Fluconazole-Resistant Vulvovaginal Candidosis: An Update on Current Management
Abstract
:1. Introduction
2. Materials and Methods
3. Results
Author | Year | Origin | Study Design | Candida Species | Diagnosis Method | Prevalence of Resistance |
---|---|---|---|---|---|---|
J. D. Sobel [30] | 2023 | USA | Longitudinal, Observational study over a 10-year period | C. albicans was the dominant species (76.3% of positive yeast isolates) | Antibiotic susceptibility tests in line with guidelines MICs for pH 7.0 and 4.5 | pH 7.0: 23% of isolates were resistant (MIC ≥ 8 mg/mL) pH 4.5: resistance rates were 52% of the isolates |
S. Maraki [31] | 2019 | Greece | 6-year Observational study | C. albicans (75.6%) C. glabrata (13.6%) | Isolation on Sabouraud dextrose agar, identification using VITEK card. | Overall resistance rates: 6.6% to fluconazole |
D.N. Anh [32] | 2021 | Vietnam | Cross-sectional study | C. albicans (51.37%) C. parapsilosis (25.88%) C. glabrata (11.37%) C.tropicalis (4.31%) C. krusei (3.92%) C. africana (1.57%) S. cerevisiae (0.78%) C. nivariensis (0.39%) C. lusitaniae (0.39%) | Direct microscopic examination (10% KOH) Species identification was performed using morphological tests, PCR, and sequencing | Resistance rate to fluconazole was 4.35% |
W. Wang [19] | 2024 | China | Retrospective Observational study | C. albicans (32.40%) C. tropicalis (17.80%) C. glabrata (13.70%) C. parapsilosis (8.63%) | Antifungal susceptibility testing using ATB® FUNGUS 3. | C.albicans exhibited a fluconazole resistance rate of 5.2%. C. tropicalis showed significant resistance to fluconazole of 38.3% |
A. Bitew and Y. Abebaw [26] | 2018 | Ethiopia | Cross-sectional study | C. albicans (58.6%) C. krusei (17.2%) C. dubliniensis (9.2%) Other included C. glabrata, C. tropicalis | Susceptibility testing using VITEK system | Highest resistance was observed against fluconazole (17.2% overall). C. krusei: 100% resistance to fluconazole. C. albicans: 2% resistance rate to both fluconazole |
A. Rezaei-Matehkolae [27] | 2016 | Iran | Cross-sectional study | C. albicans (88.2%) C. glabrata (8.8%) C. kefyr (2.9%) | Classical mycological tests, PCR-RFLP method for molecular identification | Resistance was not detected among the isolates for fluconazole |
F.G. Hösükoğlu [29] | 2022 | Turkey | Observational study | C. albicans (47%) C. glabrata (43%) C. kefyr (5%) C. krusei (2%) C. tropicalis (2%) C. guilliermondii (1%) | Antifungal susceptibility of these isolates using the reference broth microdilution method as per CLSI guidelines | C. albicans: 21.3% resistant C. krusei: 100% resistant (intrinsic resistance) |
Ratner JC [33] | 2024 | UK | Retrospective Observational study | C. albicans: 87.4% N. glabrata: 6.8% P. kudriavzevii: 0.55% C. dubliniensis: 1.64% Meyerozyma guilliermondii: 0.27% Clavispora lusitaniae: 0.82% C. parapsilosis: 2.19% C.tropicalis: 0.27% | Fluconazole resistance assessed using the disc diffusion method and Sensititre YeastOne assay as per CLSI | Resistant species C. albicans:
Nakaseomyces glabrata [Candida glabrata]:
Pichia kudriavzevii [Candida krusei]:
|
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fan, S.; Liu, X.; Wu, C.; Xu, L.; Li, J. Vaginal nystatin versus oral fluconazole for the treatment for recurrent vulvovaginal candidiasis. Mycopathologia 2015, 179, 95–101. [Google Scholar] [CrossRef] [PubMed]
- File, B.; Sobel, R.; Becker, M.; Nyirjesy, P. Fluconazole-Resistant Candida albicans Vaginal Infections at a Referral Center and Treated with Boric Acid. J. Low. Genit. Tract. Dis. 2023, 27, 262–265. [Google Scholar] [CrossRef] [PubMed]
- Foxman, B.; Muraglia, R.; Dietz, J.P.; Sobel, J.D.; Wagner, J. Prevalence of recurrent vulvovaginal candidiasis in 5 European countries and the United States: Results from an internet panel survey. J. Low. Genit. Tract. Dis. 2013, 17, 340–345. [Google Scholar] [CrossRef] [PubMed]
- Aballea, S.; Guelfucci, F.; Wagner, J.; Khemiri, A.; Dietz, J.P.; Sobel, J.; Toumi, M. Subjective health status and health-related quality of life among women with Recurrent Vulvovaginal Candidosis (RVVC) in Europe and the USA. Health Qual. Life Outcomes 2013, 11, 169. [Google Scholar] [CrossRef]
- Mendling, W.; Brasch, J. Guideline vulvovaginal candidosis (2010) of the german society for gynecology and obstetrics, the working group for infections and infectimmunology in gynecology and obstetrics, the german society of dermatology, the board of german dermatologists and the german speaking mycological society. Mycoses 2012, 55, 1–13. [Google Scholar] [CrossRef]
- Boyd Tressler, A.; Markwei, M.; Fortin, C.; Yao, M.; Procop, G.W.; Soper, D.E.; Goje, O. Risks for Recurrent Vulvovaginal Candidiasis Caused by Non-Albicans Candida Versus Candida albicans. J. Womens Health 2021, 30, 1588–1596. [Google Scholar] [CrossRef]
