Nucleoside Reverse Transcriptase Inhibitor (NRTI)-Induced Neuropathy and Mitochondrial Toxicity: Limitations of the Poly-γ Hypothesis and the Potential Roles of Autophagy and Drug Transport
Abstract
:1. Introduction
2. Nucleoside Reverse Transcriptase Inhibitors (NRTIs)
NRTI | Abbreviation | Clinical Indication(s) | Year Approved | Current Status (US) | Major Adverse Effects | Neuropathy Incidence | Rank Order of Strength of Poly-y Inhibition (5 Greatest—1 Least) |
---|---|---|---|---|---|---|---|
Zidovudine [20] | ZDV, AZT | HIV-1 treatment, postexposure prophylaxis, perinatal transmission prevention | 1987 | Approved | Hematologic toxicity, myopathy, lactic acidosis | 5% or greater | 2 [24] |
Didanosine [25] | ddI | HIV-1 treatment | 1991 | Discontinued | Pancreatitis, lactic acidosis, peripheral neuropathy | 15–25% | 4 [24] |
Stavudine [26] | d4T | HIV-1 treatment | 1994 | Discontinued | Pancreatitis, lactic acidosis, peripheral neuropathy | 15–30% | 3 [24] |
Zalcitabine [27] | ddC | HIV-1 treatment | 1992 | Withdrawn (2006) | Pancreatitis, lactic acidosis, severe neuropathy, hepatic failure | 30–100% | 5 [24] |
Lamivudine [28] | 3TC | HIV-1 treatment, postexposure prophylaxis, HBV treatment | 1995 | Approved | HBV exacerbation, resistance, pancreatitis, lactic acidosis, neuropathy | ≤15% | 1 [24] |
Emtricitabine [29] | FTC | HIV-1 treatment, postexposure prophylaxis | 2003 | Approved | HBV acute exacerbation, lactic acidosis | ≤4% | - |
Abacavir [30] | ABC | HIV-1 treatment | 1998 | Approved | Severe allergic reaction | N/A | 1 [24] |
Tenofovir disoproxil fumarate [31] | TDF | HBV infection and prophylaxis, HIV-1 infection and postexposure prophylaxis | 2001 | Approved | Decreased BMD, osteomalacia, renal toxicity, lactic acidosis | 5% | 1 [24] |
3. Peripheral Neuropathy and the Structure of the Peripheral Nervous System
4. HIV-Associated Neuropathy
5. NRTI-Induced Neuropathy
6. Mechanisms of NRTI-Induced Peripheral Neuropathy
7. The Poly-γ Hypothesis and Its Limitations
8. mtDNA Mutation and Oxidative Stress
9. NRTI-Induced Autophagy Inhibition in Peripheral Nerves as a Novel Toxicological Mechanism
10. Ribonucleotide Pool Depletion
11. The Role of Drug Transporters and Metabolism in NRTI-Induced Toxicities
12. Conclusions and Future Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
HIV-1 | Human immunodeficiency virus |
HAART | Highly active antiretroviral therapy |
NRTI | Nucleoside reverse transcriptase inhibitor |
HIV-SN | HIV-related sensory neuropathy |
ATN | Antiretroviral toxic neuropathy |
3TC | Lamivudine |
ABC | Abacavir |
AZT | Zidovudine |
d4T | Stavudine |
ddC | Zalcitabine |
ddI | Didanosine |
FTC | Emtricitabine |
TDF | Tenofovir disoproxil fumarate |
CNS | Central nervous system |
PNS | Peripheral nervous system |
SC | Schwann cells |
SGC | Satellite glial cells |
References
- Deeks, S.G.; Overbaugh, J.; Phillips, A.; Buchbinder, S. HIV infection. Nat. Rev. Dis. Primer 2015, 1, 15035. [Google Scholar] [CrossRef]
- Global HIV & AIDS Statistics—Fact Sheet. Available online: https://www.unaids.org/en/resources/fact-sheet (accessed on 6 October 2024).
- Eggleton, J.S.; Nagalli, S. Highly Active Antiretroviral Therapy (HAART). In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Palacios, R.; Santos, J.; Camino, X.; Arazo, P.; Torres Perea, R.; Echevarrfa, S.; Ribera, E.; Sánchez de la Rosa, R.; Moreno Guillen, S. Treatment-limiting toxicities associated withnucleoside analogue reverse transcriptase inhibitor therapy: A prospective, observational study. Curr. Ther. Res. 2005, 66, 117–129. [Google Scholar] [CrossRef] [PubMed]
- Gabbai, A.A.; Castelo, A.; Oliveira, A.S.B. Chapter 29—HIV peripheral neuropathy. In Handbook of Clinical Neurology; Said, G., Krarup, C., Eds.; Peripheral Nerve Disorders; Elsevier: Amsterdam, The Netherlands, 2013; Volume 115, pp. 515–529. [Google Scholar]
- Zheng, X.; Ouyang, H.; Liu, S.; Mata, M.; Fink, D.J.; Hao, S. TNFα is involved in neuropathic pain induced by nucleoside reverse transcriptase inhibitor in rats. Brain. Behav. Immun. 2011, 25, 1668–1676. [Google Scholar] [CrossRef]
- Smith, T.J.; Auwaerter, P.; Knowlton, A.; Saylor, D.; McArthur, J. Treatment of human immunodeficiency virus-related peripheral neuropathy with Scrambler Therapy: A case report. Int. J. STD AIDS 2017, 28, 202–204. [Google Scholar] [CrossRef] [PubMed]
- Anastasi, J.K.; Pakhomova, A.M. Assessment and Management of HIV Distal Sensory Peripheral Neuropathy: Understanding the Symptoms. J. Nurse Pract. JNP 2020, 16, 276–280. [Google Scholar] [CrossRef]
- Zhou, L.; Kitch, D.W.; Evans, S.R.; Hauer, P.; Raman, S.; Ebenezer, G.J.; Gerschenson, M.; Marra, C.M.; Valcour, V.; Diaz-Arrastia, R.; et al. Correlates of epidermal nerve fiber densities in HIV-associated distal sensory polyneuropathy. Neurology 2007, 68, 2113–2119. [Google Scholar] [CrossRef] [PubMed]
- Youle, M. HIV-Associated Antiretroviral Toxic Neuropathy (ATN): A Review of Recent Advances in Pathophysiology and Treatment. Antivir. Ther. 2005, 10, 125–129. [Google Scholar] [CrossRef]
- Jones, M.R.; Urits, I.; Wolf, J.; Corrigan, D.; Colburn, L.; Peterson, E.; Williamson, A.; Viswanath, O. Drug-Induced Peripheral Neuropathy: A Narrative Review. Curr. Clin. Pharmacol. 2020, 15, 38–48. [Google Scholar]
- Paintsil, E.; Cheng, Y.-C. Antiviral Agents. In Encyclopedia of Microbiology, 3rd ed.; Schaechter, M., Ed.; Academic Press: Oxford, UK, 2009; pp. 223–257. ISBN 978-0-12-373944-5. [Google Scholar]
- Dalakas, M.C. Peripheral neuropathy and antiretroviral drugs. J. Peripher. Nerv. Syst. 2001, 6, 14–20. [Google Scholar] [CrossRef]
- Kallianpur, A.R.; Hulgan, T. Pharmacogenetics of nucleoside reverse-transcriptase inhibitor-associated peripheral neuropathy. Pharmacogenomics 2009, 10, 623–637. [Google Scholar] [CrossRef] [PubMed]
- Abers, M.S.; Shandera, W.X.; Kass, J.S. Neurological and Psychiatric Adverse Effects of Antiretroviral Drugs. CNS Drugs 2014, 28, 131–145. [Google Scholar] [CrossRef]
- Mabila, L.N.; Demana, P.H.; Mothiba, T.M. Rural nurses’ antiretroviral prescribing practices in children, Limpopo province, South Africa. S. Afr. J. HIV Med. 2023, 24, 1470. [Google Scholar] [CrossRef] [PubMed]
- Nyaboke, R.; Ramadhani, H.O.; Lascko, T.; Awuor, P.; Kirui, E.; Koech, E.; Mutisya, I.; Ngunu, C.; Wangusi, R. Factors associated with adherence and viral suppression among patients on second-line antiretroviral therapy in an urban HIV program in Kenya. SAGE Open Med. 2023, 11, 20503121231162350. [Google Scholar] [CrossRef] [PubMed]
- Fodale, V.; Mazzeo, A.; Praticò, C.; Aguennouz, M.; Toscano, A.; Santamaria, L.B.; Vita, G. Fatal exacerbation of peripheral neuropathy during lamivudine therapy: Evidence for iatrogenic mitochondrial damage. Anaesthesia 2005, 60, 806–810. [Google Scholar] [CrossRef]
- Birbal, S.; Dheda, M.; Ojewole, E.; Oosthuizen, F. Adverse drug reactions associated with antiretroviral therapy in South Africa. Afr. J. AIDS Res. 2016, 15, 243–248. [Google Scholar]
- UpToDate Lexidrug. Zidovudine (Lexi-Drugs). Available online: https://library.ohio-state.edu/record=e1001279 (accessed on 8 August 2024).
