Development and Characterization of Novel Combinations and Compositions of Nanostructured Lipid Carrier Formulations Loaded with Trans-Resveratrol for Pulmonary Drug Delivery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation and Optimization of Nanostructured Lipid Carriers (NLCs)
2.3. Particle Size and Zeta Potential Analysis
2.4. Determination of Entrapment Efficiency of Drug
2.5. TRES-NLCs Formulation Stability Study
2.6. Morphology Study via Transmission Electron Microscopy (TEM)
2.7. Aerosolization Study of TRES-NLC Formulation Using Next-Generation Impactor (NGI)
2.8. Study of TRES Released from NLC Formulations
2.9. Statistical Analysis
3. Results and Discussion
3.1. Initial Investigation and Selection of TRES-NLC Formulations
3.2. Surface Morphology Study of TRES-NLC Formulations
3.3. Particle Size Analysis of TRES-NLC Formulations in NGI Stages
3.4. TRES-NLC Formulation (F8, F14, and F22) Stability Study
3.5. Nebulization Performance of TRES-NLC Formulations
3.5.1. TRES-NLC Formulation F14 Deposition in Various Stages of NGI
3.5.2. Nebulization Time of F14
3.5.3. Nebulization Mass Output and Mass Output Rate of TRES-NLC Formulation
3.5.4. Evaluation of ED, FPD, FPF, and RF of TRES-NLC Formulation F14
3.6. In Vitro Release Study of TRES-NLC Formulation F14
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mathew Thevarkattil, A.; Yousaf, S.; Houacine, C.; Khan, W.; Bnyan, R.; Elhissi, A.; Khan, I. Anticancer drug delivery: Investigating the impacts of viscosity on lipid-based formulations for pulmonary targeting. Int. J. Pharm. 2024, 664, 124591. [Google Scholar] [CrossRef] [PubMed]
- Cipolla, D. Will pulmonary drug delivery for systemic application ever fulfill its rich promise? Expert. Opin. Drug Deliv. 2016, 13, 1337–1340. [Google Scholar] [CrossRef] [PubMed]
- Patton, J.S.; Fishburn, C.S.; Weers, J.G. The lungs as a portal of entry for systemic drug delivery. Proc. Am. Thorac. Soc. 2004, 1, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Scheuch, G.; Kohlhaeufl, M.J.; Brand, P.; Siekmeier, R. Clinical perspectives on pulmonary systemic and macromolecular delivery. Adv. Drug Deliv. Rev. 2006, 58, 996–1008. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Yousaf, S.; Alhnan, M.A.; Ahmed, W.; Elhissi, A.; Jackson, M.J. Design Characteristics of Inhaler Devices Used for Pulmonary Delivery of Medical Aerosols. In Surgical Tools and Medical Devices; Ahmed, W., Jackson, M.J., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 573–591. [Google Scholar] [CrossRef]
- Yousaf, S.S.; Isreb, A.; Khan, I.; Mewsiga, E.; Elhissi, A.; Ahmed, W.; Alhnan, M.A. Impact of nanosizing on the formation and characteristics of polymethacrylate films: Micro- versus nano-suspensions. Pharm. Dev. Technol. 2021, 26, 729–739. [Google Scholar] [CrossRef]
- Khan, I.; Yousaf, S.; Najlah, M.; Ahmed, W.; Elhissi, A. Proliposome powder or tablets for generating inhalable liposomes using a medical nebulizer. J. Pharm. Investig. 2020, 51, 61–73. [Google Scholar] [CrossRef]
- Din, F.U.; Aman, W.; Ullah, I.; Qureshi, O.S.; Mustapha, O.; Shafique, S.; Zeb, A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int. J. Nanomed. 2017, 12, 7291–7309. [Google Scholar] [CrossRef]