- Donders, G.; Sziller, I.O.; Paavonen, J.; Hay, P.; de Seta, F.; Bohbot, J.M.; Kotarski, J.; Vives, J.A.; Szabo, B.; Cepuliene, R.; et al. Management of recurrent vulvovaginal candidosis: Narrative review of the literature and European expert panel opinion. Front. Cell Infect. Microbiol. 2022, 12, 934353. [Google Scholar] [CrossRef]
- Geiger, A.M.; Foxman, B. Risk factors for vulvovaginal candidiasis: A case-control study among university students. Epidemiology 1996, 7, 182–187. [Google Scholar] [CrossRef]
- Sobel, J.D.; Vempati, Y.S. Bacterial Vaginosis and Vulvovaginal Candidiasis Pathophysiologic Interrelationship. Microorganisms 2024, 12, 108. [Google Scholar] [CrossRef]
- Donders, G.; Bellen, G.; Byttebier, G.; Verguts, L.; Hinoul, P.; Walckiers, R.; Stalpaert, M.; Vereecken, A.; Van Eldere, J. Individualized decreasing-dose maintenance fluconazole regimen for recurrent vulvovaginal candidiasis (ReCiDiF trial). Am. J. Obstet. Gynecol. 2008, 199, 613.e1–613.e9. [Google Scholar] [CrossRef]
- Sobel, J.D.; Wiesenfeld, H.C.; Martens, M.; Danna, P.; Hooton, T.M.; Rompalo, A.; Sperling, M.; Livengood, C., 3rd; Horowitz, B.; Von Thron, J.; et al. Maintenance fluconazole therapy for recurrent vulvovaginal candidiasis. N. Engl. J. Med. 2004, 351, 876–883. [Google Scholar] [CrossRef] [PubMed]
- Colombo, A.L.; Guimaraes, T.; Camargo, L.F.; Richtmann, R.; Queiroz-Telles, F.; Salles, M.J.; Cunha, C.A.; Yasuda, M.A.; Moretti, M.L.; Nucci, M. Brazilian guidelines for the management of candidiasis—A joint meeting report of three medical societies: Sociedade Brasileira de Infectologia, Sociedade Paulista de Infectologia and Sociedade Brasileira de Medicina Tropical. Braz. J. Infect. Dis. 2013, 17, 283–312. [Google Scholar] [CrossRef]
- Collins, L.M.; Moore, R.; Sobel, J.D. Prognosis and Long-Term Outcome of Women with Idiopathic Recurrent Vulvovaginal Candidiasis Caused by Candida albicans. J. Low. Genit. Tract. Dis. 2020, 24, 48–52. [Google Scholar] [CrossRef] [PubMed]
- Sobel, J.D.; Sobel, R. Current treatment options for vulvovaginal candidiasis caused by azole-resistant Candida species. Expert. Opin. Pharmacother. 2018, 19, 971–977. [Google Scholar] [CrossRef]
- Rosa, M.I.; Silva, B.R.; Pires, P.S.; Silva, F.R.; Silva, N.C.; Silva, F.R.; Souza, S.L.; Madeira, K.; Panatto, A.P.; Medeiros, L.R. Weekly fluconazole therapy for recurrent vulvovaginal candidiasis: A systematic review and meta-analysis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2013, 167, 132–136. [Google Scholar] [CrossRef]
- Watson, C.; Calabretto, H. Comprehensive review of conventional and non-conventional methods of management of recurrent vulvovaginal candidiasis. Aust. N. Z. J. Obstet. Gynaecol. 2007, 47, 262–272. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Sae-Tia, S.; Fries, B.C. Candidiasis and mechanisms of antifungal resistance. Antibiotics 2020, 9, 312. [Google Scholar] [CrossRef]
- Marchaim, D.; Lemanek, L.; Bheemreddy, S.; Kaye, K.S.; Sobel, J.D. Fluconazole-resistant Candida albicans vulvovaginitis. Obstet. Gynecol. 2012, 120, 1407–1414. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chen, L.; Ruan, H.; Xiong, Z.; Wang, W.; Qiu, J.; Song, W.; Zhang, C.; Xue, F.; Qin, T.; et al. Oteseconazole versus fluconazole for the treatment of severe vulvovaginal candidiasis: A multicenter, randomized, double-blinded, phase 3 trial. Antimicrob. Agents Chemother. 2024, 68, e0077823. [Google Scholar] [CrossRef]
- Fan, S.R.; Liu, X.P. In vitro fluconazole and nystatin susceptibility and clinical outcome in complicated vulvovaginal candidosis. Mycoses 2011, 54, 501–505. [Google Scholar] [CrossRef]
- Maftei, N.M.; Arbune, M.; Georgescu, C.V.; Elisei, A.M.; Iancu, A.V.; Tatu, A.L. Vulvovaginal Candidiasis in Pregnancy-Between Sensitivity and Resistance to Antimycotics. J. Xenobiot. 2023, 13, 312–322. [Google Scholar] [CrossRef] [PubMed]
- Richter, S.S.; Galask, R.P.; Messer, S.A.; Hollis, R.J.; Diekema, D.J.; Pfaller, M.A. Antifungal susceptibilities of Candida species causing vulvovaginitis and epidemiology of recurrent cases. J. Clin. Microbiol. 2005, 43, 2155–2162. [Google Scholar] [CrossRef]
- Borman, A.M.; Johnson, E.M. Name changes for fungi of medical importance, 2018 to 2019. J. Clin. Microbiol. 2021, 59, e01811. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.C.; Dean, G.; Soni, S.; Sundaram, S.; Fearnley, N.; Wilson, J.D. Outcomes and experiences of using oral voriconazole with or without concomitant topical agents to treat refractory vulvovaginal yeast infections. Int. J. STD AIDS 2022, 33, 1134–1141. [Google Scholar] [CrossRef]
- Neal, C.M.; Martens, M.G. Clinical challenges in diagnosis and treatment of recurrent vulvovaginal candidiasis. SAGE Open Med. 2022, 10, 20503121221115201. [Google Scholar] [CrossRef]