- Zareifopoulos, N.; Lagadinou, M.; Karela, A.; Kyriakopoulou, O.; Velissaris, D. Neuropsychiatric Effects of Antiviral Drugs. Cureus 2020, 12, e9536. [Google Scholar] [CrossRef]
- Aziz-Donnelly, A.; Harrison, T.B. Update of HIV-Associated Sensory Neuropathies. Curr. Treat. Options Neurol. 2017, 19, 36. [Google Scholar] [CrossRef]
- Hao, S. Neuropathogenesis of HIV-associated neuropathic pain. In HIV-Associated Neurocognitive Disorders; Elsevier: Amsterdam, The Netherlands, 2024; pp. 117–134. ISBN 978-0-323-99744-7. [Google Scholar]
- Gardner, K.; Hall, P.A.; Chinnery, P.F.; Payne, B.A.I. HIV Treatment and Associated Mitochondrial Pathology: Review of 25 Years of in Vitro, Animal, and Human Studies. Toxicol. Pathol. 2014, 42, 811–822. [Google Scholar] [CrossRef]
- UpToDate Lexidrug. Didanosine (Lexi-Drugs). Available online: https://library.ohio-state.edu/record=e1001279 (accessed on 8 August 2024).
- UpToDate Lexidrug. Stavudine (Lexi-Drugs). Available online: https://library.ohio-state.edu/record=e1001279 (accessed on 8 August 2024).
- Amblard, F.; Patel, D.; Michailidis, E.; Coats, S.J.; Kasthuri, M.; Biteau, N.; Tber, Z.; Ehteshami, M.; Schinazi, R.F. HIV nucleoside reverse transcriptase inhibitors. Eur. J. Med. Chem. 2022, 240, 114554. [Google Scholar] [CrossRef]
- UpToDate Lexidrug. Lamivudine (Lexi-Drugs). Available online: https://library.ohio-state.edu/record=e1001279 (accessed on 8 August 2024).
- UpToDate Lexidrug. Emtricitabine (Lexi-Drugs). Available online: https://library.ohio-state.edu/record=e1001279 (accessed on 8 August 2024).
- UpToDate Lexidrug. Abacavir (Lexi-Drugs). Available online: https://library.ohio-state.edu/record=e1001279 (accessed on 8 August 2024).
- UpToDate Lexidrug. Tenofovir (Lexi-Drugs). Available online: https://library.ohio-state.edu/record=e1001279 (accessed on 8 August 2024).
- Catala, M.; Kubis, N. Gross anatomy and development of the peripheral nervous system. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2013; Volume 115, pp. 29–41. ISBN 978-0-444-52902-2. [Google Scholar]
- Goldstein, B. Anatomy of the peripheral nervous system. Phys. Med. Rehabil. Clin. N. Am. 2001, 12, 207–236. [Google Scholar] [CrossRef]
- Nocera, G.; Jacob, C. Mechanisms of Schwann cell plasticity involved in peripheral nerve repair after injury. Cell. Mol. Life Sci. 2020, 77, 3977–3989. [Google Scholar] [CrossRef]
- Bosch-Queralt, M.; Fledrich, R.; Stassart, R.M. Schwann cell functions in peripheral nerve development and repair. Neurobiol. Dis. 2023, 176, 105952. [Google Scholar] [CrossRef]
- Jessen, K.R.; Mirsky, R. The repair Schwann cell and its function in regenerating nerves. J. Physiol. 2016, 594, 3521–3531. [Google Scholar] [CrossRef]
- Andreeva, D.; Murashova, L.; Burzak, N.; Dyachuk, V. Satellite Glial Cells: Morphology, functional heterogeneity, and role in pain. Front. Cell. Neurosci. 2022, 16, 1019449. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Wang, D.; Xu, J.; Zhang, H.; Yu, W. New Insights on the Role of Satellite Glial Cells. Stem Cell Rev. Rep. 2023, 19, 358–367. [Google Scholar] [CrossRef]
- Tanida, I. Autophagy basics. Microbiol. Immunol. 2011, 55, 1–11. [Google Scholar] [CrossRef]
- Stavoe, A.K.H.; Holzbaur, E.L.F. Autophagy in Neurons. Annu. Rev. Cell Dev. Biol. 2019, 35, 477–500. [Google Scholar] [CrossRef]
- Liénard, C.; Pintart, A.; Bomont, P. Neuronal Autophagy: Regulations and Implications in Health and Disease. Cells 2024, 13, 103. [Google Scholar] [CrossRef]
- Sotthibundhu, A.; Muangchan, P.; Phonchai, R.; Promjantuek, W.; Chaicharoenaudomrung, N.; Kunhorm, P.; Noisa, P. Autophagy Promoted Neural Differentiation of Human Placenta-derived Mesenchymal Stem Cells. In Vivo 2021, 35, 2609–2620. [Google Scholar] [CrossRef]
- Tariq, K.; Cullen, E.; Getz, S.A.; Conching, A.K.S.; Goyette, A.R.; Prina, M.L.; Wang, W.; Li, M.; Weston, M.C.; Luikart, B.W. Disruption of mTORC1 rescues neuronal overgrowth and synapse function dysregulated by Pten loss. Cell Rep. 2022, 41, 111574. [Google Scholar] [CrossRef]
- Shen, D.-N.; Zhang, L.-H.; Wei, E.-Q.; Yang, Y. Autophagy in synaptic development, function, and pathology. Neurosci. Bull. 2015, 31, 416–426. [Google Scholar] [CrossRef]
- Tang, G.; Gudsnuk, K.; Kuo, S.-H.; Cotrina, M.L.; Rosoklija, G.; Sosunov, A.; Sonders, M.S.; Kanter, E.; Castagna, C.; Yamamoto, A.; et al. Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron 2014, 83, 1131–1143. [Google Scholar] [CrossRef]
- Overhoff, M.; Tellkamp, F.; Hess, S.; Tolve, M.; Tutas, J.; Faerfers, M.; Ickert, L.; Mohammadi, M.; De Bruyckere, E.; Kallergi, E.; et al. Autophagy regulates neuronal excitability by controlling cAMP/protein kinase A signaling at the synapse. EMBO J. 2022, 41, e110963. [Google Scholar] [CrossRef]
- Carnio, S.; LoVerso, F.; Baraibar, M.A.; Longa, E.; Khan, M.M.; Maffei, M.; Reischl, M.; Canepari, M.; Loefler, S.; Kern, H.; et al. Autophagy Impairment in Muscle Induces Neuromuscular Junction Degeneration and Precocious Aging. Cell Rep. 2014, 8, 1509–1521. [Google Scholar] [CrossRef] [PubMed]
- Lieberman, O.J.; Sulzer, D. The Synaptic Autophagy Cycle. J. Mol. Biol. 2020, 432, 2589. [Google Scholar] [CrossRef]
- Jazebi, N.; Evans, C.; Kadaru, H.S.; Kompella, D.; Raji, M.; Fang, F.; Pappolla, M.; Tang, S.-J.; Chung, J.M.; Hammock, B.; et al. HIV-related Neuropathy: Pathophysiology, Treatment and Challenges. J. Neurol. Exp. Neurosci. 2021, 7, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Egan, K.E.; Caldwell, G.M.; Eckmann, M.S. HIV Neuropathy—A Review of Mechanisms, Diagnosis, and Treatment of Pain. Curr. Pain Headache Rep. 2021, 25, 55. [Google Scholar] [CrossRef]
- Wulff, E.A.; Wang, A.K.; Simpson, D.M. HIV-Associated Peripheral Neuropathy: Epidemiology, Pathophysiology and Treatment. Drugs 2000, 59, 1251–1260. [Google Scholar] [CrossRef]
- Acharjee, S.; Noorbakhsh, F.; Stemkowski, P.L.; Olechowski, C.; Cohen, E.A.; Ballanyi, K.; Kerr, B.; Pardo, C.; Smith, P.A.; Power, C. HIV-1 viral protein R causes peripheral nervous system injury associated with in vivo neuropathic pain. FASEB J. 2010, 24, 4343–4353. [Google Scholar] [CrossRef]
