adenocarcinoma Cells. Photodiagn. Photodyn. Ther. 2014, 11, 227–238. [Google Scholar] [CrossRef]
- Barenholz, Y. Doxil®—The First FDA-Approved Nano-Drug: Lessons Learned. J. Control. Release 2012, 160, 117–134. [Google Scholar] [CrossRef]
- Anders, C.K.; Adamo, B.; Karginova, O.; Deal, A.M.; Rawal, S.; Darr, D.; Schorzman, A.; Santos, C.; Bash, R.; Kafri, T.; et al. Pharmacokinetics and Efficacy of PEGylated Liposomal Doxorubicin in an Intracranial Model of Breast Cancer. PLoS ONE 2013, 8, e61359. [Google Scholar] [CrossRef]
- Gill, S.E.; Savage, K.; Wysham, W.Z.; Blackhurst, D.W.; Winter, W.E.; Puls, L.E. Continuing Routine Cardiac Surveillance in Long-Term Use of Pegylated Liposomal Doxorubicin: Is It Necessary? Gynecol. Oncol. 2013, 129, 544–547. [Google Scholar] [CrossRef] [PubMed]
- Hau, P.; Fabel, K.; Baumgart, U.; Rümmele, P.; Grauer, O.; Bock, A.; Dietmaier, C.; Dietmaier, W.; Dietrich, J.; Dudel, C.; et al. Pegylated Liposomal Doxorubicin-Efficacy in Patients with Recurrent High-Grade Glioma. Cancer 2004, 100, 1199–1207. [Google Scholar] [CrossRef] [PubMed]
- Aniogo, E.C.; George, B.P.A.; Abrahamse, H. In Vitro Combined Effect of Doxorubicin and Sulfonated Zinc Phthalocyanine–Mediated Photodynamic Therapy on MCF-7 Breast Cancer Cells. Tumor Biol. 2017, 39, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Yousefi Sadeghloo, A.; Khorsandi, K.; Kianmehr, Z. Synergistic Effect of Photodynamic Treatment and Doxorubicin on Triple Negative Breast Cancer Cells. Photochem. Photobiol. Sci. 2020, 19, 1580–1589. [Google Scholar] [CrossRef] [PubMed]
- Ahn, T.G.; Jung, J.M.; Lee, E.J.; Choi, J.H. Effects of Cisplatin on Photosensitizer-Mediated Photodynamic Therapy in Breast Tumor-Bearing Nude Mice. Obstet. Gynecol. Sci. 2019, 62, 112–119. [Google Scholar] [CrossRef]
- Anand, S.; Yasinchak, A.; Bullock, T.; Govande, M.; Maytin, E.V. A Non-Toxic Approach for Treatment of Breast Cancer and Its Metastases: Capecitabine Enhanced Photodynamic Therapy in a Murine Breast Tumor Model. J. Cancer Metastasis Treat. 2019, 5, 1–14. [Google Scholar] [CrossRef]
- Duan, X.; Chan, C.; Guo, N.; Han, W.; Weichselbaum, R.R.; Lin, W. Photodynamic Therapy Mediated by Nontoxic Core-Shell Nanoparticles Synergizes with Immune Checkpoint Blockade to Elicit Antitumor Immunity and Antimetastatic Effect on Breast Cancer. J. Am. Chem. Soc. 2016, 138, 16686–16695. [Google Scholar] [CrossRef]
- Tao, K.; Fang, M.; Alroy, J.; Gary, G.G. Imagable 4T1 Model for the Study of Late Stage Breast Cancer. BMC Cancer 2008, 8, 228. [Google Scholar] [CrossRef]
- Kennedy, J.C.; Pottier, R.H.; Pross, D.C. Photodynamic Therapy with Endogenous Protoporphyrin IX: Basic Principles and Present Clinical Experience. J. Photochem. Photobiol. B Biol. 1990, 6, 143–148. [Google Scholar] [CrossRef]
- Kennedy, J.C.; Marcus, S.L.; Pottier, R.H.; Chem, C. Photodynamic Therapy (PDT) and Photodiagnosis (PD) Using Endogenous Photosensitization Induced by 5-Aminolevulinic Acid (ALA): Mechanisms and Clinical Results. J. Clin. Laser Med. Surg. 1996, 14, 289–304. [Google Scholar] [CrossRef] [PubMed]
- Anand, S.; Ortel, B.J.; Pereira, S.P.; Hasan, T.; Maytin, E.V. Biomodulatory Approaches to Photodynamic Therapy for Solid Tumors. Cancer Lett. 2012, 326, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, N.; Mukhtar, H. Mechanism of Photodynamic Therapy-Induced Cell Death. Methods Enzymol. 2000, 319, 342–358. [Google Scholar] [CrossRef] [PubMed]
- Ortel, B.; Shea, C.R.; Calzavara-Pinton, P. Molecular Mechanisms of Photodynamic Therapy. Front. Biosci. 2009, 14, 4157–4172. [Google Scholar] [CrossRef] [PubMed]
- Clough, K.B.; Kaufman, G.J.; Nos, C.; Buccimazza, I.; Sarfati, I.M. Improving Breast Cancer Surgery: A Classification and Quadrant per Quadrant Atlas for Oncoplastic Surgery. Ann. Surg. Oncol. 2010, 17, 1375–1391. [Google Scholar] [CrossRef] [PubMed]
- Collins, K.K.; Liu, Y.; Schootman, M.; Aft, R.; Yan, Y.; Dean, G.; Eilers, M.; Jeffe, D.B. Effects of Breast Cancer Surgery and Surgical Side Effects on Body Image over Time. Breast Cancer Res. Treat. 2011, 126, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Park, H.Y.; Kim, W.W.; Jeong, J.Y.; Lee, Y.D.; Choi, M.H.; Kim, S.; Park, J.Y.; Jung, J.H. Combination Treatment with Photodynamic Therapy and Laser Ablation in Breast Cancer: An Animal Model Study. Photomed. Laser Surg. 2017, 35, 505–512. [Google Scholar] [CrossRef]
- Banerjee, S.M.; El-Sheikh, S.; Malhotra, A.; Mosse, C.A.; Parker, S.; Williams, N.R.; Macrobert, A.J.; Hamoudi, R.; Bown, S.G.; Keshtgar, M.R.S. Photodynamic Therapy in Primary Breast Cancer. J. Clin. Med. 2020, 9, 483. [Google Scholar] [CrossRef]
- Montazerabadi, A.R.; Sazgarnia, A.; Bahreyni-Toosi, M.H.; Ahmadi, A.; Aledavood, A. The Effects of Combined Treatment with Ionizing Radiation and Indocyanine Green-Mediated Photodynamic Therapy on Breast Cancer Cells. J. Photochem. Photobiol. B Biol. 2012, 109, 42–49. [Google Scholar] [CrossRef]