- Bitew, A.; Abebaw, Y. Vulvovaginal candidiasis: Species distribution of Candida and their antifungal susceptibility pattern. BMC Womens Health 2018, 18, 94. [Google Scholar] [CrossRef] [PubMed]
- Rezaei-Matehkolaei, A.; Shafiei, S.; Zarei-Mahmoudabadi, A. Isolation, molecular identification, and antifungal susceptibility profiles of vaginal isolates of Candida species. Iran. J. Microbiol. 2016, 8, 410–417. [Google Scholar]
- Tits, J.; Cools, F.; De Cremer, K.; De Brucker, K.; Berman, J.; Verbruggen, K.; Gevaert, B.; Cos, P.; Cammue, B.P.A.; Thevissen, K. Combination of Miconazole and Domiphen Bromide Is Fungicidal against Biofilms of Resistant Candida spp. Antimicrob. Agents Chemother. 2020, 64, 10–1128. [Google Scholar] [CrossRef]
- Hösükoğlu, F.; Ekşi, F.; Erinmez, M.; Uğur, M. An Epidemiologic Analysis of Vulvovaginal Candidiasis and Antifungal Susceptibilities. Infect. Microbes Dis. 2022, 4, 131–136. [Google Scholar] [CrossRef]
- Sobel, J.D.; Sebastian, S.; Boikov, D.A. A longitudinal study on fluconazole resistance in Candida albicans vaginal isolates. Mycoses 2023, 66, 563–565. [Google Scholar] [CrossRef]
- Maraki, S.; Mavromanolaki, V.E.; Stafylaki, D.; Nioti, E.; Hamilos, G.; Kasimati, A. Epidemiology and antifungal susceptibility patterns of Candida isolates from Greek women with vulvovaginal candidiasis. Mycoses 2019, 62, 692–697. [Google Scholar] [CrossRef] [PubMed]
- Anh, D.N.; Hung, D.N.; Tien, T.V.; Dinh, V.N.; Son, V.T.; Luong, N.V.; Van, N.T.; Quynh, N.T.N.; Van Tuan, N.; Tuan, L.Q.; et al. Prevalence, species distribution and antifungal susceptibility of Candida albicans causing vaginal discharge among symptomatic non-pregnant women of reproductive age at a tertiary care hospital, Vietnam. BMC Infect. Dis. 2021, 21, 523. [Google Scholar] [CrossRef] [PubMed]
- Ratner, J.C.; Wilson, J.; Roberts, K.; Armitage, C.; Barton, R.C. Increasing rate of non-Candida albicans yeasts and fluconazole resistance in yeast isolates from women with recurrent vulvovaginal candidiasis in Leeds, United Kingdom. Sex. Transm. Infect. 2024. [Google Scholar] [CrossRef] [PubMed]
- Nyirjesy, P.; Schwebke, J.R.; Angulo, D.A.; Harriott, I.A.; Azie, N.E.; Sobel, J.D. Phase 2 Randomized Study of Oral Ibrexafungerp Versus Fluconazole in Vulvovaginal Candidiasis. Clin. Infect. Dis. 2022, 74, 2129–2135. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Sobel, J.D.; Bhargava, P.; Boikov, D.; Vazquez, J.A. Vaginitis due to Candida krusei: Epidemiology, clinical aspects, and therapy. Clin. Infect. Dis. 2002, 35, 1066–1070. [Google Scholar] [CrossRef]
- Kalkan, Ü.; Yassa, M.; Sandal, K.; Tekin, A.B.; Kilinç, C.; Gülümser, Ç.; Tug, N. The efficacy of the boric acid-based maintenance therapy in preventing recurrent vulvovaginal candidiasis. J. Exp. Clin. Med. 2021, 38, 461–465. [Google Scholar] [CrossRef]
- Kennedy, M.A.; Sobel, J.D. Vulvovaginal Candidiasis Caused by Non-albicans Candida Species: New Insights. Curr. Infect. Dis. Rep. 2010, 12, 465–470. [Google Scholar] [CrossRef]
- Martens, M.G.; Maximos, B.; Degenhardt, T.; Person, K.; Curelop, S.; Ghannoum, M.; Flynt, A.; Brand, S.R. Phase 3 study evaluating the safety and efficacy of oteseconazole in the treatment of recurrent vulvovaginal candidiasis and acute vulvovaginal candidiasis infections. Am. J. Obstet. Gynecol. 2022, 227, 880.e1–880.e11. [Google Scholar] [CrossRef]
- Nyirjesy, P.; Alexander, A.B.; Weitz, M.V. Vaginal Candida parapsilosis: Pathogen or bystander? Infect. Dis. Obstet. Gynecol. 2005, 13, 37–41. [Google Scholar] [CrossRef]
- Ray, D.; Goswami, R.; Banerjee, U.; Dadhwal, V.; Goswami, D.; Mandal, P.; Sreenivas, V.; Kochupillai, N. Prevalence of Candida glabrata and its response to boric acid vaginal suppositories in comparison with oral fluconazole in patients with diabetes and vulvovaginal candidiasis. Diabetes Care 2007, 30, 312–317. [Google Scholar] [CrossRef]
- Iavazzo, C.; Gkegkes, I.D.; Zarkada, I.M.; Falagas, M.E. Boric acid for recurrent vulvovaginal candidiasis: The clinical evidence. J. Womens Health 2011, 20, 1245–1255. [Google Scholar] [CrossRef]
- Saxon Lead Author, G.; Edwards, A.; Rautemaa-Richardson, R.; Owen, C.; Nathan, B.; Palmer, B.; Wood, C.; Ahmed, H.; Ahmad Patient Representatives, S.; FitzGerald Ceg Editor, M. British Association for Sexual Health and HIV national guideline for the management of vulvovaginal candidiasis (2019). Int. J. STD AIDS 2020, 31, 1124–1144. [Google Scholar] [CrossRef] [PubMed]
- Willems, H.M.E.; Ahmed, S.S.; Liu, J.; Xu, Z.; Peters, B.M. Vulvovaginal Candidiasis: A Current Understanding and Burning Questions. J. Fungi 2020, 6, 27. [Google Scholar] [CrossRef] [PubMed]