- Victor Garcia, J. Humanized mice for HIV and AIDS research. Curr. Opin. Virol. 2016, 19, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Han, M.M.; Frizzi, K.E.; Ellis, R.J.; Calcutt, N.A.; Fields, J.A. Prevention of HIV-1 TAT Protein-Induced Peripheral Neuropathy and Mitochondrial Disruption by the Antimuscarinic Pirenzepine. Front. Neurol. 2021, 12, 663373. [Google Scholar] [CrossRef] [PubMed]
- Keswani, S.C.; Jack, C.; Zhou, C.; Höke, A. Establishment of a Rodent Model of HIV-Associated Sensory Neuropathy. J. Neurosci. 2006, 26, 10299–10304. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Butler, M.B.; Tan, L.; Draleau, K.S.; Koh, W.Y. Murine Immunodeficiency Virus-Induced Peripheral Neuropathy and the Associated Cytokine Responses. J. Immunol. 2012, 189, 3724–3733. [Google Scholar] [CrossRef]
- Antoine, D.; Chupikova, I.; Jalodia, R.; Singh, P.K.; Roy, S. Chronic Morphine Treatment and Antiretroviral Therapy Exacerbate HIV-Distal Sensory Peripheral Neuropathy and Induce Distinct Microbial Alterations in the HIV Tg26 Mouse Model. Int. J. Mol. Sci. 2024, 25, 1569. [Google Scholar] [CrossRef]
- Wallace, V.C.J.; Blackbeard, J.; Pheby, T.; Segerdahl, A.R.; Davies, M.; Hasnie, F.; Hall, S.; McMahon, S.B.; Rice, A.S.C. Pharmacological, behavioural and mechanistic analysis of HIV-1 gp120 induced painful neuropathy. Pain 2007, 133, 47. [Google Scholar] [CrossRef]
- Wallace, V.C.J.; Blackbeard, J.; Segerdahl, A.R.; Hasnie, F.; Pheby, T.; McMahon, S.B.; Rice, A.S.C. Characterization of rodent models of HIV-gp120 and anti-retroviral-associated neuropathic pain. Brain 2007, 130, 2688–2702. [Google Scholar] [CrossRef]
- Reid, W.; Sadowska, M.; Denaro, F.; Rao, S.; Foulke, J.; Hayes, N.; Jones, O.; Doodnauth, D.; Davis, H.; Sill, A.; et al. An HIV-1 transgenic rat that develops HIV-related pathology and immunologic dysfunction. Proc. Natl. Acad. Sci. USA 2001, 98, 9271–9276. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Antony, J.M.; Martinez, J.A.; Glerum, D.M.; Brussee, V.; Hoke, A.; Zochodne, D.; Power, C. Didanosine causes sensory neuropathy in an HIV/AIDS animal model: Impaired mitochondrial and neurotrophic factor gene expression. Brain 2007, 130, 2011–2023. [Google Scholar] [CrossRef]
- Burdo, T.H.; Miller, A.D. Animal Models of HIV Peripheral Neuropathy. Future Virol. 2014, 9, 465–474. [Google Scholar] [CrossRef]
- Yi, Z.; Xie, L.; Zhou, C.; Yuan, H.; Ouyang, S.; Fang, Z.; Zhao, S.; Jia, T.; Zou, L.; Wang, S.; et al. P2Y12 receptor upregulation in satellite glial cells is involved in neuropathic pain induced by HIV glycoprotein 120 and 2′,3′-dideoxycytidine. Purinergic Signal. 2018, 14, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Weimer, L.H. Medication-induced peripheral neuropathy. Curr. Neurol. Neurosci. Rep. 2003, 3, 86–92. [Google Scholar] [CrossRef]
- Bush, K.; Wairkar, Y.; Tang, S.-J. Nucleoside Reverse Transcriptase Inhibitors Are the Major Class of HIV Antiretroviral Therapeutics That Induce Neuropathic Pain in Mice. Int. J. Mol. Sci. 2024, 25, 9059. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Calvo, M.; Karu, K.; Olausen, H.R.; Bathgate, G.; Okuse, K.; Bennett, D.L.H.; Rice, A.S.C. A clinically relevant rodent model of the HIV antiretroviral drug stavudine induced painful peripheral neuropathy. Pain 2013, 154, 560–575. [Google Scholar] [CrossRef] [PubMed]
- Joseph, E.K.; Chen, X.; Khasar, S.G.; Levine, J.D. Novel mechanism of enhanced nociception in a model of AIDS therapy-induced painful peripheral neuropathy in the rat. Pain 2004, 107, 147–158. [Google Scholar] [CrossRef] [PubMed]
- Bhangoo, S.K.; Petty, L.; White, F.A. Animal Models of HIV-Associated Painful Sensory Neuropathy. In Animal Models of Pain; Ma, C., Zhang, J.-M., Eds.; Humana Press: Totowa, NJ, USA, 2011; pp. 171–179. ISBN 978-1-60761-880-5. [Google Scholar]
- Sanna, M.D.; Ghelardini, C.; Galeotti, N. Blockade of the spinal BDNF-activated JNK pathway prevents the development of antiretroviral-induced neuropathic pain. Neuropharmacology 2016, 105, 543–552. [Google Scholar] [CrossRef] [PubMed]
- Venhoff, N.; Lebrecht, D.; Deveaud, C.; Beauvoit, B.; Bonnet, J.; Müller, K.; Kirschner, J.; Venhoff, A.C.; Walker, U.A. Oral uridine supplementation antagonizes the peripheral neuropathy and encephalopathy induced by antiretroviral nucleoside analogues. AIDS 2010, 24, 345. [Google Scholar] [CrossRef]
- Imo Peter, A.; Patrick Udoh, K.; Udo Ekanem, A. Histomorphological effect of Lamivudine on the Cerebellum of Wistar rats. Histol. Cytol. Embryol. 2017, 1, 1–4. [Google Scholar] [CrossRef]
- Tsai, C.C.; Follis, K.E.; Yarnall, M.; Blakley, G.A. Toxicity and efficacy of 2′,3′-dideoxycytidine in clinical trials of pigtailed macaques infected with simian retrovirus type 2. Antimicrob. Agents Chemother. 1989, 33, 1908–1914. [Google Scholar] [CrossRef]
- Lewis, W.; Dalakas, M.C. Mitochondrial toxicity of antiviral drugs. Nat. Med. 1995, 1, 417–422. [Google Scholar] [CrossRef] [PubMed]
- Opii, W.O.; Sultana, R.; Abdul, H.M.; Ansari, M.A.; Nath, A.; Butterfield, D.A. Oxidative stress and toxicity induced by the nucleoside reverse transcriptase inhibitor (NRTI)—2′,3′-dideoxycytidine (ddC): Relevance to HIV-dementia. Exp. Neurol. 2007, 204, 29–38. [Google Scholar] [CrossRef]
- Zajączkowska, R.; Kocot-Kępska, M.; Leppert, W.; Wrzosek, A.; Mika, J.; Wordliczek, J. Mechanisms of Chemotherapy-Induced Peripheral Neuropathy. Int. J. Mol. Sci. 2019, 20, 1451. [Google Scholar] [CrossRef] [PubMed]
- Holec, A.D.; Mandal, S.; Prathipati, P.K.; Destache, C.J. Nucleotide Reverse Transcriptase Inhibitors: A Thorough Review, Present Status and Future Perspective as HIV Therapeutics. Curr. HIV Res. 2018, 15, 411–421. [Google Scholar] [CrossRef] [PubMed]
- Brinkman, K.; Smeitink, J.A.; Romijn, J.A.; Reiss, P. Mitochondrial toxicity induced by nucleoside-analogue reverse-transcriptase inhibitors is a key factor in the pathogenesis of antiretroviral-therapy-related lipodystrophy. Lancet 1999, 354, 1112–1115. [Google Scholar] [CrossRef] [PubMed]
- Patel, P.H.; Zulfiqar, H. Reverse Transcriptase Inhibitors. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: http://www.ncbi.nlm.nih.gov/books/NBK551504/ (accessed on 30 November 2023).