- Urbanska, K.; Romanowska-Dixon, B.; Matuszak, Z.; Oszajca, J.; Nowak-Sliwinska, P.; Stochel, G. Indocyanine Green as a Prospective Sensitizer for Photodynamic Therapy of Melanomas. Acta Biochim. Pol. 2002, 49, 387–391. [Google Scholar] [CrossRef]
- Mamoon, A.M.; Gamal-Eldeen, A.M.; Ruppel, M.E.; Smith, R.J.; Tsang, T.; Miller, L.M. In Vitro Efficiency and Mechanistic Role of Indocyanine Green as Photodynamic Therapy Agent for Human Melanoma. Photodiagn. Photodyn. Ther. 2009, 6, 105–116. [Google Scholar] [CrossRef]
- Ramakrishnan, N.; Clay, M.E.; Friedman, L.R.; Antunez, A.R.; Oleinick, N.L. Post-Treatment Interactions of Photodynamic and Radiation-Induced Cytotoxic Lesions. Photochem. Photobiol. 1990, 52, 555–559. [Google Scholar] [CrossRef] [PubMed]
- Sazgarnia, A.; Montazerabadi, A.R.; Bahreyni-Toosi, M.H.; Ahmadi, A.; Aledavood, A. In Vitro Survival of MCF-7 Breast Cancer Cells Following Combined Treatment with Ionizing Radiation and Mitoxantrone-Mediated Photodynamic Therapy. Photodiagn. Photodyn. Ther. 2013, 10, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Ghoodarzi, R.; Changizi, V.; Montazerabadi, A.R.; Eyvazzadaeh, N. Assessing of Integration of Ionizing Radiation with Radachlorin-PDT on MCF-7 Breast Cancer Cell Treatment. Lasers Med. Sci. 2016, 31, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Mayahi, S.; Neshasteh-Riz, A.; Pornour, M.; Eynali, S.; Montazerabadi, A. Investigation of Combined Photodynamic and Radiotherapy Effects of Gallium Phthalocyanine Chloride on MCF-7 Breast Cancer Cells. J. Biol. Inorg. Chem. 2020, 25, 39–48. [Google Scholar] [CrossRef]
- Chauke, V.; Ogunsipe, A.; Durmuş, M.; Nyokong, T. Novel Gallium (III) Phthalocyanine Derivatives—Synthesis, Photophysics and Photochemistry. Polyhedron 2007, 26, 2663–2671. [Google Scholar] [CrossRef]
- Shrestha, S.; Wu, J.; Sah, B.; Vanasse, A.; Cooper, L.N.; Ma, L.; Li, G.; Zheng, H.; Chen, W.; Antosh, M.P. X-Ray Induced Photodynamic Therapy with Copper-Cysteamine Nanoparticles in Mice Tumors. Proc. Natl. Acad. Sci. USA 2019, 116, 16823–16828. [Google Scholar] [CrossRef] [PubMed]
- Andreev, O.A.; Dupuy, A.D.; Segala, M.; Sandugu, S.; Serra, D.A.; Chichester, C.O.; Engelman, D.M.; Reshetnyak, Y.K. Mechanism and Uses of a Membrane Peptide That Targets Tumors and Other Acidic Tissues in Vivo. Proc. Natl. Acad. Sci. USA 2007, 104, 7893–7898. [Google Scholar] [CrossRef]
- Andreev, O.A.; Engelman, D.M.; Reshetnyak, Y.K. PH-Sensitive Membrane Peptides (PHLIPs) as a Novel Class of Delivery Agents. Mol. Membr. Biol. 2010, 27, 341–352. [Google Scholar] [CrossRef]
- Andreev, O.A.; Engelman, D.M.; Reshetnyak, Y.K. Targeting Diseased Tissues by PHLIP Insertion at Low Cell Surface PH. Front. Physiol. 2014, 5, 1–7. [Google Scholar] [CrossRef]
- Antosh, M.P.; Wijesinghe, D.D.; Shrestha, S.; Lanou, R.; Huang, Y.H.; Hasselbacher, T.; Fox, D.; Neretti, N.; Sun, S.; Katenka, N.; et al. Enhancement of Radiation Effect on Cancer Cells by Gold-PHLIP. Proc. Natl. Acad. Sci. USA 2015, 112, 5372–5376. [Google Scholar] [CrossRef]
- Liu, Z.; Xiong, L.; Ouyang, G.; Ma, L.; Sahi, S.; Wang, K.; Lin, L.; Huang, H.; Miao, X.; Chen, W.; et al. Investigation of Copper Cysteamine Nanoparticles as a New Type of Radiosensitiers for Colorectal Carcinoma Treatment. Sci. Rep. 2017, 7, 9290. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Zou, X.; Chen, W. A New X-Ray Activated Nanoparticle Photosensitizer for Cancer Treatment. J. Biomed. Nanotechnol. 2014, 10, 1501–1508. [Google Scholar] [CrossRef]
- Nakeeb, A.; Pitt, H.A.; Sohn, T.A.; Coleman, J.A.; Abrams, R.A.; Piantadosi, S.; Hruban, R.H.; Lillemoe, K.D.; Yeo, C.J.; Cameron, J.L. Cholangiocarcinoma: A Spectrum of Intrahepatic, Perihilar, and Distal Tumors. Ann. Surg. 1996, 224, 463–475. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.A.; Thomas, H.C.; Davidson, B.R.; Taylor-Robinson, S.D. Cholangiocarcinoma. Lancet 2005, 366, 1303–1314. [Google Scholar] [CrossRef] [PubMed]
- Anderson, C.D.; Wright Pinson, C.; Berlin, J.; Chari, R.S. Diagnosis and Treatment of Cholangiocarcinoma. Oncologist 2004, 9, 43–57. [Google Scholar] [CrossRef]
- Gao, F.; Bai, Y.; Ma, S.R.; Liu, F.; Li, Z.S. Systematic Review: Photodynamic Therapy for Unresectable Cholangiocarcinoma. J. Hepatobiliary Pancreat. Sci. 2010, 17, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Wiedmann, M.; Berr, F.; Schiefke, I.; Witzigmann, H.; Kohlhaw, K.; Mössner, J.; Caca, K. Photodynamic Therapy in Patients with Non-Resectable Hilar Cholangiocarcinoma: 5-Year Follow-up of a Prospective Phase II Study. Gastrointest. Endosc. 2004, 60, 68–75. [Google Scholar] [CrossRef]
- Weigt, J.; Malfertheiner, P. Cisplatin plus Gemcitabine versus Gemcitabine for Biliary Tract Cancer. N. Engl. J. Med. 2010, 362, 1273–1281. [Google Scholar] [CrossRef]