- Farage, M.A.; Miller, K.W.; Ledger, W.J. Determining the cause of vulvovaginal symptoms. Obstet. Gynecol. Surv. 2008, 63, 445–464. [Google Scholar] [CrossRef]
- Phillips, N.A.; Bachmann, G.; Haefner, H.; Martens, M.; Stockdale, C. Topical Treatment of Recurrent Vulvovaginal Candidiasis: An Expert Consensus. Womens Health Rep. 2022, 3, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Acs, N.; Banhidy, F.; Puho, E.; Czeizel, A.E. Teratogenic effects of vaginal boric acid treatment during pregnancy. Int. J. Gynaecol. Obstet. 2006, 93, 55–56. [Google Scholar] [CrossRef]
- Faro, S. Systemic vs. topical therapy for the treatment of Vulvovaginal Candidiasis. Infect. Dis. Obstet. Gynecol. 1994, 1, 202–208. [Google Scholar] [CrossRef]
- Genovese, C.; Cianci, A.; Corsello, S.; Ettore, G.; Mattana, P.; Tempera, G. Combined systemic (fluconazole) and topical (metronidazole + clotrimazole) therapy for a new approach to the treatment and prophylaxis of recurrent candidiasis. Minerva Ginecol. 2019, 71, 321–328. [Google Scholar] [CrossRef]
- Costa-de-Oliveira, S.; Miranda, I.M.; Silva-Dias, A.; Silva, A.P.; Rodrigues, A.G.; Pina-Vaz, C. Ibuprofen potentiates the in vivo antifungal activity of fluconazole against Candida albicans murine infection. Antimicrob. Agents Chemother. 2015, 59, 4289–4292. [Google Scholar] [CrossRef]
- Pina-Vaz, C.; Sansonetty, F.; Rodrigues, A.G.; Martinez, D.E.O.J.; Fonseca, A.F.; Mardh, P.A. Antifungal activity of ibuprofen alone and in combination with fluconazole against Candida species. J. Med. Microbiol. 2000, 49, 831–840. [Google Scholar] [CrossRef]
- Akinosoglou, K.; Schinas, G.; Polyzou, E.; Tsiakalos, A.; Donders, G.G.G. Probiotics in the Management of Vulvovaginal Candidosis. J. Clin. Med. 2024, 13, 5163. [Google Scholar] [CrossRef] [PubMed]
- Sobel, J.D. Resistance to Fluconazole of Candida albicans in Vaginal Isolates: A 10-Year Study in a Clinical Referral Center. Antimicrob. Agents Chemother. 2023, 67, e0018123. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zhang, C.; Li, Z.; Ji, B.; Man, S.; Yi, M.; Li, R.; Hao, M.; Wang, S. Epidemiology and antifungal susceptibility of fungal infections from 2018 to 2021 in Shandong, eastern China: A report from the SPARSS program. Indian J. Med. Microbiol. 2024, 47, 100518. [Google Scholar] [CrossRef] [PubMed]
- Sobel, J.D.; Donders, G.; Degenhardt, T.; Person, K.; Curelop, S.; Ghannoum, M.; Brand, S.R. Efficacy and Safety of Oteseconazole in Recurrent Vulvovaginal Candidiasis. NEJM Evid. 2022, 1, EVIDoa2100055. [Google Scholar] [CrossRef]
- Miyazaki, M.; Horii, T.; Hata, K.; Watanabe, N.A.; Nakamoto, K.; Tanaka, K.; Shirotori, S.; Murai, N.; Inoue, S.; Matsukura, M.; et al. In vitro activity of E1210, a novel antifungal, against clinically important yeasts and molds. Antimicrob. Agents Chemother. 2011, 55, 4652–4658. [Google Scholar] [CrossRef]
- Pfaller, M.; Huband, M.; Bien, P.A.; Carvalhaes, C.G.; Klauer, A.; Castanheira, M. In vitro activity of manogepix and comparators against infrequently encountered yeast and mold isolates from the SENTRY Surveillance Program (2017–2022). Antimicrob. Agents Chemother. 2024, 68, e0113223. [Google Scholar] [CrossRef]
- Pfaller, M.A.; Huband, M.D.; Rhomberg, P.R.; Bien, P.A.; Castanheira, M. Activities of Manogepix and Comparators against 1,435 Recent Fungal Isolates Collected during an International Surveillance Program (2020). Antimicrob. Agents Chemother. 2022, 66, e0102822. [Google Scholar] [CrossRef]
- Pappas, P.G.; Vazquez, J.A.; Oren, I.; Rahav, G.; Aoun, M.; Bulpa, P.; Ben-Ami, R.; Ferrer, R.; McCarty, T.; Thompson, G.R.; et al. Clinical safety and efficacy of novel antifungal, fosmanogepix, for the treatment of candidaemia: Results from a Phase 2 trial. J. Antimicrob. Chemother. 2023, 78, 2471–2480. [Google Scholar] [CrossRef] [PubMed]
- Vazquez, J.A.; Pappas, P.G.; Boffard, K.; Paruk, F.; Bien, P.A.; Tawadrous, M.; Ople, E.; Wedel, P.; Oborska, I.; Hodges, M.R. Clinical Efficacy and Safety of a Novel Antifungal, Fosmanogepix, in Patients with Candidemia Caused by Candida auris: Results from a Phase 2 Trial. Antimicrob. Agents Chemother. 2023, 67, e0141922. [Google Scholar] [CrossRef]
- Thompson, G.R., 3rd; Soriano, A.; Honore, P.M.; Bassetti, M.; Cornely, O.A.; Kollef, M.; Kullberg, B.J.; Pullman, J.; Hites, M.; Fortun, J.; et al. Efficacy and safety of rezafungin and caspofungin in candidaemia and invasive candidiasis: Pooled data from two prospective randomised controlled trials. Lancet Infect. Dis. 2024, 24, 319–328. [Google Scholar] [CrossRef]