- Lewis, W.; Day, B.J.; Copeland, W.C. Mitochondrial toxicity of NRTI antiviral drugs: An integrated cellular perspective. Nat. Rev. Drug Discov. 2003, 2, 812–822. [Google Scholar] [CrossRef] [PubMed]
- Wallace, D.C. Mitochondrial Diseases in Man and Mouse. Science 1999, 283, 1482–1488. [Google Scholar] [CrossRef]
- Selvaraj, S.; Ghebremichael, M.; Li, M.; Foli, Y.; Langs-Barlow, A.; Ogbuagu, A.; Barakat, L.; Tubridy, E.; Edifor, R.; Lam, W.; et al. Antiretroviral Therapy–Induced Mitochondrial Toxicity: Potential Mechanisms Beyond Polymerase-γ Inhibition. Clin. Pharmacol. Ther. 2014, 96, 110–120. [Google Scholar] [CrossRef]
- Frick, L.W.; Nelson, D.J.; St. Clair, M.H.; Furman, P.A.; Krenitsky, T.A. Effects of 3′-azido-3′-deoxythymidine on the deoxynucleotide triphosphate pools of cultured human cells. Biochem. Biophys. Res. Commun. 1988, 154, 124–129. [Google Scholar] [CrossRef]
- Furman, P.A.; Fyfe, J.A.; St Clair, M.H.; Weinhold, K.; Rideout, J.L.; Freeman, G.A.; Lehrman, S.N.; Bolognesi, D.P.; Broder, S.; Mitsuya, H. Phosphorylation of 3′-azido-3′-deoxythymidine and selective interaction of the 5′-triphosphate with human immunodeficiency virus reverse transcriptase. Proc. Natl. Acad. Sci. USA 1986, 83, 8333–8337. [Google Scholar] [CrossRef] [PubMed]
- Kohler, J.J.; Hosseini, S.H.; Green, E.; Abuin, A.; Ludaway, T.; Russ, R.; Santoianni, R.; Lewis, W. Tenofovir renal proximal tubular toxicity is regulated By OAT1 and MRP4 transporters. Lab. Investig. 2011, 91, 852–858. [Google Scholar] [CrossRef]
- Murphy, M.D.; O’Hearn, M.; Chou, S. Fatal Lactic Acidosis and Acute Renal Failure after Addition of Tenofovir to an Antiretroviral Regimen Containing Didanosine. Clin. Infect. Dis. 2003, 36, 1082–1085. [Google Scholar] [CrossRef]
- Schaaf, B.; Aries, S.P.; Kramme, E.; Steinhoff, J.; Dalhoff, K. Acute Renal Failure Associated with Tenofovir Treatment in a Patient with Acquired Immunodeficiency Syndrome. Clin. Infect. Dis. 2003, 37, e41–e43. [Google Scholar] [CrossRef] [PubMed]
- Martin, A.M.; Hammond, E.; Nolan, D.; Pace, C.; Den Boer, M.; Taylor, L.; Moore, H.; Martinez, O.P.; Christiansen, F.T.; Mallal, S. Accumulation of Mitochondrial DNA Mutations in Human Immunodeficiency Virus–Infected Patients Treated with Nucleoside-Analogue Reverse-Transcriptase Inhibitors. Am. J. Hum. Genet. 2003, 72, 549–560. [Google Scholar] [CrossRef]
- Betteridge, D.J. What is oxidative stress? Metabolism 2000, 49, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Tangerås, A.; Flatmark, T.; Bäckström, D.; Ehrenberg, A. Mitochondrial iron not bound in heme and iron-sulfur centers. Estimation, compartmentation and redox state. Biochim. Biophys. Acta BBA-Bioenerg. 1980, 589, 162–175. [Google Scholar] [CrossRef]
- Dh, F.; Jf, T.; Mh, E. The inactivation of Fe-S cluster containing hydro-lyases by superoxide. J. Biol. Chem. 1993, 268, 22369–22376. [Google Scholar]
- De La Asunción, J.G.; Del Olmo, M.L.; Sastre, J.; Millán, A.; Pellín, A.; Pallardó, F.V.; Viña, J. AZT treatment induces molecular and ultrastructural oxidative damage to muscle mitochondria. Prevention by antioxidant vitamins. J. Clin. Investig. 1998, 102, 4–9. [Google Scholar] [CrossRef] [PubMed]
- Gerschenson, M.; Nguyen, V.T.; St Claire, M.C.; Harbaugh, S.W.; Harbaugh, J.W.; Proia, L.A.; Poirier, M.C. Chronic stavudine exposure induces hepatic mitochondrial toxicity in adult Erythrocebus patas monkeys. J. Hum. Virol. 2001, 4, 335–342. [Google Scholar]
- Dubinsky, R.M.; Yarchoan, R.; Dalakas, M.; Broder, S. Reversible axonal neuropathy from the treatment of AIDS and related disorders with 2′,3′-dideoxycytidine (ddC). Muscle Nerve 1989, 12, 856–860. [Google Scholar] [CrossRef]
- Liao, M.-F.; Lu, K.-T.; Hsu, J.-L.; Lee, C.-H.; Cheng, M.-Y.; Ro, L.-S. The Role of Autophagy and Apoptosis in Neuropathic Pain Formation. Int. J. Mol. Sci. 2022, 23, 2685. [Google Scholar] [CrossRef]
- Gomez-Sanchez, J.A.; Carty, L.; Iruarrizaga-Lejarreta, M.; Palomo-Irigoyen, M.; Varela-Rey, M.; Griffith, M.; Hantke, J.; Macias-Camara, N.; Azkargorta, M.; Aurrekoetxea, I.; et al. Schwann cell autophagy, myelinophagy, initiates myelin clearance from injured nerves. J. Cell Biol. 2015, 210, 153–168. [Google Scholar] [CrossRef] [PubMed]
- Marinelli, S.; Nazio, F.; Tinari, A.; Ciarlo, L.; D’Amelio, M.; Pieroni, L.; Vacca, V.; Urbani, A.; Cecconi, F.; Malorni, W.; et al. Schwann cell autophagy counteracts the onset and chronification of neuropathic pain. PAIN® 2014, 155, 93–107. [Google Scholar] [CrossRef]
- Huang, H.; Chen, L.; Zhang, H.; Li, S.; Liu, P.; Zhao, T.; Li, C. Autophagy Promotes Peripheral Nerve Regeneration and Motor Recovery Following Sciatic Nerve Crush Injury in Rats. J. Mol. Neurosci. 2016, 58, 416–423. [Google Scholar] [CrossRef]
- Canpolat, M. Comparison of the effectiveness of rapamycin and gabapentin treatments on sciatic nerve injury-induced in rats. Erciyes Med. J. 2021, 44, 56–62. [Google Scholar] [CrossRef]
- Shi, G.; Shi, J.; Liu, K.; Liu, N.; Wang, Y.; Fu, Z.; Ding, J.; Jia, L.; Yuan, W. Increased miR-195 aggravates neuropathic pain by inhibiting autophagy following peripheral nerve injury. Glia 2013, 61, 504–512. [Google Scholar] [CrossRef] [PubMed]
- Alotaibi, M.; Al-Aqil, F.; Alqahtani, F.; Alanazi, M.; Nadeem, A.; Ahmad, S.F.; Lapresa, R.; Alharbi, M.; Alshammari, A.; Alotaibi, M.; et al. Alleviation of cisplatin-induced neuropathic pain, neuronal apoptosis, and systemic inflammation in mice by rapamycin. Front. Aging Neurosci. 2022, 14, 891593. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, M.; Zhou, Z.J.; Nagayasu, K.; Shirakawa, H.; Nakagawa, T.; Kaneko, S. Inhibitors of the Mechanistic Target of Rapamycin Can Ameliorate Bortezomib-Induced Peripheral Neuropathy. Biol. Pharm. Bull. 2023, 46, 1049–1056. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Huang, Y.; Sun, X.; Chen, X.; Zhao, X.; Ran, C.; Liu, B.; Hao, Y. Activating autophagy improves paclitaxel-induced peripheral neuropathy in chemotherapy. Acta Pharm. Sin. B 2024, 14, 4632. [Google Scholar] [CrossRef]