- Nanashima, A.; Yamaguchi, H.; Shibasaki, S.; Ide, N.; Sawai, T.; Tsuji, T.; Hidaka, S.; Sumida, Y.; Nakagoe, T.; Nagayasu, T. Adjuvant Photodynamic Therapy for Bile Duct Carcinoma after Surgery: A Preliminary Study. J. Gastroenterol. 2004, 39, 1095–1101. [Google Scholar] [CrossRef]
- Nonaka, T.; Nanashima, A.; Nonaka, M.; Uehara, M.; Isomoto, H.; Nonaka, Y.; Nagayasu, T. Advantages of Laserphyrin Compared with Photofrin in Photodynamic Therapy for Bile Duct Carcinoma. J. Hepatobiliary Pancreat. Sci. 2011, 18, 592–600. [Google Scholar] [CrossRef]
- Oleinick, N.L.; Morris, R.L.; Belichenko, I. The Role of Apoptosis in Response to Photodynamic Therapy: What, Where, Why, and How. Photochem. Photobiol. Sci. 2002, 1, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Gomer, C.J.; Ferrario, A.; Luna, M.; Rucker, N.; Wong, S. Photodynamic Therapy: Combined Modality Approaches Targeting the Tumor Microenvironment. Lasers Surg. Med. 2006, 38, 516–521. [Google Scholar] [CrossRef] [PubMed]
- Dougherty, T.J. An Update on Photodynamic Therapy Applications. J. Clin. Laser Med. Surg. 2002, 20, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Nonaka, Y.; Nanashima, A.; Nonaka, T.; Uehara, M.; Isomoto, H.; Abo, T.; Nagayasu, T. Synergic Effect of Photodynamic Therapy Using Talaporfin Sodium with Conventional Anticancer Chemotherapy for the Treatment of Bile Duct Carcinoma. J. Surg. Res. 2013, 181, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Burke, E.C.; Jarnagin, W.R.; Hochwald, S.N.; Pisters, P.W.T.; Fong, Y.; Blumgart, L.H. Hilar Cholangiocarcinoma: Patterns of Spread, the Importance of Hepatic Resection for Curative Operation, and a Prosurgical Clinical Staging System. Ann. Surg. 1998, 228, 385–394. [Google Scholar] [CrossRef]
- Vauthey, J.; Blumgart, L.H. Recent Advances in the Management of Cholangiocarcinoma. Thieme Med. Publ. 1994, 14, 109–114. [Google Scholar] [CrossRef]
- Hong, M.J.; Cheon, Y.K.; Lee, E.J.; Lee, T.Y.; Shim, C.S. Long-Term Outcome of Photodynamic Therapy with Systemic Chemotherapy Compared to Photodynamic Therapy Alone in Patients with Advanced Hilar Cholangiocarcinoma. Gut Liver 2014, 8, 318–323. [Google Scholar] [CrossRef]
- Park, D.H.; Lee, S.S.; Park, S.E.; Lee, J.L.; Choi, J.H.; Choi, H.J.; Jang, J.W.; Kim, H.J.; Eum, J.B.; Seo, D.W.; et al. Randomised Phase II Trial of Photodynamic Therapy plus Oral Fluoropyrimidine, S-1, versus Photodynamic Therapy Alone for Unresectable Hilar Cholangiocarcinoma. Eur. J. Cancer 2014, 50, 1259–1268. [Google Scholar] [CrossRef]
- Wentrup, R.; Winkelmann, N.; Mitroshkin, A.; Prager, M.; Voderholzer, W.; Schachschal, G.; Jürgensen, C.; Büning, C. Photodynamic Therapy plus Chemotherapy Compared with Photodynamic Therapy Alone in Hilar Nonresectable Cholangiocarcinoma. Gut Liver 2016, 10, 470–475. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Carmona, M.A.; Bolch, M.; Jansen, C.; Vogt, A.; Sampels, M.; Mohr, R.U.; Van Beekum, K.; Mahn, R.; Praktiknjo, M.; Nattermann, J.; et al. Combined Photodynamic Therapy with Systemic Chemotherapy for Unresectable Cholangiocarcinoma. Aliment. Pharmacol. Ther. 2019, 49, 437–447. [Google Scholar] [CrossRef]
- De Groen, P.C.; Gores, G.J.; LaRusso, N.F.; Gunderson, L.L.; Nagorney, D.M. Biliary Tract Cancers. N. Engl. J. Med. 1999, 341, 1368–1378. [Google Scholar] [CrossRef] [PubMed]
- Lazaridis, K.N.; Gores, G.J. Cholangiocarcinoma. Gastroenterology 2005, 128, 1655–1667. [Google Scholar] [CrossRef] [PubMed]
- Hemming, A.W.; Reed, A.I.; Fujita, S.; Foley, D.P.; Howard, R.J.; Blumgart, L.H.; Chapman, W.; Pitt, H.A.; Vauthey, J.N.; Adams, R.B. Surgical Management of Hilar Cholangiocarcinoma. Ann. Surg. 2005, 241, 693–702. [Google Scholar] [CrossRef]
- Neuhaus, P.; Jonas, S.; Bechstein, W.O.; Lohmann, R.; Radke, C.; Kling, N.; Wex, C.; Lobeck, H.; Hintze, R. Extended Resections for Hilar Cholangiocarcinoma. Ann. Surg. 1999, 230, 808–819. [Google Scholar] [CrossRef] [PubMed]
- Gibson, R.N.; Yeung, E.; Hadjis, N.; Adam, A.; Benjamin, I.S.; Allison, D.J.; Blumgart, L.H. Percutaneous Transhepatic Endoprostheses for Hilar Cholangiocarcinoma. Am. J. Surg. 1988, 156, 363–367. [Google Scholar] [CrossRef] [PubMed]
- Polydorou, A.A.; Cairns, S.R.; Dowsett, J.F.; Hatfield, A.R.W.; Salmon, P.R.; Cotton, P.B.; Russell, R.C.G. Palliation of Proximal Malignant Biliary Obstruction by Endoscopic Endoprosthesis Insertion. Gut 1991, 32, 685–689. [Google Scholar] [CrossRef] [PubMed]
- Kahaleh, M.; Mishra, R.; Shami, V.M.; Northup, P.G.; Berg, C.L.; Bashlor, P.; Jones, P.; Ellen, K.; Weiss, G.R.; Brenin, C.M.; et al. Unresectable Cholangiocarcinoma: Comparison of Survival in Biliary Stenting Alone Versus Stenting with Photodynamic Therapy. Clin. Gastroenterol. Hepatol. 2008, 6, 290–297. [Google Scholar] [CrossRef]