- Yousaf, S.S.; Houacine, C.; Khan, I.; Ahmed, W.; Jackson, M.J. Chapter 11—Importance of biomaterials in biomedical engineering. In Advances in Medical and Surgical Engineering; Ahmed, W., Phoenix, D.A., Jackson, M.J., Charalambous, C.P., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 149–176. [Google Scholar] [CrossRef]
- Umerska, A.; Mouzouvi, C.R.; Bigot, A.; Saulnier, P. Formulation and nebulization of fluticasone propionate-loaded lipid nanocarriers. Int. J. Pharm. 2015, 493, 224–232. [Google Scholar] [CrossRef]
- Ansam, M.; Yousaf, S.; Bnyan, R.; Khan, I. Anti-aging Liposomal Formulation. Mini Review. Nov. Approaches Drug Des. Dev. 2018, 3, 66–68. [Google Scholar]
- Khan, I.; Hussein, S.; Houacine, C.; Khan Sadozai, S.; Islam, Y.; Bnyan, R.; Elhissi, A.; Yousaf, S. Fabrication, characterization and optimization of nanostructured lipid carrier formulations using Beclomethasone dipropionate for pulmonary drug delivery via medical nebulizers. Int. J. Pharm. 2021, 598, 120376. [Google Scholar] [CrossRef]
- Apostolou, M.; Assi, S.; Fatokun, A.A.; Khan, I. The Effects of Solid and Liquid Lipids on the Physicochemical Properties of Nanostructured Lipid Carriers. J. Pharm. Sci. 2021, 10, 2859–2872. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Wang, X.; Liu, Y.; Yang, G.; Falconer, R.J.; Zhao, C.-X. Lipid Nanoparticles for Drug Delivery. Adv. NanoBiomed Res. 2022, 2, 2100109. [Google Scholar] [CrossRef]
- Lewis, P.O.; Khan, I.; Patel, P. Successful stepdown treatment of pulmonary histoplasmosis with thrice-weekly liposomal amphotericin B in a hospital-associated, outpatient infusion centre: A case report. J. Clin. Pharm. Ther. 2018, 43, 269–272. [Google Scholar] [CrossRef] [PubMed]
- Barenholz, Y. Doxil®—The first FDA-approved nano-drug: Lessons learned. J. Control. Release Off. J. Control. Release Soc. 2012, 160, 117–134. [Google Scholar] [CrossRef] [PubMed]
- Shukla, S.K.; Nguyen, V.; Goyal, M.; Gupta, V. Cationically modified inhalable nintedanib niosomes: Enhancing therapeutic activity against non-small-cell lung cancer. Nanomedicine 2022, 17, 935–958. [Google Scholar] [CrossRef]
- Aparajay, P.; Dev, A. Functionalized niosomes as a smart delivery device in cancer and fungal infection. Eur. J. Pharm. Sci. 2022, 168, 106052. [Google Scholar] [CrossRef]
- Ammar, H.O.; Tadros, M.I.; Salama, N.M.; Ghoneim, A.M. Ethosome-Derived Invasomes as a Potential Transdermal Delivery System for Vardenafil Hydrochloride: Development, Optimization and Application of Physiologically Based Pharmacokinetic Modeling in Adults and Geriatrics. Int. J. Nanomed. 2020, 15, 5671–5685. [Google Scholar] [CrossRef]
- Świętek, M.; Panchuk, R.; Skorokhyd, N.; Černoch, P.; Finiuk, N.; Klyuchivska, O.; Hrubý, M.; Molčan, M.; Berger, W.; Trousil, J.; et al. Magnetic Temperature-Sensitive Solid-Lipid Particles for Targeting and Killing Tumor Cells. Front. Chem. 2020, 8, 205. [Google Scholar] [CrossRef]
- Xu, Y.; Zheng, Y.; Wu, L.; Zhu, X.; Zhang, Z.; Huang, Y. Novel Solid Lipid Nanoparticle with Endosomal Escape Function for Oral Delivery of Insulin. ACS Appl. Mater. Interfaces 2018, 10, 9315–9324. [Google Scholar] [CrossRef]