- Lin, H.; Stankov, M.V.; Hegermann, J.; Budida, R.; Panayotova-Dimitrova, D.; Schmidt, R.E.; Behrens, G.M.N. Zidovudine-Mediated Autophagy Inhibition Enhances Mitochondrial Toxicity in Muscle Cells. Antimicrob. Agents Chemother. 2018, 63, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Santos-Llamas, A.; Monte, M.J.; Marin, J.J.G.; Perez, M.J. Dysregulation of autophagy in rat liver with mitochondrial DNA depletion induced by the nucleoside analogue zidovudine. Arch. Toxicol. 2018, 92, 2109–2118. [Google Scholar] [CrossRef] [PubMed]
- De Benedetto, I.; Trunfio, M.; Guastamacchia, G.; Bonora, S.; Calcagno, A. A review of the potential mechanisms of neuronal toxicity associated with antiretroviral drugs. J. Neurovirol. 2020, 26, 642–651. [Google Scholar] [CrossRef]
- Tian, Y.; Bustos, V.; Flajolet, M.; Greengard, P. A small-molecule enhancer of autophagy decreases levels of Aβ and APP-CTF via Atg5-dependent autophagy pathway. FASEB J. 2011, 25, 1934–1942. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, A.B.; Kaul, M. Neuronal Stress and Injury Caused by HIV-1, cART and Drug Abuse: Converging Contributions to HAND. Brain Sci. 2017, 7, 25. [Google Scholar] [CrossRef]
- Ch, C.; Yc, C. Delayed cytotoxicity and selective loss of mitochondrial DNA in cells treated with the anti-human immunodeficiency virus compound 2′,3′-dideoxycytidine. J. Biol. Chem. 1989, 264, 11934–11937. [Google Scholar]
- Chen, C.H.; Vazquez-Padua, M.; Cheng, Y.C. Effect of anti-human immunodeficiency virus nucleoside analogs on mitochondrial DNA and its implication for delayed toxicity. Mol. Pharmacol. 1991, 39, 625–628. [Google Scholar]
- Chen, Z.; Shi, T.; Zhang, L.; Zhu, P.; Deng, M.; Huang, C.; Hu, T.; Jiang, L.; Li, J. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family in multidrug resistance: A review of the past decade. Cancer Lett. 2016, 370, 153–164. [Google Scholar] [CrossRef]
- Dietrich, C.G. ABC of oral bioavailability: Transporters as gatekeepers in the gut. Gut 2003, 52, 1788–1795. [Google Scholar] [CrossRef]
- Chaves, C.; Shawahna, R.; Jacob, A.; Scherrmann, J.-M.; Declèves, X. Human ABC Transporters at blood-CNS Interfaces as Determinants of CNS Drug Penetration. Curr. Pharm. Des. 2014, 20, 1450–1462. [Google Scholar] [CrossRef]
- Lin, L.; Yee, S.W.; Kim, R.B.; Giacomini, K.M. SLC transporters as therapeutic targets: Emerging opportunities. Nat. Rev. Drug Discov. 2015, 14, 543–560. [Google Scholar] [CrossRef]
- Stage, T.B.; Hu, S.; Sparreboom, A.; Kroetz, D.L. Role for Drug Transporters in Chemotherapy-Induced Peripheral Neuropathy. Clin. Transl. Sci. 2021, 14, 460–467. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.M.; Uddin, M.E.; DiGiacomo, D.; Lustberg, M.B.; Hu, S.; Sparreboom, A. Role of SLC transporters in toxicity induced by anticancer drugs. Expert Opin. Drug Metab. Toxicol. 2020, 16, 493–506. [Google Scholar] [CrossRef]
- Alfarouk, K.O.; Stock, C.-M.; Taylor, S.; Walsh, M.; Muddathir, A.K.; Verduzco, D.; Bashir, A.H.H.; Mohammed, O.Y.; Elhassan, G.O.; Harguindey, S.; et al. Resistance to cancer chemotherapy: Failure in drug response from ADME to P-gp. Cancer Cell Int. 2015, 15, 71. [Google Scholar] [CrossRef] [PubMed]
- Lhommé, C.; Joly, F.; Walker, J.L.; Lissoni, A.A.; Nicoletto, M.O.; Manikhas, G.M.; Baekelandt, M.M.O.; Gordon, A.N.; Fracasso, P.M.; Mietlowski, W.L.; et al. Phase III Study of Valspodar (PSC 833) Combined with Paclitaxel and Carboplatin Compared With Paclitaxel and Carboplatin Alone in Patients With Stage IV or Suboptimally Debulked Stage III Epithelial Ovarian Cancer or Primary Peritoneal Cancer. J. Clin. Oncol. 2008, 26, 2674–2682. [Google Scholar] [CrossRef] [PubMed]
- Stage, T.B.; Mortensen, C.; Khalaf, S.; Steffensen, V.; Hammer, H.S.; Xiong, C.; Nielsen, F.; Poetz, O.; Svenningsen, Å.F.; Rodriguez-Antona, C.; et al. P-Glycoprotein Inhibition Exacerbates Paclitaxel Neurotoxicity in Neurons and Patients with Cancer. Clin. Pharmacol. Ther. 2020, 108, 671–680. [Google Scholar] [CrossRef]
- Filipski, K.K.; Mathijssen, R.H.; Mikkelsen, T.S.; Schinkel, A.H.; Sparreboom, A. Contribution of organic cation transporter 2 (OCT2) to cisplatin-induced nephrotoxicity. Clin. Pharmacol. Ther. 2009, 86, 396–402. [Google Scholar] [CrossRef]
- Fawzy, M.H.; Moustafa, Y.M.; Khodeer, D.M.; Saeed, N.M.; El-Sayed, N.M. Doxepin as OCT2 inhibitor ameliorates inflammatory response and modulates PI3K/Akt signaling associated with cisplatin-induced nephrotoxicity in rats. Naunyn. Schmiedebergs Arch. Pharmacol. 2024. [CrossRef] [PubMed]
- Huang, K.M.; Zavorka Thomas, M.; Magdy, T.; Eisenmann, E.D.; Uddin, M.E.; DiGiacomo, D.F.; Pan, A.; Keiser, M.; Otter, M.; Xia, S.H.; et al. Targeting OCT3 attenuates doxorubicin-induced cardiac injury. Proc. Natl. Acad. Sci. USA 2021, 118, e2020168118. [Google Scholar] [CrossRef] [PubMed]
- Leblanc, A.F.; Sprowl, J.A.; Alberti, P.; Chiorazzi, A.; Arnold, W.D.; Gibson, A.A.; Hong, K.W.; Pioso, M.S.; Chen, M.; Huang, K.M.; et al. OATP1B2 deficiency protects against paclitaxel-induced neurotoxicity. J. Clin. Investig. 2018, 128, 816–825. [Google Scholar] [CrossRef]
- Li, Y.; Drabison, T.; Nepal, M.; Ho, R.H.; Leblanc, A.F.; Gibson, A.A.; Jin, Y.; Yang, W.; Huang, K.M.; Uddin, M.E.; et al. Targeting a xenobiotic transporter to ameliorate vincristine-induced sensory neuropathy. JCI Insight 2023, 8, e164646. [Google Scholar] [CrossRef]
- Huang, K.M.; Leblanc, A.F.; Uddin, M.E.; Kim, J.Y.; Chen, M.; Eisenmann, E.D.; Gibson, A.A.; Li, Y.; Hong, K.W.; DiGiacomo, D.; et al. Neuronal uptake transporters contribute to oxaliplatin neurotoxicity in mice. J. Clin. Investig. 2020, 130, 4601–4606. [Google Scholar] [CrossRef]
- Nepal, M.R.; Taheri, H.; Li, Y.; Talebi, Z.; Uddin, M.E.; Jin, Y.; DiGiacomo, D.F.; Gibson, A.A.; Lustberg, M.B.; Hu, S.; et al. Targeting OCT2 with Duloxetine to Prevent Oxaliplatin-Induced Peripheral Neurotoxicity. Cancer Res. Commun. 2022, 2, 1334–1343. [Google Scholar] [CrossRef]
- Schuetz, J.D.; Connelly, M.C.; Sun, D.; Paibir, S.G.; Flynn, P.M.; Srinivas, R.V.; Kumar, A.; Fridland, A. MRP4: A previously unidentified factor in resistance to nucleoside-based antiviral drugs. Nat. Med. 1999, 5, 1048–1051. [Google Scholar] [CrossRef]