- Pfaller, M.A.; Carvalhaes, C.; Messer, S.A.; Rhomberg, P.R.; Castanheira, M. Activity of a Long-Acting Echinocandin, Rezafungin, and Comparator Antifungal Agents Tested against Contemporary Invasive Fungal Isolates (SENTRY Program, 2016 to 2018). Antimicrob. Agents Chemother. 2020, 64, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Thompson, G.R.; Soriano, A.; Skoutelis, A.; Vazquez, J.A.; Honore, P.M.; Horcajada, J.P.; Spapen, H.; Bassetti, M.; Ostrosky-Zeichner, L.; Das, A.F.; et al. Rezafungin Versus Caspofungin in a Phase 2, Randomized, Double-blind Study for the Treatment of Candidemia and Invasive Candidiasis: The STRIVE Trial. Clin. Infect. Dis. 2021, 73, e3647–e3655. [Google Scholar] [CrossRef] [PubMed]
- Thompson, G.R., 3rd; Soriano, A.; Cornely, O.A.; Kullberg, B.J.; Kollef, M.; Vazquez, J.; Honore, P.M.; Bassetti, M.; Pullman, J.; Chayakulkeeree, M.; et al. Rezafungin versus caspofungin for treatment of candidaemia and invasive candidiasis (ReSTORE): A multicentre, double-blind, double-dummy, randomised phase 3 trial. Lancet 2023, 401, 49–59. [Google Scholar] [CrossRef]
- Locke, J.B.; Pillar, C.M.; Castanheira, M.; Carvalhaes, C.G.; Andes, D.; Aram, J.A.; Andrzejewski, C.; Bartizal, K.; Das, A.F.; Sandison, T.; et al. Outcomes by Candida spp. in the ReSTORE Phase 3 trial of rezafungin versus caspofungin for candidemia and/or invasive candidiasis. Antimicrob. Agents Chemother. 2024, 68, e0158423. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, K.; Miyazaki, T.; Fukuda, Y.; Mitsuyama, J.; Saijo, T.; Shimamura, S.; Yamamoto, K.; Imamura, Y.; Izumikawa, K.; Yanagihara, K.; et al. The Novel Arylamidine T-2307 Selectively Disrupts Yeast Mitochondrial Function by Inhibiting Respiratory Chain Complexes. Antimicrob. Agents Chemother. 2019, 63, 10–1128. [Google Scholar] [CrossRef]
- Wiederhold, N.P.; Najvar, L.K.; Fothergill, A.W.; Bocanegra, R.; Olivo, M.; McCarthy, D.I.; Fukuda, Y.; Mitsuyama, J.; Patterson, T.F. The novel arylamidine T-2307 demonstrates in vitro and in vivo activity against echinocandin-resistant Candida glabrata. J. Antimicrob. Chemother. 2016, 71, 692–695. [Google Scholar] [CrossRef]
- Wiederhold, N.P.; Najvar, L.K.; Fothergill, A.W.; Bocanegra, R.; Olivo, M.; McCarthy, D.I.; Kirkpatrick, W.R.; Fukuda, Y.; Mitsuyama, J.; Patterson, T.F. The novel arylamidine T-2307 maintains in vitro and in vivo activity against echinocandin-resistant Candida albicans. Antimicrob. Agents Chemother. 2015, 59, 1341–1343. [Google Scholar] [CrossRef]
- Roetzer, A.; Gabaldón, T.; Schüller, C. From Saccharomyces cerevisiae to Candida glabrata in a few easy steps: Important adaptations for an opportunistic pathogen. FEMS Microbiol. Lett. 2011, 314, 1–9. [Google Scholar] [CrossRef]
- Farr, A.; Effendy, I.; Frey Tirri, B.; Hof, H.; Mayser, P.; Petricevic, L.; Ruhnke, M.; Schaller, M.; Schaefer, A.P.A.; Sustr, V.; et al. Guideline: Vulvovaginal candidosis (AWMF 015/072, level S2k). Mycoses 2021, 64, 583–602. [Google Scholar] [CrossRef]
- Sherrard, J.; Wilson, J.; Donders, G.; Mendling, W.; Jensen, J.S. 2018 European (IUSTI/WHO) International Union against sexually transmitted infections (IUSTI) World Health Organisation (WHO) guideline on the management of vaginal discharge. Int. J. STD AIDS 2018, 29, 1258–1272. [Google Scholar] [CrossRef]
- Rex, J.H.; Nelson, P.W.; Paetznick, V.L.; Lozano-Chiu, M.; Espinel-Ingroff, A.; Anaissie, E.J. Optimizing the correlation between results of testing in vitro and therapeutic outcome in vivo for fluconazole by testing critical isolates in a murine model of invasive candidiasis. Antimicrob. Agents Chemother. 1998, 42, 129–134. [Google Scholar] [CrossRef] [PubMed]
- MacCallum, D.M.; Coste, A.; Ischer, F.; Jacobsen, M.D.; Odds, F.C.; Sanglard, D. Genetic dissection of azole resistance mechanisms in Candida albicans and their validation in a mouse model of disseminated infection. Antimicrob. Agents Chemother. 2010, 54, 1476–1483. [Google Scholar] [CrossRef] [PubMed]
- Donders, G.G.G.; Grinceviciene, S.; Bellen, G.; Jaeger, M.; Ten Oever, J.; Netea, M.G. Is non-response to fluconazole maintenance therapy for recurrent Candida vaginitis related to sensitization to atopic reactions? Am. J. Reprod. Immunol. 2018, 79, e12811. [Google Scholar] [CrossRef] [PubMed]
Included Studies | Patients | Inclusion Criteria | Candida Species | Intervention | Administration | Study Design | Outcomes |
---|---|---|---|---|---|---|---|
Wang X et al., 2024 (China) [19] | 322 10% Resistant in Fluconazole arm 2% Resistant in Oteseconazole arm | 18 to 75 years VSS score ≥ 7 Resistance determined through in vitro antifungal susceptibility testing | C. albicans C. glabrata C. tropicalis C. krusei C. spherical C. parapsilosis K. ohmeri C. dubliniensis S. cerevisiae C. lusitaniae | Oteseconazole (oral) Fluconazole (oral) | Oteseconazole Group: 600 mg on Day 1, followed by 450 mg on Day 2, Matched placebo on Day 4. Fluconazole Group: 150 mg on Day 1, Matching placebo on Day 2, 150 mg on Day 4. | RCT | Mycological cure rate oteseconazole arm 82.50% versus fluconazole arm 59.12% Clinical cure rate oteseconazole arm 71.25% versus fluconazole arm 55.97% |