- Mishra, V.; Bansal, K.K.; Verma, A.; Yadav, N.; Thakur, S.; Sudhakar, K.; Rosenholm, J.M. Solid Lipid Nanoparticles: Emerging Colloidal Nano Drug Delivery Systems. Pharmaceutics 2018, 10, 191. [Google Scholar] [CrossRef]
- Salvi, V.R.; Pawar, P. Nanostructured lipid carriers (NLC) system: A novel drug targeting carrier. J. Drug Deliv. Sci. Technol. 2019, 51, 255–267. [Google Scholar] [CrossRef]
- Hollmerus, S.; Yousaf, S.; Islam, Y.; Khan, I. Isoflavones-based Liposome Formulations as Anti-aging for Skincare. Nov. Approaches Drug Des. Dev. 2018, 3, 28–37. [Google Scholar]
- Axioti, E.; Apostolou, M.; Yousaf, S.; Khan, I. Skin Aging and Vesicular Delivery Systems. In Science and Applications of Nanoparticles; Jenny Stanford Publishing: New York, USA, 2022; pp. 309–368. [Google Scholar]
- Chahinez, H.; Iftikhar, K.; Sakib Saleem, Y. Potential cardio-protective agents: A Resveratrol review (2000–2019). Curr. Pharm. Des. 2020, 26, 2943–2955. [Google Scholar] [CrossRef]
- Ha, E.-S.; Kuk, D.-H.; Kim, J.-S.; Kim, M.-S. Solubility of trans-resveratrol in Transcutol HP + water mixtures at different temperatures and its application to fabrication of nanosuspensions. J. Mol. Liq. 2019, 281, 344–351. [Google Scholar] [CrossRef]
- Vankayala, J.S.; Battula, S.N.; Kandasamy, R.; Mariya, G.A.; Franklin, M.E.E.; Pushpadass, H.A.; Naik, L.N. Surfactants and fatty alcohol based novel nanovesicles for resveratrol: Process optimization, characterization and evaluation of functional properties in RAW 264.7 macrophage cells. J. Mol. Liq. 2018, 261, 387–396. [Google Scholar] [CrossRef]
- Darquenne, C. Deposition Mechanisms. J. Aerosol Med. Pulm. Drug Deliv. 2020, 33, 181–185. [Google Scholar] [CrossRef]
- Marple, V.A.; Olson, B.A.; Santhanakrishnan, K.; Mitchell, J.P.; Murray, S.C.; Hudson-Curtis, B.L. Next generation pharmaceutical impactor (a new impactor for pharmaceutical inhaler testing). Part II: Archival calibration. J. Aerosol Med. Off. J. Int. Soc. Aerosols Med. 2003, 16, 301–324. [Google Scholar] [CrossRef]
- Basso, J.; Mendes, M.; Cova, T.; Sousa, J.; Pais, A.; Fortuna, A.; Vitorino, R.; Vitorino, C. A Stepwise Framework for the Systematic Development of Lipid Nanoparticles. Biomolecules 2022, 12, 223. [Google Scholar] [CrossRef]
- Zhang, N.; Liu, C.; Jin, L.; Zhang, R.; Siebert, H.C.; Wang, Z.; Prakash, S.; Yin, X.; Li, J.; Hou, D.; et al. Influence of Long-Chain/Medium-Chain Triglycerides and Whey Protein/Tween 80 Ratio on the Stability of Phosphatidylserine Emulsions (O/W). ACS Omega 2020, 5, 7792–7801. [Google Scholar] [CrossRef]
- Das, S.; Ng, W.K.; Tan, R.B.H. Are nanostructured lipid carriers (NLCs) better than solid lipid nanoparticles (SLNs): Development, characterizations and comparative evaluations of clotrimazole-loaded SLNs and NLCs? Eur. J. Pharm. Sci. 2012, 47, 139–151. [Google Scholar] [CrossRef]
- Gokce, E.H.; Sandri, G.; Bonferoni, M.C.; Rossi, S.; Ferrari, F.; Güneri, T.; Caramella, C. Cyclosporine A loaded SLNs: Evaluation of cellular uptake and corneal cytotoxicity. Int. J. Pharm. 2008, 364, 76–86. [Google Scholar] [CrossRef] [PubMed]