- Ortner, M.E.J.; Caca, K.; Berr, F.; Liebetruth, J.; Mansmann, U.; Huster, D.; Voderholzer, W.; Schachschal, G.; Mössner, J.; Lochs, H. Successful Photodynamic Therapy for Nonresectable Cholangiocarcinoma: A Randomized Prospective Study. Gastroenterology 2003, 125, 1355–1363. [Google Scholar] [CrossRef]
- Zoepf, T.; Jakobs, R.; Arnold, J.C.; Apel, D.; Riemann, J.F. Palliation of Nonresectable Bile Duct Cancer: Improved Survival after Photodynamic Therapy. Am. J. Gastroenterol. 2005, 100, 2426–2430. [Google Scholar] [CrossRef]
- Prasad, G.A.; Wang, K.K.; Baron, T.H.; Buttar, N.S.; Wongkeesong, L.M.; Roberts, L.R.; LeRoy, A.J.; Lutzke, L.S.; Borkenhagen, L.S. Factors Associated with Increased Survival After Photodynamic Therapy for Cholangiocarcinoma. Clin. Gastroenterol. Hepatol. 2007, 5, 743–748. [Google Scholar] [CrossRef]
- Gores, G.J. A Spotlight on Cholangiocarcinoma. Gastroenterology 2003, 125, 1536–1538. [Google Scholar] [CrossRef] [PubMed]
- Wiedmann, M.; Caca, K.; Berr, F.; Schiefke, I.; Tannapfel, A.; Wittekind, C.; Mössner, J.; Hauss, J.; Witzigmann, H. Neoadjuvant Photodynamic Therapy as a New Approach to Treating Hilar Cholangiocarcinoma: A Phase II Pilot Study. Cancer 2003, 97, 2783–2790. [Google Scholar] [CrossRef]
- Quyn, A.J.; Ziyaie, D.; Polignano, F.M.; Tait, I.S. Photodynamic Therapy Is Associated with an Improvement in Survival in Patients with Irresectable Hilar Cholangiocarcinoma. HPB 2009, 11, 570–577. [Google Scholar] [CrossRef]
- Farley, D.R.; Weaver, A.L.; Nagorney, D.M. “Natural History” of Unresected Cholangiocarcinoma: Patient Outcome After Noncurative Intervention. Mayo Clin. Proc. 1995, 70, 425–429. [Google Scholar] [CrossRef]
- Devière, J.; Baize, M.; De Toeuf, J.; Cremer, M. Long-Term Follow-up of Patients with Hilar Malignant Stricture Treated by Endoscopic Internal Biliary Drainage. Gastrointest. Endosc. 1988, 34, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, S.; Imamura, H.; Kobayashi, A.; Noike, T.; Miwa, S.; Miyagawa, S. Results of Surgical Resection for Patients with Hilar Bile Duct Cancer. Ann. Surg. 2003, 238, 84–92. [Google Scholar] [CrossRef]
- Pichlmayr, R.; Weimann, A.; Klempnauer, J.; Oldhafer, K.J.; Maschek, H.; Tusch, G.; Ringe, B. Surgical Treatment in Proximal Bile Duct Cancer: A Single-Center Experience. Ann. Surg. 1996, 224, 628–638. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.L.; Lo, C.M.; Lai, E.C.S.; Fan, S.T. Endoscopic Retrograde Cholangiopancreatography and Endoscopic Endoprosthesis Insertion in Patients with Klatskin Tumors. Arch. Surg. 1998, 133, 293–296. [Google Scholar] [CrossRef]
- Cheon, Y.K.; Lee, T.Y.; Lee, S.M.; Yoon, J.Y.; Shim, C.S. Longterm Outcome of Photodynamic Therapy Compared with Biliary Stenting Alone in Patients with Advanced Hilar Cholangiocarcinoma. HPB 2012, 14, 185–193. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, X.; Xiao, H.; Chen, S.; Zhu, W.; Lu, H.; Cao, L.; Xue, P.; Li, H.; Zhang, D. Long-Term Results of ERCP- or PTCS-Directed Photodynamic Therapy for Unresectable Hilar Cholangiocarcinoma. Surg. Endosc. 2021, 35, 5655–5664. [Google Scholar] [CrossRef]
- Cohen, P.A.; Jhingran, A.; Oaknin, A.; Denny, L. Cervical Cancer. Lancet 2019, 393, 169–182. [Google Scholar] [CrossRef]
- Arbyn, M.; Weiderpass, E.; Bruni, L.; De Sanjosé, S.; Saraiya, M.; Ferlay, J.; Bray, F. Estimates of Incidence and Mortality of Cervical Cancer in 2018: A Worldwide Analysis. Lancet Glob. Health 2020, 8, e191–e203. [Google Scholar] [CrossRef] [PubMed]
- Bosch, F.X.; De Sanjosé, S. The Epidemiology of Human Papillomavirus Infection and Cervical Cancer. Dis. Markers 2007, 23, 213–227. [Google Scholar] [CrossRef]
- Naga Ch, P.; Gurram, L.; Chopra, S.; Mahantshetty, U. The Management of Locally Advanced Cervical Cancer. Curr. Opin. Oncol. 2018, 30, 323–329. [Google Scholar] [CrossRef]
- Li, H.; Wu, X.; Cheng, X. Advances in Diagnosis and Treatment of Metastatic Cervical Cancer. J. Gynecol. Oncol. 2016, 27, 1–20. [Google Scholar] [CrossRef]
- Sun, L.; Sheng, X.; Jiang, J.; Li, X.; Liu, N.; Liu, Y.; Zhang, T.; Li, D.; Zhang, X.; Wei, P. Surgical Morbidity and Oncologic Results after Concurrent Chemoradiation Therapy for Advanced Cervical Cancer. Int. J. Gynecol. Obstet. 2014, 125, 111–115. [Google Scholar] [CrossRef]
- Favero, G.; Pierobon, J.; Genta, M.L.; Araújo, M.P.; Miglino, G.; Del Carmen Pilar Diz, M.; De Andrade Carvalho, H.; Fukushima, J.T.; Baracat, E.C.; Carvalho, J.P. Laparoscopic Extrafascial Hysterectomy (Completion Surgery) after Primary Chemoradiation in Patients with Locally Advanced Cervical Cancer: Technical Aspects and Operative Outcomes. Int. J. Gynecol. Cancer 2014, 24, 608–614. [Google Scholar] [CrossRef]
- Wang, X.; Wang, J.; Wu, W.; Li, H. Vaginal Delivery of Carboplatin-Loaded Thermosensitive Hydrogel to Prevent Local Cervical Cancer Recurrence in Mice. Drug Deliv. 2016, 23, 3544–3551. [Google Scholar] [CrossRef]