- Wang, X.; Furukawa, T.; Nitanda, T.; Okamoto, M.; Sugimoto, Y.; Akiyama, S.-I.; Baba, M. Breast Cancer Resistance Protein (BCRP/ABCG2) Induces Cellular Resistance to HIV-1 Nucleoside Reverse Transcriptase Inhibitors. Mol. Pharmacol. 2003, 63, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Piliero, P.J. Pharmacokinetic Properties of Nucleoside/Nucleotide Reverse Transcriptase Inhibitors. JAIDS J. Acquir. Immune Defic. Syndr. 2004, 37, S2–S12. [Google Scholar] [CrossRef] [PubMed]
- Ritzel, M.W.L.; Ng, A.M.L.; Yao, S.Y.M.; Graham, K.; Loewen, S.K.; Smith, K.M.; Ritzel, R.G.; Mowles, D.A.; Carpenter, P.; Chen, X.-Z.; et al. Molecular Identification and Characterization of Novel Human and Mouse Concentrative Na+-Nucleoside Cotransporter Proteins (hCNT3 and mCNT3) Broadly Selective for Purine and Pyrimidine Nucleosides (System cib). J. Biol. Chem. 2001, 276, 2914–2927. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.Y.M.; Ng, A.M.L.; Sundaram, M.; Cass, C.E.; Baldwin, S.A.; Young, J.D. Transport of antiviral 3′-deoxy-nucleoside drugs by recombinant human and rat equilibrative, nitrobenzylthioinosine (NBMPR)-insensitive (ENT2) nucleoside transporter proteins produced in Xenopus oocytes. Mol. Membr. Biol. 2001, 18, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Molina, J.; Peytavin, G.; Perusat, S.; Lascoux-Combes, C.; Sereni, D.; Rozenbaum, W.; Chene, G. Pharmacokinetics of emtricitabine, didanosine and efavirenz administered once-daily for the treatment of HIV-infected adults (pharmacokinetic substudy of the ANRS 091 trial)*. HIV Med. 2004, 5, 99–104. [Google Scholar] [CrossRef]
- Em, A.; Em, B.; Wh, P. 3′-Deoxythymidin-2′-ene permeation of human lymphocyte H9 cells by nonfacilitated diffusion. Mol. Pharmacol. 1991, 39, 246–249. [Google Scholar]
- Lostao, M.P.; Mata, J.F.; Larrayoz, I.M.; Inzillo, S.M.; Casado, F.J.; Pastor-Anglada, M. Electrogenic uptake of nucleosides and nucleoside-derived drugs by the human nucleoside transporter 1 (hCNT1) expressed in Xenopus laevis oocytes. FEBS Lett. 2000, 481, 137–140. [Google Scholar] [CrossRef]
- Weiss, J.; Weis, N.; Ketabi-Kiyanvash, N.; Storch, C.H.; Haefeli, W.E. Comparison of the induction of P-glycoprotein activity by nucleotide, nucleoside, and non-nucleoside reverse transcriptase inhibitors. Eur. J. Pharmacol. 2008, 579, 104–109. [Google Scholar] [CrossRef]
- Becher, F.; Landman, R.; Mboup, S.; Kane, C.N.; Canestri, A.; Liegeois, F.; Vray, M.; Prevot, M.-H.; Leleu, G.; Benech, H. Monitoring of didanosine and stavudine intracellular trisphosphorylated anabolite concentrations in HIV-infected patients. AIDS 2004, 18, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Andrade, C.; Freitas, L.; Oliveira, V. Twenty-six years of HIV science: An overview of anti-HIV drugs metabolism. Braz. J. Pharm. Sci. 2011, 47, 209–230. [Google Scholar] [CrossRef]
- Gray, J.H.; Mangravite, L.M.; Owen, R.P.; Urban, T.J.; Chan, W.; Carlson, E.J.; Huang, C.C.; Kawamoto, M.; Johns, S.J.; Stryke, D.; et al. Functional and Genetic Diversity in the Concentrative Nucleoside Transporter, CNT1, in Human Populations. Mol. Pharmacol. 2004, 65, 512–519. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.J.; Han, H.-K. Interaction of zalcitabine with human organic anion transporter 1. Pharmazie 2006, 61, 491–492. [Google Scholar] [PubMed]
- Weiss, J.; Haefeli, W.E. Chapter 5—Impact of ATP-Binding Cassette Transporters on Human Immunodeficiency Virus Therapy. In International Review of Cell and Molecular Biology; Academic Press: Cambridge, MA, USA, 2010; Volume 280, pp. 219–279. [Google Scholar]
- Adkins, J.C.; Peters, D.H.; Faulds, D. Zalcitabine. Drugs 1997, 53, 1054–1080. [Google Scholar] [CrossRef] [PubMed]
- Cano-Soldado, P.; Larráyoz, I.M.; Molina-Arcas, M.; Casado, F.J.; Martinez-Picado, J.; Lostao, M.P.; Pastor-Anglada, M. Interaction of Nucleoside Inhibitors of HIV-1 Reverse Transcriptase with the Concentrative Nucleoside Transporter-1 (Slc28A1). Antivir. Ther. 2004, 9, 993–1002. [Google Scholar] [CrossRef] [PubMed]
- Jung, N.; Lehmann, C.; Rubbert, A.; Knispel, M.; Hartmann, P.; Van Lunzen, J.; Stellbrink, H.-J.; Faetkenheuer, G.; Taubert, D. Relevance of the Organic Cation Transporters 1 and 2 for Antiretroviral Drug Therapy in Human Immunodeficiency Virus Infection. Drug Metab. Dispos. 2008, 36, 1616–1623. [Google Scholar] [CrossRef] [PubMed]
- Eckhardt, B.J.; Gulick, R.M. 152—Drugs for HIV Infection. In Infectious Diseases, 4th ed.; Cohen, J., Powderly, W.G., Opal, S.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1293–1308.e2. ISBN 978-0-7020-6285-8. [Google Scholar]
- Kumar, M.; Sarin, S.K. Pharmacology, clinical efficacy and safety of lamivudine in hepatitis B virus infection. Expert Rev. Gastroenterol. Hepatol. 2008, 2, 465–495. [Google Scholar] [CrossRef]
- Reznicek, J.; Ceckova, M.; Cerveny, L.; Müller, F.; Staud, F. Emtricitabine is a substrate of MATE1 but not of OCT1, OCT2, P-gp, BCRP or MRP2 transporters. Xenobiotica 2017, 47, 77–85. [Google Scholar] [CrossRef]
- Weiss, J.; Theile, D.; Ketabi-Kiyanvash, N.; Lindenmaier, H.; Haefeli, W.E. Inhibition of MRP1/ABCC1, MRP2/ABCC2, and MRP3/ABCC3 by Nucleoside, Nucleotide, and Non-Nucleoside Reverse Transcriptase Inhibitors. Drug Metab. Dispos. 2007, 35, 340–344. [Google Scholar] [CrossRef]
- Cerveny, L.; Ptackova, Z.; Ceckova, M.; Karahoda, R.; Karbanova, S.; Jiraskova, L.; Greenwood, S.L.; Glazier, J.D.; Staud, F. Equilibrative Nucleoside Transporter 1 (ENT1, SLC29A1) Facilitates Transfer of the Antiretroviral Drug Abacavir across the Placenta. Drug Metab. Dispos. 2018, 46, 1817–1826. [Google Scholar] [CrossRef]
- Storch, C.H.; Theile, D.; Lindenmaier, H.; Haefeli, W.E.; Weiss, J. Comparison of the inhibitory activity of anti-HIV drugs on P-glycoprotein. Biochem. Pharmacol. 2007, 73, 1573–1581. [Google Scholar] [CrossRef]
- Yuen, G.J.; Weller, S.; Pakes, G.E. A review of the pharmacokinetics of abacavir. Clin. Pharmacokinet. 2008, 47, 351–371. [Google Scholar] [CrossRef] [PubMed]
- Cihlar, T.; Ho, E.S.; Lin, D.C.; Mulato, A.S. Human renal organic anion transporter 1 (hOAT1) and its role in the nephrotoxicity of antiviral nucleotide analogs. Nucleosides Nucleotides Nucleic Acids 2001, 20, 641–648. [Google Scholar] [CrossRef] [PubMed]