- Jain, K.; Sood, S.; Gowthamarajan, K. Optimization of artemether-loaded NLC for intranasal delivery using central composite design. Drug Deliv. 2015, 22, 940–954. [Google Scholar] [CrossRef] [PubMed]
- Varshosaz, J.; Tabbakhian, M.; Mohammadi, M.Y. Formulation and optimization of solid lipid nanoparticles of buspirone HCl for enhancement of its oral bioavailability. J. Liposome Res. 2010, 20, 286–296. [Google Scholar] [CrossRef]
- Houacine, C.; Adams, D.; Singh, K.K. Impact of liquid lipid on development and stability of trimyristin nanostructured lipid carriers for oral delivery of resveratrol. J. Mol. Liq. 2020, 316, 113734. [Google Scholar] [CrossRef]
- Niculae, G.; Lacatusu, I.; Badea, N.; Oprea, O.; Meghea, A. Optimization of lipid nanoparticles composition for sunscreen encapsulation. UPB Sci. Bull. Ser. B 2013, 75, 79–92. [Google Scholar]
- Thatipamula, R.; Palem, C.; Gannu, R.; Mudragada, S.; Yamsani, M. Formulation and in vitro characterization of domperidone loaded solid lipid nanoparticles and nanostructured lipid carriers. Daru 2011, 19, 23–32. [Google Scholar]
- Shah, N.V.; Seth, A.K.; Balaraman, R.; Aundhia, C.J.; Maheshwari, R.A.; Parmar, G.R. Nanostructured lipid carriers for oral bioavailability enhancement of raloxifene: Design and in vivo study. J. Adv. Res. 2016, 7, 423–434. [Google Scholar] [CrossRef]
- Hu, F.-Q.; Jiang, S.-P.; Du, Y.-Z.; Yuan, H.; Ye, Y.-Q.; Zeng, S. Preparation and characteristics of monostearin nanostructured lipid carriers. Int. J. Pharm. 2006, 314, 83–89. [Google Scholar] [CrossRef]
- Kelidari, H.R.; Saeedi, M.; Akbari, J.; Morteza-Semnani, K.; Valizadeh, H.; Maniruzzaman, M.; Farmoudeh, A.; Nokhodchi, A. Development and Optimisation of Spironolactone Nanoparticles for Enhanced Dissolution Rates and Stability. AAPS PharmSciTech 2017, 18, 1469–1474. [Google Scholar] [CrossRef]
- Uprit, S.; Sahu, R.K.; Roy, A.; Pare, A. Preparation and characterization of minoxidil loaded nanostructured lipid carrier gel for effective treatment of alopecia. Saudi Pharm. J. 2013, 21, 379–385. [Google Scholar] [CrossRef]
- Ali, M. CHAPTER 9—Pulmonary Drug Delivery. In Handbook of Non-Invasive Drug Delivery Systems; Kulkarni, V.S., Ed.; William Andrew Publishing: Boston, MA, USA, 2010; pp. 209–246. [Google Scholar] [CrossRef]
- Araújo, L.M.P.d.; Abatti, P.J.; Araújo, W.D.d.; Alves, R.F. Performance evaluation of nebulizers based on aerodynamic droplet diameter characterization using the Direct Laminar Incidence (DLI). Res. Biomed. Eng. 2017, 33, 105–112. [Google Scholar] [CrossRef]
- Sessa, M.; Tsao, R.; Liu, R.; Ferrari, G.; Donsì, F. Evaluation of the stability and antioxidant activity of nanoencapsulated resveratrol during in vitro digestion. J. Agric. Food Chem. 2011, 59, 12352–12360. [Google Scholar] [CrossRef] [PubMed]