- He, D.; Duan, C.; Chen, J.; Lai, L.; Chen, J.; Chen, D. The Safety and Efficacy of the Preoperative Neoadjuvant Chemotherapy for Patients with Cervical Cancer: A Systematic Review and Meta Analysis. Int. J. Clin. Exp. Med. 2015, 8, 14693–14700. [Google Scholar]
- Wang, Y.; Wang, G.; Wei, L.; Huang, L.; Wang, J.; Wang, S.-J.; Li, X.-P.; Shen, D.-H.; Bao, D.-M.; Gao, J. Neoadjuvant Chemotherapy for Locally Advanced Cervical Cancer Reduces Surgical Risks and Lymph-Vascular Space Involvement. Chin. J. Cancer 2011, 30, 645–654. [Google Scholar] [CrossRef]
- Kim, K.; Kang, S.B.; Chung, H.H.; Kim, J.W.; Park, N.H.; Song, Y.S. Comparison of Chemoradiation with Radiation as Postoperative Adjuvant Therapy in Cervical Cancer Patients with Intermediate-Risk Factors. Eur. J. Surg. Oncol. 2009, 35, 192–196. [Google Scholar] [CrossRef]
- Rogers, L.; Siu, S.S.N.; Luesley, D.; Bryant, A.; Dickinson, H.O. Radiotherapy and Chemoradiation after Surgery for Early Cervical Cancer. Cochrane Database Syst. Rev. 2012, 2012, 1–34. [Google Scholar] [CrossRef]
- Takekuma, M.; Kasamatsu, Y.; Kado, N.; Kuji, S.; Tanaka, A.; Takahashi, N.; Abe, M.; Hirashima, Y. The Issues Regarding Postoperative Adjuvant Therapy and Prognostic Risk Factors for Patients with Stage I–II Cervical Cancer: A Review. J. Obstet. Gynaecol. Res. 2017, 43, 617–626. [Google Scholar] [CrossRef]
- Copeland, L.J.; Silva, E.G.; Gershenson, D.M.; Morris, M.; Young, D.C.; Wharton, J.T. Superficially Invasive Squamous Cell Carcinoma of the Cervix. Gynecol. Oncol. 1992, 45, 307–312. [Google Scholar] [CrossRef]
- Buckley, S.L.; Tritz, D.M.; Van Le, L.; Higgins, R.; Sevin, B.U.; Ueland, F.R.; DePriest, P.D.; Gallion, H.H.; Bailey, C.L.; Kryscio, R.J.; et al. Lymph Node Metastases and Prognosis in Patients with Stage IA2 Cervical Cancer. Gynecol. Oncol. 1996, 63, 4–9. [Google Scholar] [CrossRef]
- Piver, M.S.M.; Rutledge, F.M.; Smith, J.P.M. Five Classes of Extended Hysterectomy for Women with Cervical Cancer. Obstet. Gynecol. Sci. 1974, 44, 265–272. [Google Scholar] [CrossRef]
- Querleu, D.; Morrow, C.P. Classification of Radical Hysterectomy. Lancet Oncol. 2008, 9, 297–303. [Google Scholar] [CrossRef]
- Pieterse, Q.D.; Kenter, G.G.; Maas, C.P.; De Kroon, C.D.; Creutzberg, C.L.; Trimbos, J.B.M.J.; Ter Kuile, M.M. Self-Reported Sexual, Bowel and Bladder Function in Cervical Cancer Patients Following Different Treatment Modalities: Longitudinal Prospective Cohort Study. Int. J. Gynecol. Cancer 2013, 23, 1717–1725. [Google Scholar] [CrossRef]
- Donovan, K.A.; Taliaferro, L.A.; Alvarez, E.M.; Jacobsen, P.B.; Roetzheim, R.G.; Wenham, R.M. Sexual Health in Women Treated for Cervical Cancer: Characteristics and Correlates. Gynecol. Oncol. 2007, 104, 428–434. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, R.; Zhang, B.; Lin, X.; Wei, J.; Jia, Y.; Yin, Y.; Ye, S.; Zhu, T.; Chen, G.; et al. Safety of Ovarian Preservation in Women with Stage I and II Cervical Adenocarcinoma: A Retrospective Study and Meta-Analysis. Am. J. Obstet. Gynecol. 2016, 215, 460.e1–460.e13. [Google Scholar] [CrossRef] [PubMed]
- Jiao, X.B.; Hu, J.; Zhu, L.R. The Safety of Ovarian Preservation in Early-Stage Adenocarcinoma Compared with Squamous Cell Carcinoma of Uterine Cervix. Int. J. Gynecol. Cancer 2016, 26, 1510–1514. [Google Scholar] [CrossRef] [PubMed]
- Gubbala, K.; Laios, A.; Gallos, I.; Pathiraja, P.; Haldar, K.; Ind, T. Outcomes of Ovarian Transposition in Gynaecological Cancers; A Systematic Review and Meta-Analysis. J. Ovarian Res. 2014, 7, 69. [Google Scholar] [CrossRef]
- Waggoner, S.E. Cervical Cancer. Lancet 2003, 361, 2217–2225. [Google Scholar] [CrossRef]
- Landoni, F.; Maneo, A.; Colombo, A.; Placa, F.; Milani, R.; Perego, P.; Favini, G.; Ferri, L.; Mangioni, C. Randomised Study of Radical Surgery versus Radiotherapy for Stage Ib-IIa Cervical Cancer. Lancet 1997, 350, 535–540. [Google Scholar] [CrossRef]
- Prestayko, A.W.; D’Aoust, J.C.; Issell, B.F.; Crooke, S.T. Cisplatin (Cis-Diamminedichloroplatinum II). Cancer Treat. Rev. 1979, 6, 17–39. [Google Scholar] [CrossRef]
- Lebwohl, D.; Canetta, R. Clinical Development of Platinum Complexes in Cancer Therapy: An Historical Perspective and an Update. Eur. J. Cancer 1998, 34, 1522–1534. [Google Scholar] [CrossRef]
- Galanski, M. Recent Developments in the Field of Anticancer Platinum Complexes. Recent Pat. Anticancer Drug Discov. 2006, 1, 285–295. [Google Scholar] [CrossRef] [PubMed]
- Suprasert, P.; Thongsong, T.; Srisomboon, J.; Chailert, C. Efficacy of Cisplatin in Early Stage Cervical Cancer with a Long Waiting Period for Surgery. Asian Pac. J. Cancer Prev. 2007, 8, 51–54. [Google Scholar]
- Ozols, R.F.; Bundy, B.N.; Greer, B.E.; Fowler, J.M.; Clarke-Pearson, D.; Burger, R.A.; Mannel, R.S.; DeGeest, K.; Hartenbach, E.M.; Baergen, R.; et al. Phase III Trial of Carboplatin and Paclitaxel Compared with Cisplatin and Paclitaxel in Patients with Optimally Resected Stage III Ovarian Cancer: A Gynecologic Oncology Group Study. J. Clin. Oncol. 2003, 21, 3194–3200. [Google Scholar] [CrossRef]