- Nagle, M.A.; Truong, D.M.; Dnyanmote, A.V.; Ahn, S.-Y.; Eraly, S.A.; Wu, W.; Nigam, S.K. Analysis of three-dimensional systems for developing and mature kidneys clarifies the role of OAT1 and OAT3 in antiviral handling. J. Biol. Chem. 2011, 286, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Van Gelder, J.; Deferme, S.; Naesens, L.; De Clercq, E.; Van Den Mooter, G.; Kinget, R.; Augustijns, P. Intestinal Absorption Enhancement of the Ester Prodrug Tenofovir Disoproxil Fumarate through Modulation of the Biochemical Barrier by Defined Ester Mixtures. Drug Metab. Dispos. 2002, 30, 924–930. [Google Scholar] [CrossRef]
- Ray, A.S.; Cihlar, T.; Robinson, K.L.; Tong, L.; Vela, J.E.; Fuller, M.D.; Wieman, L.M.; Eisenberg, E.J.; Rhodes, G.R. Mechanism of active renal tubular efflux of tenofovir. Antimicrob. Agents Chemother. 2006, 50, 3297–3304. [Google Scholar] [CrossRef] [PubMed]
- Kearney, B.P.; Flaherty, J.F.; Shah, J. Tenofovir disoproxil fumarate: Clinical pharmacology and pharmacokinetics. Clin. Pharmacokinet. 2004, 43, 595–612. [Google Scholar] [CrossRef]
- Koczor, C.A.; Torres, R.A.; Lewis, W. The role of transporters in the toxicity of nucleoside and nucleotide analogs. Expert Opin. Drug Metab. Toxicol. 2012, 8, 665–676. [Google Scholar] [CrossRef] [PubMed]
- Leung, G.P.; Tse, C.-M. The role of mitochondrial and plasma membrane nucleoside transporters in drug toxicity. Expert Opin. Drug Metab. Toxicol. 2007, 3, 705–718. [Google Scholar] [CrossRef] [PubMed]
- Kurtzberg, J.; Ernst, T.J.; Keating, M.J.; Gandhi, V.; Hodge, J.P.; Kisor, D.F.; Lager, J.J.; Stephens, C.; Levin, J.; Krenitsky, T.; et al. Phase I study of 506U78 administered on a consecutive 5-day schedule in children and adults with refractory hematologic malignancies. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2005, 23, 3396–3403. [Google Scholar] [CrossRef]
- Löwenberg, B.; Pabst, T.; Vellenga, E.; van Putten, W.; Schouten, H.C.; Graux, C.; Ferrant, A.; Sonneveld, P.; Biemond, B.J.; Gratwohl, A.; et al. Cytarabine dose for acute myeloid leukemia. N. Engl. J. Med. 2011, 364, 1027–1036. [Google Scholar] [CrossRef]
- Homminga, I.; Zwaan, C.M.; Manz, C.Y.; Parker, C.; Bantia, S.; Smits, W.K.; Higginbotham, F.; Pieters, R.; Meijerink, J.P.P. In vitro efficacy of forodesine and nelarabine (ara-G) in pediatric leukemia. Blood 2011, 118, 2184–2190. [Google Scholar] [CrossRef] [PubMed]
- Parmar, S.; Seeringer, A.; Denich, D.; Gärtner, F.; Pitterle, K.; Syrovets, T.; Ohmle, B.; Stingl, J.C. Variability in transport and biotransformation of cytarabine is associated with its toxicity in peripheral blood mononuclear cells. Pharmacogenomics 2011, 12, 503–514. [Google Scholar] [CrossRef] [PubMed]
- Lewis, W.; Haase, C.P.; Miller, Y.K.; Ferguson, B.; Stuart, T.; Ludaway, T.; McNaught, J.; Russ, R.; Steltzer, J.; Santoianni, R.; et al. Transgenic expression of the deoxynucleotide carrier causes mitochondrial damage that is enhanced by NRTIs for AIDS. Lab. Investig. J. Tech. Methods Pathol. 2005, 85, 972–981. [Google Scholar] [CrossRef] [PubMed]
- Lam, W.; Chen, C.; Ruan, S.; Leung, C.-H.; Cheng, Y.-C. Expression of deoxynucleotide carrier is not associated with the mitochondrial DNA depletion caused by anti-HIV dideoxynucleoside analogs and mitochondrial dNTP uptake. Mol. Pharmacol. 2005, 67, 408–416. [Google Scholar] [CrossRef]
- Rahman, M.F.; Askwith, C.; Govindarajan, R. Molecular determinants of acidic pH-dependent transport of human equilibrative nucleoside transporter 3. J. Biol. Chem. 2017, 292, 14775–14785. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Govindarajan, R. ENT3 utilizes a pH Sensing Mechanism for Transport. Channels 2018, 12, 78. [Google Scholar] [CrossRef] [PubMed]
- Govindarajan, R.; Leung, G.P.H.; Zhou, M.; Tse, C.-M.; Wang, J.; Unadkat, J.D. Facilitated mitochondrial import of antiviral and anticancer nucleoside drugs by human equilibrative nucleoside transporter-3. Am. J. Physiol.-Gastrointest. Liver Physiol. 2009, 296, G910–G922. [Google Scholar] [CrossRef] [PubMed]
- Nair, S.; Strohecker, A.M.; Persaud, A.K.; Bissa, B.; Muruganandan, S.; McElroy, C.; Pathak, R.; Williams, M.; Raj, R.; Kaddoumi, A.; et al. Adult stem cell deficits drive Slc29a3 disorders in mice. Nat. Commun. 2019, 10, 2943. [Google Scholar] [CrossRef]
- Riddler, S.A.; Haubrich, R.; DiRienzo, A.G.; Peeples, L.; Powderly, W.G.; Klingman, K.L.; Garren, K.W.; George, T.; Rooney, J.F.; Brizz, B.; et al. Class-Sparing Regimens for Initial Treatment of HIV-1 Infection. N. Engl. J. Med. 2008, 358, 2095–2106. [Google Scholar] [CrossRef] [PubMed]
- Marcelin, A.G.; Visseaux, B.; Wirden, M.; Morand-Joubert, L.; Soulie, C.; Charpentier, C.; Masquelier, B.; Descamps, D.; Calvez, V. NRTI-sparing regimens yield higher rates of drug resistance than NRTI-based regimens for HIV-1 treatment. J. Glob. Antimicrob. Resist. 2014, 2, 103–106. [Google Scholar] [CrossRef]
Animal Model | Observation | Reference |
---|---|---|
C57Bl6/J iTAT transgenic mice capable of producing the HIV TAT protein upon induction with DOX. | Induction of TAT-led motor and sensory neuropathy along with a reduction in the expression of proteins involved in the electron transport chain and an increase in proteins associated with mitochondrial fission. | [54] |
B6/SJL GFAP-gp120 transgenic mice | Mice producing the HIV protein gp120 showed distal axonal degeneration at 12–15 months of age, which was exacerbated after ddI administration. | [55] |
B6 mice infected with the LP-BM5 virus | Mice infected with the murine equivalent of HIV (LP-BM5 virus) were more sensitive to mechanical and heat stimuli post 5 weeks of infection, which was associated with the loss of the intraepidermal nerve fibers visualized through the axonal marker PGP9.5. | [56] |
C57BL/6 Tg26 transgenic mice | Tg26 transgenic mice express transgene containing tat, env, rev, nef, vif, vpr, and vpu genes. These proteins significantly lowered mechanical and thermal pain thresholds. HIV-induced neuropathy was further exacerbated by ART treatments. | [57] |
Wistar rats | Rats perineurally exposed to the HIV protein gp120 developed persistent mechanical hypersensitivity. | [58,59] |
Sprague–Dawley × Fisher 344/NHsd F1 rats | Fertilized one-cell eggs from rats were injected with the HIV-1gag-pol clone pEVd1443, which produced an immunocompromised phenotype similar to HIV-1 infection in humans. These rats also showed neurological abnormalities such as circling behavior and hind-limb paralysis at 5–9 months of age. | [60] |