- Zupančič, Š.; Lavrič, Z.; Kristl, J. Stability and solubility of trans-resveratrol are strongly influenced by pH and temperature. Eur. J. Pharm. Biopharm. 2015, 93, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Carbone, C.; Campisi, A.; Manno, D.; Serra, A.; Spatuzza, M.; Musumeci, T.; Bonfanti, R.; Puglisi, G. The critical role of didodecyldimethylammonium bromide on physico-chemical, technological and biological properties of NLC. Colloids Surf. B Biointerfaces 2014, 121, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Trela, B.C.; Waterhouse, A.L. Resveratrol: Isomeric molar absorptivities and stability. J. Agric. Food Chem. 1996, 44, 1253–1257. [Google Scholar] [CrossRef]
- Liazid, A.; Palma, M.; Brigui, J.; Barroso, C.G. Investigation on phenolic compounds stability during microwave-assisted extraction. J. Chromatogr. A 2007, 1140, 29–34. [Google Scholar] [CrossRef]
- Marzec, M.; Dąbek, P.; Witkowski, A.; Monedeiro, F.; Pomastowski, P.; Buszewski, B.; Nowak, I. Lipid Constituents of Diatoms (Halamphora) as Components for Production of Lipid Nanoparticles. Pharmaceutics 2022, 14, 1171. [Google Scholar] [CrossRef]
- Harvey, C.; O’Doherty, M.; Page, C.; Thomas, S.; Nunan, T.; Treacher, D. Comparison of jet and ultrasonic nebulizer pulmonary aerosol deposition during mechanical ventilation. Eur. Respir. J. 1997, 10, 905–909. [Google Scholar] [CrossRef]
- Steckel, H.; Eskandar, F. Factors affecting aerosol performance during nebulization with jet and ultrasonic nebulizers. Eur. J. Pharm. Sci. 2003, 19, 443–455. [Google Scholar] [CrossRef]
- O’Callaghan, C.; Barry, P.W. The science of nebulised drug delivery. Thorax 1997, 52 (Suppl. 2), S31–S44. [Google Scholar] [CrossRef]
- Tandon, R.; Smaldone, G.C.; McPeck, M. Measuring nebulizer output: Aerosol production vs. gravimetric analysis. Chest 1997, 111, 1361–1365. [Google Scholar] [CrossRef] [PubMed]
- Dhand, R. Aerosol Delivery During Mechanical Ventilation: From Basic Techniques to New Devices. J. Aerosol Med. Pulm. Drug Deliv. 2008, 21, 45–60. [Google Scholar] [CrossRef] [PubMed]
- Elhissi, A.; Hidayat, K.; Phoenix, D.A.; Mwesigwa, E.; Crean, S.; Ahmed, W.; Faheem, A.; Taylor, K.M.G. Air-jet and vibrating-mesh nebulization of niosomes generated using a particulate-based proniosome technology. Int. J. Pharm. 2013, 444, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Nafee, N.; Makled, S.; Boraie, N. Nanostructured lipid carriers versus solid lipid nanoparticles for the potential treatment of pulmonary hypertension via nebulization. Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm. Sci. 2018, 125, 151–162. [Google Scholar] [CrossRef]
- Graham, N.; Jiang, C.C.; Li, X.Z.; Jiang, J.Q.; Ma, J. The influence of pH on the degradation of phenol and chlorophenols by potassium ferrate. Chemosphere 2004, 56, 949–956. [Google Scholar] [CrossRef]
- Robinson, K.; Mock, C.; Liang, D. Pre-formulation studies of resveratrol. Drug Dev. Ind. Pharm. 2015, 41, 1464–1469. [Google Scholar] [CrossRef]
- Pentek, T.; Newenhouse, E.; O’Brien, B.; Chauhan, A.S. Development of a Topical Resveratrol Formulation for Commercial Applications Using Dendrimer Nanotechnology. Molecules 2017, 22, 137. [Google Scholar] [CrossRef]
- Konopko, A.; Litwinienko, G. Unexpected Role of pH and Microenvironment on the Antioxidant and Synergistic Activity of Resveratrol in Model Micellar and Liposomal Systems. J. Org. Chem. 2022, 87, 1698–1709. [Google Scholar] [CrossRef]