- Moore, K.N.; Herzog, T.J.; Lewin, S.; Giuntoli, R.L.; Armstrong, D.K.; Rocconi, R.P.; Spannuth, W.A.; Gold, M.A. A Comparison of Cisplatin/Paclitaxel and Carboplatin/Paclitaxel in Stage IVB, Recurrent or Persistent Cervical Cancer. Gynecol. Oncol. 2007, 105, 299–303. [Google Scholar] [CrossRef] [PubMed]
- Oronsky, B.; Ray, C.M.; Spira, A.I.; Trepel, J.B.; Carter, C.A.; Cottrill, H.M. A Brief Review of the Management of Platinum-Resistant–Platinum-Refractory Ovarian Cancer. Med. Oncol. 2017, 34, 103. [Google Scholar] [CrossRef] [PubMed]
- Freimund, A.E.; Beach, J.A.; Christie, E.L.; Bowtell, D.D.L. Mechanisms of Drug Resistance in High-Grade Serous Ovarian Cancer. Hematol. Oncol. Clin. N. Am. 2018, 32, 983–996. [Google Scholar] [CrossRef] [PubMed]
- Crul, M.; Van Waardenburg, R.C.A.M.; Beijnen, J.H.; Schellens, J.H.M. DNA-Based Drug Interactions of Cisplatin. Cancer Treat. Rev. 2002, 28, 291–303. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.Q.; Ma, H.Q.; Liu, A.H.; Zhang, Y.Z. Synergistic Anticancer Activity of 5-Aminolevulinic Acid Photodynamic Therapy in Combination with Low-Dose Cisplatin on Hela Cells. Asian Pac. J. Cancer Prev. 2013, 14, 3023–3028. [Google Scholar] [CrossRef] [PubMed]
- Ahn, T.G.; Lee, B.R.; Kim, J.K.; Choi, B.C.; Han, S.J. Successful Full Term Pregnancy and Delivery after Concurrent Chemo-Photodynamic Therapy (CCPDT) for the Uterine Cervical Cancer Staged 1B1 and 1B2: Preserving Fertility in Young Women. Gynecol. Oncol. Rep. 2012, 2, 54–57. [Google Scholar] [CrossRef]
- Matroule, J.Y.; Carthy, C.M.; Granville, D.J.; Jolois, O.; Hunt, D.W.C.; Piette, J. Mechanism of Colon Cancer Cell Apoptosis Mediated by Pyropheophorbide-a Methylester Photosensitization. Oncogene 2001, 20, 4070–4084. [Google Scholar] [CrossRef]
- Li, D.; Li, L.; Li, P.; Li, Y.; Chen, X. Apoptosis of HeLa Cells Induced by a New Targeting Photosensitizer-Based PDT via a Mitochondrial Pathway and ER Stress. Onco. Targets Ther. 2015, 8, 703–711. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Chang, J.-E.; Jheon, S.; Han, S.J.; Kim, J.K. Enhanced Production of Reactive Oxygen Species in HeLa Cells under Concurrent Low-Dose Carboplatin and Photofrin® Photodynamic Therapy. Oncol. Rep. 2018, 40, 339–345. [Google Scholar] [CrossRef]
- Denizot, F.; Lang, R. Rapid Colorimetric Assay for Cell Growth and Survival. Modifications to the Tetrazolium Dye Procedure Giving Improved Sensitivity and Reliability. J. Immunol. Methods 1986, 89, 271–277. [Google Scholar] [CrossRef]
- Kao, C.J.; Wurz, G.T.; Monjazeb, A.M.; Vang, D.P.; Cadman, T.B.; Griffey, S.M.; Wolf, M.; De Gregorio, M.W. Antitumor Effects of Cisplatin Combined with Tecemotide Immunotherapy in a Human MUC1 Transgenic Lung Cancer Mouse Model. Cancer Immunol. Res. 2014, 2, 581–589. [Google Scholar] [CrossRef]
- De Freitas, L.M.; Soares, C.P.; Fontana, C.R. Synergistic Effect of Photodynamic Therapy and Cisplatin: A Novel Approach for Cervical Cancer. J. Photochem. Photobiol. B Biol. 2014, 140, 365–373. [Google Scholar] [CrossRef]
- De Freitas, L.M.; Serafim, R.B.; De Sousa, J.F.; Moreira, T.F.; Dos Santos, C.T.; Baviera, A.M.; Valente, V.; Soares, C.P.; Fontana, C.R. Photodynamic Therapy Combined to Cisplatin Potentiates Cell Death Responses of Cervical Cancer Cells. BMC Cancer 2017, 17, 123. [Google Scholar] [CrossRef]
- Tait, S.W.G.; Green, D.R. Caspase-Independent Cell Death: Leaving the Set without the Final Cut. Oncogene 2008, 27, 6452–6461. [Google Scholar] [CrossRef]
- Porter, A.G.; Jänicke, R.U. Emerging Roles of Caspase-3 in Apoptosis. Cell Death Differ. 1999, 6, 99–104. [Google Scholar] [CrossRef]
- Scheffer, S.R.; Nave, H.; Korangy, F.; Schlote, K.; Pabst, R.; Jaffee, E.M.; Manns, M.P.; Greten, T.F. Apoptotic, but Not Necrotic, Tumor Cell Vaccines Induce a Potent Immune Response in Vivo. Int. J. Cancer 2003, 103, 205–211. [Google Scholar] [CrossRef]
- Lee, H.; Kim, S.; Oh, C.; Khan, I.; Shukla, S.; Bajpai, V.K.; Han, Y.K.; Huh, Y.S. Folic Acid-Modified Bovine Serum Albumin Nanoparticles with Doxorubicin and Chlorin E6 for Effective Combinational Chemo-Photodynamic Therapy. Mater. Sci. Eng. C 2020, 117, 111343. [Google Scholar] [CrossRef]
- Lee, H.S.; Yoo, S.Y.; Lee, S.M.; Kang, N.W.; Kim, S.K.; Song, G.Y.; Kim, D.D.; Lee, J.Y. Hypoxia-Alleviating Hemoglobin Nanoclusters for Sensitizing Chemo-Photodynamic Therapy of Cervical Cancer. Chem. Eng. J. 2023, 457, 141224. [Google Scholar] [CrossRef]
- Medical and Editorial Content; American Cancer Society: Atlanta, GA, USA, 2020; pp. 1–37. Available online: https://www.cancer.org/cancer/types/cervical-cancer/detection-diagnosis-staging.html (accessed on 3 October 2024).