Neonatal kittens | Kittens infected with the neurovirulent recombinant molecular clone V1-Ch of the feline immunodeficiency virus (FIV) showed a reduction in the sural nerve axonal count and epidermal nerve fiber density. FIV-infected animals also showed a delayed withdrawal response to thermal stimuli. | [61] |
Rhesus macaques | SIVmac251-infected monkeys recapitulated the clinical HIV-DSP phenotype that includes reduced IENF densities, DRG satellitosis, the presence of Nageotte nodules in DRG, neuronophagia, increased numbers of CD68+ macrophages, and abundant viral replication. The SIV-induced neuropathy is exacerbated by the depletion of CD8+ lymphocytes. | [62] |
Animal Model | Observation | Reference |
---|---|---|
C57BL/6J mice | Adult mice dosed with FTC developed sensitivity to mechanical stimuli and reduced tail flick time and showed epidermal denervation. PI, INSTI, and NNRTI treatments did not exhibit a neurotoxic response. | [65] |
BALB/C mice | Mice treated with ddC showed an increase in the number of intraxonal mitochondria. Furthermore, many neuronal organelles were observed to be unusually large due to hydropic swelling along with distorted architecture. | [70] |
CD1 mice | Mice with a single administration of d4T or ddC developed persistent mechanical allodynia, which was mitigated after the inhibition of the JNK pathway. | [69] |
Rodents | d4T, ddC, and ddI administration resulted in dose-dependent mechanical and thermal hypersensitivity. This phenotype can be achieved through IP or IV injection, with doses ranging between 10 and 50 mg/kg given for 3 days. An increased myelin sheath thickness and Remak bundle degeneration is evident. | [68] |
Wistar rats | Immunohistochemical staining of the cerebellum of rats treated with 3TC revealed degeneration in the form of a distorted granular layer, shrunken Purkinje cells, and increased GFAP staining. | [71] |
Sprague–Dawley rats | Rats treated with ddC, ddI, and d4T showed dose-dependent mechanical sensitivity and a non-significant reduction in motor function. | [67] |
Wistar rats | d4T treatment increased the sural nerve axonal diameter and decreased the hind paw intraepidermal nerve fiber density. Furthermore, d4T-treated mice showed increased mechanical sensitivity, which was attenuated with analgesics—gabapentin and WIN 55,212-2; behavioral changes: increased thigmotaxis and reduced chances of burrowing. | [66] |
Neonatal kittens | In FIV-infected kittens treated with ddI, nerve damage was exacerbated by FIV, as observed from the decreased sural nerve axonal count and epidermal nerve fiber density as well as withdrawal response latency. ddI was also observed to be neurotoxic to cultured DRG neurons and significantly reduced the neurite length. | [61] |
Pigtailed macaques | SRV-2-infected monkeys upon treatment with ddC developed signs resembling peripheral neuropathy. The toxicities were observed to be prevalent and more severe with bolus doses rather than prolonged administration. | [72] |
NRTI | Abbreviation | Active Form | Uptake Transporters | Efflux Transporters | Half-Life (Plasma) | Activating Enzymes |
---|---|---|---|---|---|---|
Zidovudine [20] | ZDV, AZT | AZT-TP [76] | OAT1-4, CNT1, CNT3, ENT2 [76] | MRP4, BCRP [126,127] | 1–2 h [128] | Thymidine kinase (TKs), thymidylate kinase (dTMPK), and nucleoside diphosphate kinase (NDPK) [79] |
Didanosine [25] | ddl | ddl-TP [76] | CNT2, CNT3, ENT1, ENT2 [129,130] | BCRP [127] | 2.3 h [131] | ddI-MP—5′nucleotidase, inosine 5′-monophosphate phosphotransferase ddI-DP—adenylate kinase ddI-TP—creatine kinase, phosphoribosyl pyrophosphate synthetase [12] |
Stavudine [26] | d4T | d4T-TP [76] | CNT1 [132,133] | BCRP, MRP5 [127,134] | 7 h [135] | d4T-MP—thymidine kinase d4T-DP—thymidylate kinase d4T-TP—nucleoside diphosphate kinase [136] |
Zalcitabine [27] | ddC | ddC-TP [76] | CNT1 [137], OAT1 [138] | MRP8 [139] | 1.1–1.8 h [140] | ddC-MP—deoxycytidine kinase [136] |
Lamivudine [28] | 3TC | 3TC-TP [76] | OCT1, OCT2, CNT1 [141,142] | BCRP [127] | 5–7 h [143] | 3TC-MP—deoxycytidine kinase 3TC-DP—dCMP kinase 3TC-TP—NDP kinase [144] |
Emtricitabine [29] | FTC | FTC-TP [76] | MATE1 [145] | MRP1 [146] | 7.4 h [131] | Similar to 3TC [12] Similar to 3TC [12] |
Abacavir [30] | ABC | CBV-TP [76] | ENT1 [147] | P-gp, MRP4, BCRP [126,127,148] | 1.5 h [149] | ABC-MP- adenosine phosphotransferase CBV-DP- guanylate kinase CBV-TP- diphosphate kinase [12] |
Tenofovir disoproxil fumarate [31] | TDF | TFV-DP [76] | OAT1 [150]; OAT3 [151] | P-gp [152], MRP4 [84,153] | 17 h [154] | TDF-MP—AMP kinase TDF-DP—AMP kinase [136] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haynes, J.; Joshi, A.; Larue, R.C.; Eisenmann, E.D.; Govindarajan, R. Nucleoside Reverse Transcriptase Inhibitor (NRTI)-Induced Neuropathy and Mitochondrial Toxicity: Limitations of the Poly-γ Hypothesis and the Potential Roles of Autophagy and Drug Transport. Pharmaceutics 2024, 16, 1592. https://doi.org/10.3390/pharmaceutics16121592
Haynes J, Joshi A, Larue RC, Eisenmann ED, Govindarajan R. Nucleoside Reverse Transcriptase Inhibitor (NRTI)-Induced Neuropathy and Mitochondrial Toxicity: Limitations of the Poly-γ Hypothesis and the Potential Roles of Autophagy and Drug Transport. Pharmaceutics. 2024; 16(12):1592. https://doi.org/10.3390/pharmaceutics16121592
Chicago/Turabian StyleHaynes, John, Arnav Joshi, Ross C. Larue, Eric D. Eisenmann, and Rajgopal Govindarajan. 2024. "Nucleoside Reverse Transcriptase Inhibitor (NRTI)-Induced Neuropathy and Mitochondrial Toxicity: Limitations of the Poly-γ Hypothesis and the Potential Roles of Autophagy and Drug Transport" Pharmaceutics 16, no. 12: 1592. https://doi.org/10.3390/pharmaceutics16121592
APA StyleHaynes, J., Joshi, A., Larue, R. C., Eisenmann, E. D., & Govindarajan, R. (2024). Nucleoside Reverse Transcriptase Inhibitor (NRTI)-Induced Neuropathy and Mitochondrial Toxicity: Limitations of the Poly-γ Hypothesis and the Potential Roles of Autophagy and Drug Transport. Pharmaceutics, 16(12), 1592. https://doi.org/10.3390/pharmaceutics16121592