- Mota-Lugo, E.; Dolores-Hernández, M.; Morales-Hipólito, E.A.; Blanco-Alcántara, I.A.; Cuatecontzi-Flores, H.; López-Arellano, R. Development and Validation of a Stability-Indicating HPLC Method for the Simultaneous Determination of trans-Resveratrol and cis-Resveratrol in an Injectable Solution. J. Anal. Methods Chem. 2021, 2021, 8402157. [Google Scholar] [CrossRef]
- Kato, Y.; Ozawa, S.; Miyamoto, C.; Maehata, Y.; Suzuki, A.; Maeda, T.; Baba, Y. Acidic extracellular microenvironment and cancer. Cancer Cell Int. 2013, 13, 89. [Google Scholar] [CrossRef]
Formulation | Solid Lipid (mg) | Liquid Lipid (mg) | Solid Lipid: Liquid Lipid (w/w) | Tween-80 (%) | Co-Surfactant (mg) | TRES (mg) |
---|---|---|---|---|---|---|
F1 | Dynasan 116 | Capryol 90 | 10:90 | 0.5 | 50 | 50 |
F2 | Dynasan 116 | Capryol 90 | 10:90 | 1.5 | 50 | 50 |
F3 | Dynasan 116 | Capryol 90 | 50:50 | 0.5 | 50 | 50 |
F4 | Dynasan 116 | Capryol 90 | 50:50 | 1.5 | 50 | 50 |
F5 | Dynasan 116 | Capryol 90 | 90:10 | 0.5 | 50 | 50 |
F6 | Dynasan 116 | Capryol 90 | 90:10 | 1.5 | 50 | 50 |
F7 | Dynasan 116 | Lauroglycol 90 | 10:90 | 0.5 | 50 | 50 |
F8 | Dynasan 116 | Lauroglycol 90 | 10:90 | 1.5 | 50 | 50 |
F9 | Dynasan 116 | Lauroglycol 90 | 50:50 | 0.5 | 50 | 50 |
F10 | Dynasan 116 | Lauroglycol 90 | 50:50 | 1.5 | 50 | 50 |
F11 | Dynasan 116 | Lauroglycol 90 | 90:10 | 0.5 | 50 | 50 |
F12 | Dynasan 116 | Lauroglycol 90 | 90:10 | 1.5 | 50 | 50 |
F13 | Dynasan 116 | Miglyol 810 | 10:90 | 0.5 | 50 | 50 |
F14 | Dynasan 116 | Miglyol 810 | 10:90 | 1.5 | 50 | 50 |
F15 | Dynasan 116 | Miglyol 810 | 50:50 | 0.5 | 50 | 50 |
F16 | Dynasan 116 | Miglyol 810 | 50:50 | 1.5 | 50 | 50 |
F17 | Dynasan 116 | Miglyol 810 | 90:10 | 0.5 | 50 | 50 |
F18 | Dynasan 116 | Miglyol 810 | 90:10 | 1.5 | 50 | 50 |
F19 | Dynasan 116 | Tributyrin | 10:90 | 0.5 | 50 | 50 |
F20 | Dynasan 116 | Tributyrin | 10:90 | 1.5 | 50 | 50 |
F21 | Dynasan 116 | Tributyrin | 50:50 | 0.5 | 50 | 50 |
F22 | Dynasan 116 | Tributyrin | 50:50 | 1.5 | 50 | 50 |
F23 | Dynasan 116 | Tributyrin | 90:10 | 0.5 | 50 | 50 |
F24 | Dynasan 116 | Tributyrin | 90:10 | 1.5 | 50 | 50 |
Formulations | Size (nm) | PDI | Zeta Potential (mV) | Entrapment Efficiency (%) | Molar Ratios (Drug:Lipids) | ||||
---|---|---|---|---|---|---|---|---|---|
After Preparation | After Four Weeks | After Preparation | After Four Weeks | After Preparation | After Four Weeks | After Preparation | After Four Weeks | After Preparation and After Four Weeks | |
F1 | 245.46 ± 7.68 | 514.47 ± 8.75 | 0.25 ± 0.03 | 0.77 ± 0.18 | −26.75 ± 4.77 | −28.27 ± 5.12 | 97.15 ± 9.54 | 95.92 ± 7.82 | 0.02:1 |
F2 | 202.68 ± 8.52 | 258.72 ± 8.49 | 0.24 ± 0.08 | 0.31 ± 0.11 | −26.35 ± 4.98 | −30.85 ± 5.44 | 96.46 ± 7.25 | 95.17 ± 6.16 | 0.02:1 |
F3 | 272.13 ± 6.21 | 1059.70 ± 9.65 | 0.29 ± 0.11 | 0.38 ± 0.06 | −25.60 ± 5.13 | −28.15 ± 4.58 | 94.62 ± 6.58 | 93.08 ± 7.33 | 0.03:1 |
F4 | 224.67 ± 7.45 | 452.72 ± 8.12 | 0.25 ± 0.12 | 0.37 ± 0.05 | −29.25 ± 6.95 | −32.95 ± 5.08 | 94.62 ± 9.16 | 93.18 ± 6.74 | 0.03:1 |