- Wang, X.I.; Huang, F.; Zhang, S. Loop Electrosurgical Excision Procedure vs. Cold Knife Cone in Treatment of Cervical Intraepithelial Neoplasia: Review of 447 Cases. Ann. Clin. Lab. Sci. 2017, 47, 663–667. [Google Scholar]
- Wang, L.; Liu, X.; Zhang, J.; Huang, Y.; Liu, Y.; Jia, L.; Zhang, Y.; Jia, L. Evaluation of the Efficacy and Safety of 5-Aminolevulinic Acid-Mediated Photodynamic Therapy in Women with High-Risk HPV Persistent Infection after Cervical Conization. Photodiagn. Photodyn. Ther. 2022, 40, 103144. [Google Scholar] [CrossRef]
- Mercuzot, A.; Chevreau, J.; Sevestre, H.; Muszynski, C.; Arbyn, M.; Sergent, F.; Gondry, J. Impact of Anaesthesia Mode on Evaluation of LEEP Specimen Dimensions. J. Gynecol. Obstet. Hum. Reprod. 2017, 46, 339–342. [Google Scholar] [CrossRef]
- Cai, H.; Ma, T.; Che, Y.; Wang, Y.; Wang, C.; Yin, G. Loop Electrosurgical Excision Procedure Followed by 5-Aminolevulinic Acid Photodynamic Therapy for Cervical Intraepithelial Neoplasia, a Report of Six Cases. Photodiagn. Photodyn. Ther. 2020, 29, 101650. [Google Scholar] [CrossRef]
- Schockaert, S.; Poppe, W.; Arbyn, M.; Verguts, T.; Verguts, J. Incidence of Vaginal Intraepithelial Neoplasia after Hysterectomy for Cervical Intraepithelial Neoplasia: A Retrospective Study. Am. J. Obstet. Gynecol. 2008, 199, 113.e1–113.e5. [Google Scholar] [CrossRef]
- Gunderson, C.C.; Nugent, E.K.; Elfrink, S.H.; Gold, M.A.; Moore, K.N. A Contemporary Analysis of Epidemiology and Management of Vaginal Intraepithelial Neoplasia. Am. J. Obstet. Gynecol. 2013, 208, 410.e1–410.e6. [Google Scholar] [CrossRef]
- Piovano, E.; Macchi, C.; Attamante, L.; Fuso, L.; Maina, G.; Pasero, L.; Volante, R.; Zola, P. CO2 Laser Vaporization for the Treatment of Vaginal Intraepithelial Neoplasia: Effectiveness and Predictive Factors for Recurrence. Eur. J. Gynaecol. Oncol. 2015, 36, 383–388. [Google Scholar] [CrossRef]
- Haidopoulos, D.; Diakomanolis, E.; Rodolakis, A.; Voulgaris, Z.; Vlachos, G.; Intsaklis, A. Can Local Application of Imiquimod Cream Be an Alternative Mode of Therapy for Patients with High-Grade Intraepithelial Lesions of the Vagina? Int. J. Gynecol. Cancer 2005, 15, 898–902. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Kong, W.M.; Wu, Y.M.; Wang, J.D.; Zhang, W.Y. Therapeutic Effect of Laser Vaporization for Vaginal Intraepithelial Neoplasia Following Hysterectomy Due to Premalignant and Malignant Lesions. J. Obstet. Gynaecol. Res. 2014, 40, 1740–1747. [Google Scholar] [CrossRef]
- Graham, K.; Wright, K.; Cadwallader, B.; Reed, N.S.; Symonds, R.P. 20-Year Retrospective Review of Medium Dose Rate Intracavitary Brachytherapy in VAIN3. Gynecol. Oncol. 2007, 106, 105–111. [Google Scholar] [CrossRef]
- Cang, W.; Gu, L.; Hong, Z.; Wu, A.; Di, W.; Qiu, L. Effectiveness of Photodynamic Therapy with 5-Aminolevulinic Acid on HPV Clearance in Women without Cervical Lesions. Photodiagn. Photodyn. Ther. 2021, 34, 102293. [Google Scholar] [CrossRef]
- Gu, L.; Cheng, M.; Hong, Z.; Di, W.; Qiu, L. The Effect of Local Photodynamic Therapy with 5-Aminolevulinic Acid for the Treatment of Cervical Low-Grade Squamous Intraepithelial Lesions with High-Risk HPV Infection: A Retrospective Study. Photodiagn. Photodyn. Ther. 2021, 33, 102172. [Google Scholar] [CrossRef]
- Wu, A.; Li, Q.; Ling, J.; Gu, L.; Hong, Z.; Di, W.; Qiu, L. Effectiveness of Photodynamic Therapy in Women of Reproductive Age with Cervical High-Grade Squamous Intraepithelial Lesions (HSIL/CIN2). Photodiagn. Photodyn. Ther. 2021, 36, 102517. [Google Scholar] [CrossRef]
- Inada, N.M.; Buzzá, H.H.; Leite, M.F.M.; Kurachi, C.; Trujillo, J.R.; De Castro, C.A.; Carbinatto, F.M.; Lombardi, W.; Bagnato, V.S. Long Term Effectiveness of Photodynamic Therapy for Cin Treatment. Pharmaceuticals 2019, 12, 107. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, M.; Mitsui, H.; Kajiyama, H.; Teshigawara, T.; Inoue, K.; Takahashi, K.; Ishii, T.; Ishizuka, M.; Nakajima, M.; Kikkawa, F. Efficacy of 5-Aminolevulinic Acid and LED Photodynamic Therapy in Cervical Intraepithelial Neoplasia: A Clinical Trial. Photodiagn. Photodyn. Ther. 2020, 32, 102004. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.C.; Jung, S.G.; Park, H.; Lee, S.Y.; Lee, C.; Hwang, Y.Y.; Kim, S.J. Fertility Preservation by Photodynamic Therapy Combined with Conization in Young Patients with Early Stage Cervical Cancer: A Pilot Study. Photodiagn. Photodyn. Ther. 2014, 11, 420–425. [Google Scholar] [CrossRef] [PubMed]