Maftei NM et al., 2023 (Romania) [21] | 663 pregnant women C. albicans: Fluconazole resistance rate: 8.5% C. glabrata: Fluconazole resistance rate: 100% C. krusei: Fluconazole resistance rate: 66.7% | Resistance determined using a Candifast kit, which tested various antimycotics, including fluconazole, on isolated Candida strains from the patients | C. albicans C. glabrata C. krusei | Econazole Fluconazole Ketoconazole Miconazole Amphotericin B Nystatin Flucytosine | No specific dosages or duration for treatment | Retrospective RWE | Miconazole was effective in over 80% of the strains, making it the preferred treatment for C. krusei In Fluconazole-resistant C. albicans, miconazole had the highest sensitivity at 93.2% |
Marchaim D et al., 2012 (USA) [18] | 25 women with fluconazole-resistant recurrent C albicans | Resistance determined using broth microdilution as per CLSI guidelines. Fluconazole resistance defined as MIC of 2 mg/mL or greater. | C. albicans | Increased Dosages of Fluconazole (orally) Boric Acid Vaginal Suppositories Ketoconazole Itraconazole Gentian Violet Nystatin Suppositories Topical Azoles and Other Antifungals | Boric Acid: 600 mg intravaginal suppositories daily for 2 weeks. Fluconazole: For low-level resistance (MIC of 2–4 mg/mL), 150–200 mg bi-weekly. Ketoconazole: 100 mg every 24 h. Itraconazole: 200 mg every 24 h. Gentian Violet: Applied daily for 14 days in cases with high-level resistance | Retrospective RWE | High-Dose Fluconazole: 11 patients remained asymptomatic with negative vaginal yeast cultures Boric Acid Vaginal Suppositories: 3 patients remained asymptomatic Ketoconazole Therapy: 4 out of 5 remained asymptomatic and culture-negative Itraconazole Therapy: Three patients were successfully managed Gentian Violet: 1 patient was treated and remained asymptomatic and culture-negative for over two years |
Fan S et al., 2015 (China) [1] | 293 Recurrent Vulvovaginal Candidiasis | 18 to 50 years old Resistance determined in vitro using the Neo-Sensitabs tablet assay. | C. albicans C. glabrata C. tropicalis C. parapsilosis C. famata | Vaginal Nystatin Suppositories Oral Fluconazole | Nystatin Group: 20 MU daily vaginal suppositories for 14 days as the induction regimen, followed by 20 MU daily for a week pre-/post- menstruation for half a year as maintenance. Fluconazole Group: 150 mg on 1, 4, and 7 days as induction, and then 150 mg every 7 days for half a year as maintenance. | RCT | Fluconazole-Resistant Cases in the Nystatin Group: Mycological cure rate in 5/9 cases |
File B et al., 2023 (USA) [2] | 970 71 (7.3%) with clinically defined fluconazole-resistant C. albicans | Resistance defined clinically based on the persistence of symptoms after fluconazole treatment. In vitro susceptibility testing was performed when available, with fluconazole resistance determined by MIC of ≥8 µg/mL. | C. albicans | Prolonged Antifungal Therapy involved extended courses of oral or topical azole therapy, such as fluconazole Non-Azole Treatments: For recurrent or resistant cases, boric acid suppositories were used | Boric Acid: 600 mg intravaginally nightly for at least 14 days. 200 mg of fluconazole taken orally once or twice a week for a duration of 6 months. | Retrospective RWE | Boric acid: The mycological and clinical cure rates were 85.7% and 73.7%, respectively. |
Morris GC et al., 2022 (UK) [24] | 11 10/11 isolates were fluconazole-resistant | 25 to 64 years old Patients had symptoms such as itching, soreness, and discharge persisting for at least three months, with a median duration of one year. Fluconazole resistance determined via yeast cultures with susceptibility testing, as per CLSI standards. | C. albicans C. glabrata S. cerevisiae C. krusei C. lambica C. dubliniensis | Oral voriconazole, with or without concomitant topical agents | Voriconazole: 400 mg twice on day 1, and then 200 mg twice every 24 h for 13 days. Nystatin Pessaries: 100,000 IU intravaginally, typically used for 12 to 14 nights. Miconazole Cream: 2% cream, applied intravaginally (5 g per night) for 14 nights. Boric Acid Pessaries: 600 mg intravaginally, used daily for 14 nights. | Retrospective Case Report | All cases were treated with oral voriconazole. 6/11 also used concomitant topical agents. Symptom reduction and yeast clearance in 8/11. 2/11 initially had a partial response but achieved resolution after a second course of voriconazole |
Fan SR and Liu XP, 2011 (China) [20] | 283 | Resistance determined using the E-test method following the CLSI guidelines. | C. albicans C. glabrata S. cerevisiae C. tropicalis C. famata C. parapsilosis C. krusei | Nystatin Vaginal Tablets Oral Fluconazole | Nystatin Group: 20 MU/day of vaginal nystatin for 14 days. Fluconazole Group: 150 mg in two doses, and the second dose administered 3 days after the first. | Non-RCT | In vitro susceptibility to nystatin by all Candida species. |