F5 | 324.45 ± 7.44 | 817.75 ± 8.32 | 0.53 ± 0.09 | 0.43 ± 0.13 | −26.45 ± 5.77 | −27.35 ± 4.18 | 92.91 ± 5.49 | 91.07 ± 7.55 | 0.06:1 |
F6 | 310.15 ± 9.52 | 422.75 ± 7.54 | 0.46 ± 0.11 | 0.53 ± 0.04 | −32.85 ± 5.34 | −31.48 ± 6.58 | 91.16 ± 7.59 | 90.71 ± 6.49 | 0.06:1 |
F7 | 165.25 ± 8.25 | 202.25 ± 7.07 | 0.28 ± 0.03 | 0.20 ± 0.05 | −32.18 ± 6.23 | −31.03 ± 7.15 | 97.65 ± 8.25 | 98.22 ± 7.26 | 0.03:1 |
F8 | 136.48 ± 9.15 | 149.01 ± 9.73 | 0.19 ± 0.03 | 0.21 ± 0.05 | −29.50 ± 4.42 | −31.24 ± 6.72 | 97.73 ± 8.19 | 96.76 ± 6.59 | 0.03:1 |
F9 | 190.80 ± 8.55 | 231.25 ± 9.71 | 0.34 ± 0.08 | 0.25 ± 0.08 | −36.15 ± 6.78 | −34.67 ± 6.69 | 97.06 ± 6.23 | 96.16 ± 6.38 | 0.04:1 |
F10 | 163.80 ± 8.27 | 211.55 ± 7.92 | 0.29 ± 0.04 | 0.26 ± 0.05 | −33.16 ± 6.62 | −31.33 ± 5.92 | 95.19 ± 7.54 | 93.48 ± 7.09 | 0.04:1 |
F11 | 288.05 ± 6.79 | 516.25 ± 3.59 | 0.58 ± 0.27 | 0.41 ± 0.03 | −25.52 ± 3.53 | −25.80 ± 6.44 | 93.47 ± 6.85 | 91.28 ± 6.18 | 0.07:1 |
F12 | 206.05 ± 5.65 | 258.49 ± 7.29 | 0.44 ± 0.11 | 0.65 ± 0.33 | −36.85 ± 6.69 | −36.48 ± 7.06 | 93.82 ± 5.28 | 91.75 ± 6.68 | 0.07:1 |
F13 | 186.70 ± 4.78 | 254.23 ± 6.75 | 0.20 ± 0.05 | 0.25 ± 0.06 | −30.15 ± 6.57 | −32.39 ± 6.91 | 98.52 ± 5.97 | 97.55 ± 7.16 | 0.04:1 |
F14 | 142.41 ± 8.28 | 158.90 ± 7.99 | 0.15 ± 0.03 | 0.19 ± 0.11 | −36.75 ± 6.86 | −35.09 ± 7.98 | 98.17 ± 7.32 | 96.78 ± 5.91 | 0.04:1 |
F15 | 206.75 ± 7.25 | 298.76 ± 6.59 | 0.26 ± 0.06 | 0.34 ± 0.08 | −30.60 ± 6.67 | −29.07 ± 6.19 | 98.06 ± 4.16 | 95.72 ± 6.28 | 0.05:1 |
F16 | 182.80 ± 9.16 | 203.75 ± 7.47 | 0.21 ± 0.07 | 0.30 ± 0.09 | −38.22 ± 7.36 | −35.72 ± 6.69 | 96.24 ± 4.55 | 94.65 ± 5.53 | 0.05:1 |
F17 | 206.81 ± 7.26 | 492.25 ± 9.26 | 0.43 ± 0.02 | 0.24 ± 0.06 | −34.81 ± 6.54 | −31.65 ± 6.41 | 94.68 ± 5.62 | 92.26 ± 5.06 | 0.08:1 |
F18 | 187.19 ± 8.17 | 205.58 ± 9.48 | 0.28 ± 0.12 | 0.59 ± 0.25 | −29.30 ± 7.97 | −30.25 ± 6.98 | 94.55 ± 4.68 | 93.71 ± 6.26 | 0.07:1 |
F19 | 288.65 ± 7.63 | 346.77 ± 9.41 | 0.29 ± 0.06 | 0.32 ± 0.08 | −25.85 ± 6.06 | −29.45 ± 6.15 | 98.02 ± 5.05 | 98.82 ± 5.29 | 0.03:1 |
F20 | 265.70 ± 9.53 | 292.93 ± 8.09 | 0.25 ± 0.05 | 0.28 ± 0.04 | −34.30 ± 4.68 | −36.15 ± 6.46 | 98.48 ± 5.52 | 97.03 ± 5.18 | 0.03:1 |
F21 | 172.46 ± 6.55 | 379.95 ± 9.27 | 0.44 ± 0.09 | 0.32 ± 0.14 | −30.25 ± 7.06 | −32.65 ± 6.72 | 96.13 ± 4.87 | 98.27 ± 1.56 | 0.05:1 |
F22 | 144.54 ± 7.48 | 156.82 ± 8.39 | 0.17 ± 0.06 | 0.20 ± 0.03 | −30.95 ± 6.88 | −32.45 ± 7.70 | 97.34 ± 5.22 | 96.38 ± 4.51 | 0.05:1 |
F23 | 341.85 ± 7.84 | 393.65 ± 10.56 | 0.47 ± 0.05 | 0.44 ± 0.06 | −30.42 ± 6.16 | −27.15 ± 7.31 | 95.92 ± 5.72 | 94.27 ± 6.26 | 0.07:1 |
F24 | 202.59 ± 7.73 | 259.56 ± 8.62 | 0.39 ± 0.08 | 0.36 ± 0.11 | −35.42 ± 6.67 | −37.41 ± 5.86 | 95.44 ± 6.48 | 94.39 ± 4.71 | 0.07:1 |
Formulation | Storage Temperatures | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
4 °C | 25 °C | |||||||||
Particle Size (nm) | PDI | Zeta Potential (mV) | Entrapment Efficiency (%) | Drug Recovery (%) | Particle Size (nm) | PDI | Zeta Potential (mV) | Entrapment Efficiency (%) | Drug Recovery (%) | |
2nd month | ||||||||||
F8 | 193.56 ± 7.74 | 0.32 ± 0.03 | −27.83 ± 4.57 | 96.38 ± 5.75 | 94.52 ± 4.45 | 209.13 ± 6.65 | 0.38 ± 0.02 | −23.72 ± 5.36 | 95.47 ± 4.12 | 93.40 ± 4.98 |