- Bosch, F.X.; Burchell, A.N.; Schiffman, M.; Giuliano, A.R.; De Sanjose, S.; Bruni, L.; Tortolero-Luna, G.; Kjaer, S.K.; Muñoz, N. Epidemiology and Natural History of Human Papillomavirus Infections and Type-Specific Implications in Cervical Neoplasia. Vaccine 2008, 26, K1–K16. [Google Scholar] [CrossRef] [PubMed]
- BoganiI, G.; Di Donato, V.; Sopracordevole, F.; Ciavattini, A.; Ghelardi, A.; Lopez, S.; Simoncini, T.; Plotti, F.; Casarin, J.; Serati, M.; et al. Recurrence Rate after Loop Electrosurgical Excision Procedure (LEEP) and Laser Conization: A 5-Year Follow-up Study. Gynecol. Oncol. 2020, 159, 636–641. [Google Scholar] [CrossRef]
- Kocken, M.; Helmerhorst, T.J.M.; Berkhof, J.; Louwers, J.A.; Nobbenhuis, M.A.E.; Bais, A.G.; Hogewoning, C.J.A.; Zaal, A.; Verheijen, R.H.M.; Snijders, P.J.F.; et al. Risk of Recurrent High-Grade Cervical Intraepithelial Neoplasia after Successful Treatment: A Long-Term Multi-Cohort Study. Lancet Oncol. 2011, 12, 441–450. [Google Scholar] [CrossRef]
- Kim, M.; Choi, M.C.; Lee, C.; Na, Y.J.; Kim, S.J. Long-Term Outcomes of Photodynamic Therapy for a Positive Resection Margin after Conization for Cervical Intraepithelial Neoplasia Grade 3. Photodiagn. Photodyn. Ther. 2022, 37, 102639. [Google Scholar] [CrossRef]
- Huang, J.; Wei, Y.; Gu, L.; Di, W.; Hong, Z.; Qiu, L. Feasibility Study of 5-Aminolevulinic Acid Mediated Photodynamic Therapy of Persistent Vaginal High-Risk HPV Infection of Post-Hysterectomy Patients. Photodiagn. Photodyn. Ther. 2023, 41, 103250. [Google Scholar] [CrossRef]
- Zhao, X.; Song, S.; Wang, Y.; Mu, X.; Zhang, L. Effects of Photodynamic Therapy in the Treatment of High-Grade Vaginal Intraepithelial Lesions Following Hysterectomy and HPV Infection. Photodiagn. Photodyn. Ther. 2023, 42, 103336. [Google Scholar] [CrossRef]
- Molkenova, A.; Choi, H.E.; Lee, G.; Baek, H.; Kwon, M.; Lee, S.B.; Park, J.M.; Kim, J.H.; Han, D.W.; Park, J.; et al. Cold-Responsive Hyaluronated Upconversion Nanoplatform for Transdermal Cryo-Photodynamic Cancer Therapy. Adv. Sci. 2024, 11, 1–13. [Google Scholar] [CrossRef]
- Yu, B.; Liu, M.; Jiang, L.; Xu, C.; Hu, H.; Huang, T.; Xu, D.; Wang, N.; Li, Q.; Tang, B.Z.; et al. Aggregation-Induced Emission Photosensitizer-Engineered Anticancer Nanomedicine for Synergistic Chemo/Chemodynamic/Photodynamic Therapy. Adv. Healthc. Mater. 2024, 13, 2303643. [Google Scholar] [CrossRef] [PubMed]
- Wan, G.; Chen, X.; Gou, R.; Guan, C.; Chen, J.; Wang, Q.; Wu, W.; Chen, H.; Zhang, Q.; Wang, H. Platelet Membrane-Based Biochemotactic-Targeting Nanoplatform Combining PDT with EGFR Inhibition Therapy for the Treatment of Breast Cancer. Biomater. Sci. 2024, 12, 691–709. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Xu, D.; Xu, Q.; Tang, Y.; Hong, J.; Hu, Y.; Wang, J.; Ni, X. Reduction-Responsive Worm-like Nanoparticles for Synergistic Cancer Chemo-Photodynamic Therapy. Mater. Today Bio 2023, 18, 100542. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, G.; Chang, J.-E. Enhancing Cancer Treatment Through Combined Approaches: Photodynamic Therapy in Concert with Other Modalities. Pharmaceutics 2024, 16, 1420. https://doi.org/10.3390/pharmaceutics16111420
Hong G, Chang J-E. Enhancing Cancer Treatment Through Combined Approaches: Photodynamic Therapy in Concert with Other Modalities. Pharmaceutics. 2024; 16(11):1420. https://doi.org/10.3390/pharmaceutics16111420
Chicago/Turabian StyleHong, Gyeong, and Ji-Eun Chang. 2024. "Enhancing Cancer Treatment Through Combined Approaches: Photodynamic Therapy in Concert with Other Modalities" Pharmaceutics 16, no. 11: 1420. https://doi.org/10.3390/pharmaceutics16111420
APA StyleHong, G., & Chang, J. -E. (2024). Enhancing Cancer Treatment Through Combined Approaches: Photodynamic Therapy in Concert with Other Modalities. Pharmaceutics, 16(11), 1420. https://doi.org/10.3390/pharmaceutics16111420