Richter SS et al., 2005 (USA) [22] | 429 | Resistance determined using a broth microdilution method as per NCCLS guidelines. MIC values used to classify the resistance. | C. albicans C. glabrata C. parapsilosis C. krusei S. cerevisiae C. tropicalis C. lusitaniae Trichosporon sp. | Fluconazole Voriconazole Caspofungin Micafungin Flucytosine Miconazole Clotrimazole Ketoconazole | Treatment with fluconazole was 200 mg orally every other day for three doses. C. glabrata were treated with boric acid (600 mg intravaginally once daily for 2 weeks). | Retrospective RWE | Candida albicans: Fluconazole: 61.5% reported improvement Clotrimazole: Clinical improvement in 57.1% of episodes treated. Econazole: Clinical improvement in 40% of episodes treated. Candida glabrata: Boric Acid: Improvement in 48.6% of episodes treated. Clotrimazole: Clinical improvement in 57.1% of episodes treated. Econazole: Clinical improvement in 40% of episodes treated. Candida krusei: Fluconazole: Two episodes showed symptomatic improvement despite high MIC values (32 and 128 µg/mL). |
Singh S et al., 2002 (USA) [35] | 12 women aged between 32 to 63 years, with a mean age of 44 years. | Resistance determined using the broth microdilution method as per NCCLS guidelines. MIC for fluconazole was very high, ranging from 32 to 164 µg/mL, indicating significant resistance. | C. krusei (primary focus) C. albicans C. tropicalis C. glabrata C. guilliermondii | Oral: Ketoconazole Itraconazole Topical: Boric Acid Clotrimazole Amphotericin B Nystatin Flucytosine | Boric Acid: 4 to 6 weeks of topical treatment, 600 mg intravaginally. Clotrimazole: 6 to 36 weeks of topical treatment, with varying dosages depending on the patient’s response. Ketoconazole: 10 days of oral therapy. Nystatin: 4 weeks of topical treatment. Amphotericin B: 2 weeks of 3% topical cream. Itraconazole: Not specified duration but failed to respond to therapy. Flucytosine: 2 weeks of topical treatment, followed by 4 weeks of nystatin. | Retrospective RWE | Cure was achieved in 4 of the 6 patients treated with boric acid. Clotrimazole also showed success in 2 out of 3 patients. However, several cases were refractory to multiple treatments, indicating the challenging nature of treating C. krusei vaginitis |
Nyirjesy P et al., 2022 (USA) [34] | 18 years or older Symptomatic moderate-to-severe acute VVC. VSS score of ≥7, a positive microscopic examination with 10% potassium hydroxide revealing yeast forms, and a vaginal pH of ≤4.5. | Resistance was measured using in vitro susceptibility testing as per CLSI guidelines | C. albicans C. glabrata C. krusei C. auris C. parapsilosis C. tropicalis | Ibrexafungerp: Oral Fluconazole: Oral | Ibrexafungerp: 300 mg twice for 24 h Fluconazole: 150 mg for 24 h. | RCT | Clinical cure rates were 51.9% for ibrexafungerp versus 58.3% for fluconazole (day 10). 70.4% for ibrexafungerp versus 50.0% for fluconazole (day 25). The need for rescue medication was lower with ibrexafungerp (3.7%) compared to fluconazole (29.2%). |
Kalkan Ü et al., 2021 (Turkey) [36] | 18 to 50 years with recurrent VVC | Inclusion required at least one episode verified by microscopy Resistance was not directly measured as focused on boric acid as an alternative treatment | C. albicans C. glabrata | Boric Acid: Intravaginal Vaginal Estriol-Lactobacilli Combination: Intravaginal | Boric Acid: 600 mg intravaginal suppositories daily for 14 nights during induction, followed by maintenance therapy of 600 mg for another 5 days, starting on the first day after menstruation. Dose adjusted to 300 mg every 24 h instead if irritation occurred. Estriol-Lactobacilli: Administered after boric acid treatment, containing 0.03 mg estriol and live Lactobacillus acidophilus. | Retrospective RWE | The overall success rate of boric acid-based therapy at the one-year follow-up was 94.8%. |
D. Ray et al., 2007 (India) [40] | 112 female diabetic patients 77 patients had Type 2 diabetes, and 35 had Type 1 diabetes 40.2–41.2 years of age | Natural resistance of Candida glabrata to fluconazole, particularly in diabetic women with VVC | C. glabrata: 68 patients (61.3%) C. albicans: 32 patients (28.8%) C. tropicalis: 4 patients (3.6%) | Fluconazole Boric acid | Single-dose oral 150 mg of fluconazole. Boric acid vaginal suppositories at 600 mg per day for 14 days. | RCT | Mycological Cure Rates: C. glabrata: Boric acid: 72.4% cure rate (21 of 29 patients). Fluconazole: 33.3% cure rate (10 of 30 patients). C. albicans: Boric acid: 61.1% cure rate (11 of 18 patients). Fluconazole: 85.7% cure rate (12 of 14 patients). |