F14 | 175.26 ± 6.02 | 0.19 ± 0.03 | −28.31 ± 6.44 | 97.22 ± 4.56 | 93.22 ± 4.97 | 206.46 ± 5.72 | 0.26 ± 0.03 | −30.18 ± 6.16 | 96.12 ± 4.67 | 94.29 ± 3.10 |
F22 | 197.81 ± 7.28 | 0.24 ± 0.02 | −30.05 ± 5.19 | 97.24 ± 4.01 | 94.41 ± 4.38 | 224.67 ± 7.69 | 0.32 ± 0.03 | −26.84 ± 5.37 | 95.49 ± 4.09 | 96.27 ± 4.28 |
4th month | ||||||||||
F8 | 598.65 ± 9.16 | 0.36 ± 0.04 | −25.92 ± 6.48 | 85.98 ± 5.36 | 78.37 ± 4.68 | 869.52 ± 9.26 | 0.38 ± 0.03 | −29.82 ± 6.42 | 89.32 ± 3.59 | 67.97 ± 5.06 |
F14 | 196.35 ± 5.85 | 0.18 ± 0.03 | −30.83 ± 5.71 | 94.51 ± 4.67 | 85.53 ± 5.46 | 224.68 ± 7.49 | 0.20 ± 0.04 | −35.06 ± 6.55 | 95.79 ± 4.72 | 79.18 ± 4.88 |
F22 | 281.47 ± 8.09 | 0.42 ± 0.08 | −35.28 ± 5.93 | 92.41 ± 4.18 | 68.97 ± 4.68 | 375.47 ± 7.67 | 0.46 ± 0.11 | −34.87 ± 5.09 | 92.98 ± 4.21 | 55.19 ± 5.64 |
6th month | ||||||||||
F8 | 886.14 ± 7.55 | 0.41 ± 0.12 | −25.38 ± 6.49 | 88.68 ± 4.15 | 60.04 ± 4.22 | 985.76 ± 7.16 | 0.42 ± 0.07 | −28.52 ± 6.47 | 89.24 ± 4.55 | 55.78 ± 3.65 |
F14 | 199.64 ± 8.16 | 0.20 ± 0.06 | −28.98 ± 5.71 | 95.38 ± 5.35 | 75.97 ± 4.31 | 245.45 ± 6.73 | 0.23 ± 0.06 | −31.84 ± 5.46 | 94.89 ± 4.26 | 70.84 ± 4.52 |
F22 | 313.59 ± 7.34 | 0.51 ± 0.10 | −31.46 ± 6.25 | 94.52 ± 4.43 | 52.16 ± 5.72 | 476.58 ± 6.92 | 0.46 ± 0.08 | −30.44 ± 7.34 | 92.35 ± 5.17 | 45.43 ± 4.68 |
Characterization | Air-Jet Nebulizer | Ultrasonic Nebulizer |
---|---|---|
FPD (mg) | 1.15 ± 0.05 | 0.78 ± 0.01 |
FPF (%) | 24.74 ± 2.26 | 16.78 ± 1.38 |
RF (%) | 94.05 ± 5.68 | 76.44 ± 3.75 |
ED (%) | 80.95 ± 2.75 | 71.49 ± 2.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, I.; Sunita, S.; Hussein, N.R.; Omer, H.K.; Elhissi, A.; Houacine, C.; Khan, W.; Yousaf, S.; Rathore, H.A. Development and Characterization of Novel Combinations and Compositions of Nanostructured Lipid Carrier Formulations Loaded with Trans-Resveratrol for Pulmonary Drug Delivery. Pharmaceutics 2024, 16, 1589. https://doi.org/10.3390/pharmaceutics16121589
Khan I, Sunita S, Hussein NR, Omer HK, Elhissi A, Houacine C, Khan W, Yousaf S, Rathore HA. Development and Characterization of Novel Combinations and Compositions of Nanostructured Lipid Carrier Formulations Loaded with Trans-Resveratrol for Pulmonary Drug Delivery. Pharmaceutics. 2024; 16(12):1589. https://doi.org/10.3390/pharmaceutics16121589
Chicago/Turabian StyleKhan, Iftikhar, Sunita Sunita, Nozad R. Hussein, Huner K. Omer, Abdelbary Elhissi, Chahinez Houacine, Wasiq Khan, Sakib Yousaf, and Hassaan A. Rathore. 2024. "Development and Characterization of Novel Combinations and Compositions of Nanostructured Lipid Carrier Formulations Loaded with Trans-Resveratrol for Pulmonary Drug Delivery" Pharmaceutics 16, no. 12: 1589. https://doi.org/10.3390/pharmaceutics16121589
APA StyleKhan, I., Sunita, S., Hussein, N. R., Omer, H. K., Elhissi, A., Houacine, C., Khan, W., Yousaf, S., & Rathore, H. A. (2024). Development and Characterization of Novel Combinations and Compositions of Nanostructured Lipid Carrier Formulations Loaded with Trans-Resveratrol for Pulmonary Drug Delivery. Pharmaceutics, 16(12), 1589. https://doi.org/10.3390/pharmaceutics16121589