M.A. Kennedy and J.D. Sobel, 2010 (USA) [37] | 120 women with NAC isolated 44.7 mean years of age | Resistance inferred from clinical failures in the treatment of NAC species, especially C. glabrata, which showed persistence despite fluconazole | C. glabrata: 80 patients. C. parapsilosis: 32 patients. C. lusitaniae: 8 patients | Boric Acid Fluconazole | For C. glabrata: Boric acid vaginal capsules (600 mg) used nightly for 14 to 21 days. For C. parapsilosis: Fluconazole primary treatment, with dosing similar to that used for C. albicans. C. lusitaniae was treated with either boric acid or fluconazole. | Retrospective RWE | Candida glabrata: Overall, 35% (13/37) of treated patients had both clinical and mycological resolution Candida parapsilosis: 45% (9/20) had complete resolution of symptoms and eradication of yeast. Candida lusitaniae: 42.9% (3/7) had complete resolution of symptoms and eradication of yeast. Boric acid is more effective for treating C. glabrata, particularly in cases of azole resistance, with 35% achieving full resolution, whereas fluconazole has a high failure rate for this species. |
Nyirjesy P et al., 2005 (USA) [39] | 51 women with chronic VVC complaints who had positive cultures for Candida parapsilosis 19–86 years of age | NAC species, including C. parapsilosis, may have higher MICs for azoles but did not directly measure resistance | C. parapsilosis C. albicans C. glabrata C. lusitaniae | Boric acid Buconazole Fluconazole Miconazole | Boric Acid: 600 mg twice daily for 2 weeks. Fluconazole: 200 mg twice weekly for 1 month. Buconazole: Two vaginal applicators, 1 week apart. Miconazole: One vaginal applicator, nightly for 7 days. | Retrospective RWE | Mycological Cure: Fluconazole: 17 out of 19 cases (89.5%). Buconazole: 7 out of 7 cases (100%). Boric acid: 6 out of 6 cases (100%). Miconazole: 1 out of 1 case |
M.G. Martens et al., 2022 (USA) [38] | 219 patients Mean age 35 years | Fluconazole resistance was assessed through MIC | C. albicans (76.1%) C. glabrata (11.8%) C. parapsilosis (5.4%) C. tropicalis (4.1%) | Oteseconazole Fluconazole | Oteseconazole Induction phase: 600 mg (4 × 150 mg capsules) on day 1 and 450 mg (3 × 150 mg capsules) on day 2. Maintenance phase: 150 mg once weekly for 11 weeks. Fluconazole Induction phase: 150 mg on day 1, day 4, and day 7 (3 doses total). Maintenance phase: Given a placebo for the same duration. | RCT | Oteseconazole 5.1% of participants had a recurrent VVC episode Fluconazole/placebo: 42.2% of participants had a recurrent VVC episode |
Ratner JC et al., 2024 (UK) [33] | 5461 adult patients 3-year period (April 2018–March 2021) | Fluconazole resistance assessed using the disc diffusion method and Sensititre YeastOne assay as per CLSI | C. albicans (>85% of isolates; declining over the years). NAC: Nakaseomyces glabrata [Candida glabrata], Pichia kudriavzevii [Candida krusei], C. dubliniensis, Meyerozyma guilliermondii, Clavispora lusitaniae, C. parapsilosis, C. tropicalis. | Fluconazole Itraconazole Voriconazole Clotrimazole Amphotericin B | Fluconazole: Induction dose of 150 mg orally three times per week, followed by 150 mg once weekly for 6 months Clotrimazole: A 500 mg pessary (vaginal tablet) as single-dose treatment. Recurrent cases: 100 mg pessaries daily for 6 days. Amphotericin B/Voriconazole/Itraconazole: Dosage N/A | Retrospective RWE | Patients with fluconazole-resistant (both Candida albicans and NAC) faced higher treatment failure, necessitating multiple courses of alternative antifungals. NAC species were generally more resistant to standard treatments, leading to a lower success rate when fluconazole was used |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akinosoglou, K.; Livieratos, A.; Asimos, K.; Donders, F.; Donders, G.G.G. Fluconazole-Resistant Vulvovaginal Candidosis: An Update on Current Management. Pharmaceutics 2024, 16, 1555. https://doi.org/10.3390/pharmaceutics16121555
Akinosoglou K, Livieratos A, Asimos K, Donders F, Donders GGG. Fluconazole-Resistant Vulvovaginal Candidosis: An Update on Current Management. Pharmaceutics. 2024; 16(12):1555. https://doi.org/10.3390/pharmaceutics16121555
Chicago/Turabian StyleAkinosoglou, Karolina, Achilleas Livieratos, Konstantinos Asimos, Francesca Donders, and Gilbert G. G. Donders. 2024. "Fluconazole-Resistant Vulvovaginal Candidosis: An Update on Current Management" Pharmaceutics 16, no. 12: 1555. https://doi.org/10.3390/pharmaceutics16121555
APA StyleAkinosoglou, K., Livieratos, A., Asimos, K., Donders, F., & Donders, G. G. G. (2024). Fluconazole-Resistant Vulvovaginal Candidosis: An Update on Current Management. Pharmaceutics, 16(12), 1555. https://doi.org/10.3390/pharmaceutics16121555